首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
MDL 27048 [trans-1-(2,5-dimethoxyphenyl)-3-[4-(dimethylamino)phenyl]-2- methyl-2-propen-1-one] fluoresces when bound to tubulin but not in solution. This effect has been investigated and found to be mimicked by viscous solvents. Therefore, MDL 27048 appears to be a fluorescent compound whose intramolecular rotational relaxation varies as a function of microenvironment viscosity. The binding parameters of MDL 27048 to tubulin have been firmly established by fluorescence of the ligand, quenching of the protein fluorescence, and gel equilibrium chromatography. The apparent binding equilibrium constant was (2.75 +/- 0.45) x 10(6)M-1, and the binding site number was 0.81 +/- 0.12 (10 mM sodium phosphate-0.1 mM GTP, pH 7.0, at 25 degrees C). The binding is exothermic. The binding of MDL 27048 overlaps the colchicine and podophyllotoxin binding sites. Binding of MDL 27048 to the colchicine site was also measured by competition with MTC [2-methoxy-5-(2,3,4-trimethoxyphenyl)-2,4,6-cycloheptatrien-1-one] , a well-characterized reversibly binding probe of the colchicine site [Andreu et al. (1984) Biochemistry 23, 1742-1752; Bane et al., (1984) J. Biol. Chem. 259, 7391-7398]. In contrast with close analogues of colchicine, MDL 27048 and podophyllotoxin neither affected the far-ultraviolet circular dichroism spectrum of tubulin, within experimental error, nor induced tubulin GTPase activity. Like podophyllotoxin, an excess of MDL 27048 over tubulin induced no abnormal cooperative polymerization of tubulin, which is characteristic of colchicine binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The thermodynamics and kinetics of the binding to tubulin of the colchicine analog 2-methoxy-5-(2', 3', 4'-trimethoxyphenyl) tropone (termed AC because it lacks the B-ring of colchicine) have been characterized by fluorescence techniques. The fluorescence of AC is weak in aqueous solution and is enhanced 250-fold upon binding to tubulin. The following thermodynamic values were obtained for the interaction at 37 degrees C: K = 3.5 X 10(5) M-1; delta G0 = -7.9 kcal/mol; delta H0 = -6.8 kcal/mol; delta S0 = 3.6 entropy units. The AC-tubulin complex is 1-2 kcal/mol less stable than the colchicine-tubulin complex. The change in fluorescence of AC was employed to measure the kinetics of the association process, and quenching of protein fluorescence was used to measure both association and dissociation. The association process, like that of colchicine, could be resolved into a major fast phase and a minor slow phase. The apparent second order rate constant for the fast phase was found to be 5.2 X 10(4) M-1 S-1 at 37 degrees C, and the activation energy was 13 kcal/mol. This activation energy is 7-11 kcal/mol less than that for the binding of colchicine to tubulin. The difference in activation energies can most easily be rationalized by a mechanism involving a tubulin-induced conformational change in the ligand ( Detrich , H. W., III, Williams, R. C., Jr., Macdonald, T. L., Wilson, L., and Puett , D. (1981) Biochemistry 20, 5999-6005). Such a change would be expected to have a small activation energy in AC because it possesses a freely rotating single bond in place of the B-ring of colchicine.  相似文献   

3.
S B Hastie 《Biochemistry》1989,28(19):7753-7760
Allocolchicine is a structural isomer of colchicine in which colchicine's tropone C ring is replaced with an aromatic ester. In spite of the structural differences between the two ligands, the association parameters for both molecules binding to tubulin are quite similar. The association constant for allocolchicine binding to tubulin was determined by fluorescence titration to be 6.1 x 10(5) M-1 at 37 degrees C, which is about a factor of 5 less than that of the colchicine-tubulin association. In particular, analysis of the kinetics of the association of allocolchicine with tubulin yielded nearly equivalent activation parameters for the two ligands. The activation energy of the allocolchicine binding reaction was found to be 18.4 +/- 1.5 kcal/mol, which is only slightly less than the activation energy for colchicine binding to tubulin. This finding argues against conformational flexibility of the C ring as the structural feature of colchicine responsible for the slow kinetics of colchicinoid-tubulin binding reactions. Tubulin binding promote a dramatic enhancement of allocolchicine fluorescence. Unlike colchicine, the emission energy and intensity of the tubulin-bound allocolchicine fluorescence can be mimicked by solvent, and a general hydrophobic environment for the ligand binding site is indicated. The excitation spectrum of the protein-bound species, however, is shown to possess two bands which center at higher and lower energy than the energy maximum of the spectrum of the ligand in apolar solvents, indicating that properties of the colchicine binding site in addition to a low dielectric constant contribute to the fluorescence of the bound species.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The binding kinetics of the specific dopamine D2 antagonist [3H]raclopride to dopamine D2 receptors in rat neostriatum were studied. The pseudo-first-order rate constants of [3H]raclopride binding with these membranes revealed a hyperbolic dependence upon the antagonist concentration, indicating that the reaction had at least two consecutive and kinetically distinguished steps. The first step was fast binding equilibrium, characterized by the dissociation constant KA = 12 ± 2 nM. The following step corresponded to a slow isomerization of the receptor-antagonist complex, characterized by the isomerization equilibrium constant Ki = 0.11. The dissociation constant Kd = 1.3 nM, calculated from these kinetic data, was similar to Kd = 2.4 nM, determined from equilibrium binding isotherm for the radioligand. Implications of the complex reaction mechanism on dopamine D2 receptor assay by [3H]raclopride were discussed.  相似文献   

5.
We have characterized the binding of trans-1-(2,5-dimethoxyphenyl)-3-[4-(dimethylamino)phenyl]-2-methyl-2- propen- 1-one (MDL 27048) to purified procine brain tubulin, and the inhibition of microtubule assembly by this compound in vitro and using cultured cells. Binding measurements were performed by difference absorption and fluorescence spectroscopy. MDL 27048 binds to one site/tubulin heterodimer with an apparent equilibrium constant Kb = (2.8 +/- 0.8) X 10(6) M-1 (50 mM 2-(N-morpholino)ethanesulfonic acid, 1 mM [ethylenebis(oxyethylenenitrilo)]tetraacetic acid, 0.5 mM MgCl2, 0.1 mM GTP buffer, pH 6.7, at 25 degrees C). Podophyllotoxin displaced the binding of MDL 27048, suggesting an overlap with the colchicine-binding site. Assembly of purified tubulin into microtubules was inhibited by substoichiometric concentrations of MDL 27048, which also induced a slow depolymerization of preassembled microtubules. The cytoplasmic microtubules of PtK2 cells were disrupted in a concentration and time-dependent manner by MDL 27048, as observed by indirect immunofluorescence microscopy. Maximal depolymerization took place with 2 X 10(-6) M MDL 27048 in 3 h. When the inhibitor was washed off from the cells, fast microtubule assembly (approximately 8 min) and complete reorganization of the cytoplasmic microtubule network (15-30 min) were observed. MDL 27048 also induced mitotic arrest in SV40-3T3 cell cultures. Due to all these properties, this anti-tumor drug constitutes a new and potent microtubule inhibitor, characterized by its specificity and reversibility.  相似文献   

6.
The interactions of tubulin with colchicine analogues in which the tropolone methyl ether ring had been transformed into a p-carbomethoxybenzene have been characterized. The analogues were allocolchicine (ALLO) and 2,3,4-trimethoxy-4'-carbomethoxy-1,1'-biphenyl (TCB), the first being transformed colchicine and the second transformed colchicine with ring B eliminated. The binding of both analogues has been shown to be specific for the colchicine binding site on tubulin by competition with colchicine and podophyllotoxin. Both analogues bind reversibly to tubulin with the generation of ligand fluorescence. The binding of ALLO is slow, the fluorescence reaching a steady state in the same time span as colchicine; that of TCB is rapid. The displacement of ALLO by podophyllotoxin proceeds with a half-life of ca. 40 min. Binding isotherms generated from gel filtration and fluorescence measurements have shown that both analogues bind to tubulin with a stoichiometry of 1 mol of analogue/mol of alpha-beta tubulin. The equilibrium binding constants at 25 degrees C have been found to be (9.2 +/- 2.5) x 10(5) M-1 for ALLO and (1.0 +/- 0.2) X 10(5) M-1 for TCB. Binding of both analogues was accompanied by quenching of protein fluorescence, perturbation of the far-ultraviolet circular dichroism of tubulin, and induction of the tubulin GTPase activity, similarly to colchicine binding. Both inhibited microtubule assembly in vitro, ALLO substoichiometrically, and both induced the abnormal cooperative polymerization of tubulin, which is characteristic of the tubulin-colchicine complex. Analysis in terms of the simple bifunctional ligand binding mechanism developed for colchicine [Andreu, J.M., & Timasheff, S.N. (1982) Biochemistry 21, 534-543] and comparison with the binding of the colchicine two-ring analogue, 2-methoxy-5-(2,3,4-trimethoxyphenyl)-2,4,6-cycloheptatrien-1-one [Andreu, J. M., Gorbunoff, M. J., Lee, J. C., & Timasheff, S. N. (1984) Biochemistry 23, 1742-1752], have shown that transformation of the tropolone methyl ether part of colchicine into p-carbomethoxybenzene weakens the standard free energy of binding to tubulin by 1.4 +/- 0.1 kcal/mol, while elimination of ring B weakens it by 1.0 +/- 0.1 kcal/mol. The roles of rings C and B of colchicine in the thermodynamic and kinetic mechanisms of binding to tubulin were analyzed in terms of these findings.  相似文献   

7.
Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone), a naphthoquinone isolated from the roots of Plumbaginaceae plants, has potential antiproliferative activity against several tumor types. We have examined the effects of plumbagin on cellular microtubules ex vivo as well as its binding with purified tubulin and microtubules in vitro. Cell viability experiments using human non-small lung epithelium carcinoma cells (A549) indicated that the IC 50 value for plumbagin is 14.6 microM. Immunofluorescence studies using an antitubulin FITC conjugated antibody showed a significant perturbation of the interphase microtubule network in a dose dependent manner. In vitro polymerization of purified tubulin into microtubules is inhibited by plumbagin with an IC 50 value of 38 +/- 0.5 microM. Its binding to tubulin quenches protein tryptophan fluorescence in a time and concentration dependent manner. Binding of plumbagin to tubulin is slow, taking 60 min for equilibration at 25 degrees C. The association reaction kinetics is biphasic in nature, and the association rate constants for fast and slow phases are 235.12 +/- 36 M (-1) s (-1) and 11.63 +/- 11 M (-1) s (-1) at 25 degrees C respectively. The stoichiometry of plumbagin binding to tubulin is 1:1 (mole:mole) with a dissociation constant of 0.936 +/- 0.71 microM at 25 degrees C. Plumbagin competes for the colchicine binding site with a K i of 7.5 microM as determined from a modified Dixon plot. Based on these data we conclude that plumbagin recognizes the colchicine binding site to tubulin. Further study is necessary to locate the pharmacophoric point of attachment of the inhibitor to the colchicine binding site of tubulin.  相似文献   

8.
The mitotic inhibitor 1-propargyl-5-chloropyrimidin-2-one (a metahalone) was found to bind to DEAE-cellulose purified rat brain tubulin. A decrease in the fluorescence of 1-propargyl-5-chloropyrimidin-2-one was seen when the drug was incubated in the presence of increasing tubulin concentrations. The decrease in metahalone fluorescence was not affected by the addition of GTP, indicating drug interaction at other portions of the tubulin molecule than the nucleotide binding sites. Scatchard plot analysis following incubation of tubulin with 1-propargyl-5-chloro-[2-14C]pyrimidin-2-one revealed that 1 mol of metahalone bound to 1 mol of tubulin dimer with a measured association constant of 8.0 X 10(3) M-1. Double reciprocal plots of vincristine and colchicine binding to tubulin in the presence of 1-propargyl-5-chloropyrimidin-2-one showed that the metahalone competitively inhibited colchicine binding to tubulin but had no influence on vincristine binding. This conclusion was supported by gel filtration chromatography where an increase in unbound colchicine was measured when 1-propargyl-5-chloropyrimidin-2-one was present in an incubation mixture containing colchicine and tubulin. In the presence of 5 mM 1-propargyl-5-chloropyrimidin-2-one, tubulin self-aggregated into crystalline structures. The binding of 1-propargyl-5-chloropyrimidin-2-one to tubulin at or near the colchicine binding site may be responsible for the metaphase arresting characteristics of this drug.  相似文献   

9.
The roles of the oxygens in ring C of colchicine in its binding to tubulin were probed by a study of the interactions of two allocolchicine biphenyl analogues, 2,3,4,4'-tetramethoxy-1,1'-biphenyl (TMB) and 2,3,4-trimethoxy-4'-acetyl-1,1'-biphenyl (TKB), the first one containing a methoxy group in position 4', the second a keto group. Both analogues were found to bind specifically to the colchicine-binding site on tubulin in a rapidly reversible equilibrium. The standard free energies of binding at 25 degrees C were delta G zero (TKB) = 7.19 +/- 0.11 kcal mol-1 and delta G zero (TMB) = -6.76 +/- 0.22 kcal mol-1. The binding of TKB induced the same perturbation in protein circular dichroism at 220 nm as colchicine and allocolchicine, as well as quenching of protein tryptophan fluorescence. Binding of TMB did not affect the protein CD spectrum within experimental error and induced only a marginal quenching of protein fluorescence. Comparison with the binding properties of allocolchicine and its des(ring B) analogue 2,3,4-trimethoxy-4'-carbomethoxy-1,1'-biphenyl (TCB) [Medrano et al. (1989) Biochemistry 28, 5589-5599] has shown that the binding properties of the 4'-keto analogue (TKB) were closer to those of allocolchicine, even though the substituent in the 4'-position of TCB is identical with that of allocolchicine. It has been proposed that binding in the ring C subsite on tubulin, which is stabilized thermodynamically by stacking interactions, can be modulated in a nonidentical fashion by the carbonyl and the ether oxygens in the para position of ring C.  相似文献   

10.
A new fluorophor for tubulin which has permitted the monitoring of microtubule assembly in vitro is reported. DAPI (4',6-diamidino-2-phenylindole), a fluorophor already known as a DNA intercalator, was shown to bind specifically to a unique tubulin site as a dimer (KD(app) = 43 +/- 5 microM at 37 degrees C) or to tubulin associated in microtubules (KD(app) = 6 +/- 2 microM at 37 degrees C) with the same maximum enhancement in fluorescence. When tubulin polymerization was induced with GTP, the change in DAPI affinity for tubulin resulted in an enhancement of DAPI binding and, consequently, of fluorescence intensity. DAPI, whose binding site is different from that of colchicine, vinblastine, or taxol, did not interfere greatly with microtubule polymerization. It induced a slight diminution of the critical concentration for tubulin assembly due to a decrease in the depolymerizing rate constant. Moreover, DAPI did not interfere with GTP hydrolysis correlated with tubulin polymerization, but it decreased the GTPase activity at the steady state of tubulin assembly. Even at substoichiometric levels DAPI can be used to follow the kinetics of microtubule assembly.  相似文献   

11.
The interaction between nocodazole and calf brain tubulin in 10(-2) M sodium phosphate, 10(-4) M GTP, and 12% (v/v) dimethyl sulfoxide at pH 7.0 was studied. The number of binding sites for nocodazole was shown to be one per tubulin monomer of 50,000 as a result of equilibrium binding studies by gel filtration and spectroscopic techniques. The presence of microtubule-associated proteins did not significantly affect the binding of nocodazole to tubulin. The apparent equilibrium constant measured at 25 degrees C was (4 +/- 1) X 10(5) M-1. Temperature does not significantly affect the apparent equilibrium constant; hence, the binding of nocodazole to tubulin is apparently entropy driven. Stopped flow spectroscopy was employed to monitor the rate of nocodazole binding under pseudo first order conditions. The effects of temperature and nocodazole concentration were studied. The apparent rate constants were dependent on the concentration of nocodazole in a nonlinear manner. In conjunction with results from structural and thermodynamic studies the kinetic results were interpreted to suggest a mechanism of T + N in equilibrium with TN in equilibrium with T* N, where T and N are tubulin and nocodazole, respectively. T and T* represent two conformational states of tubulin. Furthermore, the kinetic data are consistent with the thermodynamic data only if a model of two parallel similar reactions were considered, one rapid and the other slow. The initial binding step for both the rapid and slow phases was characterized by identical binding constants; however, there was a significant difference in the rates of isomerization. Hence, nocodazole is potentially a useful probe for amplifying differences in solution properties of tubulin subspecies.  相似文献   

12.
K A Johnson  E W Taylor 《Biochemistry》1978,17(17):3432-3442
The kinetics of the increase in protein fluorescence following the addition of ATP to subfragment-1 (SF-1) and acto-SF-1 have been reinvestigated. The concentration dependence of the rate obtained with SF-1 did not fit a hyperbola and at high ATP concentration, approximately 40% of the signal amplitude was lost due to a fast phase at the beginning of the transient (20 degrees C). At lower temperature (less than or equal to 10 degrees C) the fluorescence transient was biphasic, with a fast phase observed at high ATP concentration. These results indicate that there are two steps in the SF-1 pathway in which there is a change in protein fluorescence. Measurements of ATP binding and hydrolysis by chemical quench-flow methods indicate that the rate of ATP binding is correlated with the fast fluorescence step and hydrolysis is correlated with the slow fluorescence change. The SF-1 mechanism can thus be described as: (formula: see text) where M represents SF-1 and states of enhanced fluorescence are given by M (16%) and M (36% enhancement, relative to SF-1). Step 1 is a rapid equilibrium with K1 approximately 10(3) M-1. Tight binding of ATP occurs in step 2 and the loss of signal amplitude requires k2 greater than or approximately 1500--2000 s-1. The maximum observed fluorescence rate defines the rate of hydrolysis, k3 + k-3 = 125 s-1 (20 degrees C, 0.1 M KCl, pH 7.0). The steps in the mechanism correspond to the Bagshaw--Trentham scheme, with the important difference that the assignment of rate constant is altered. Formation of the acto-SF-1 complex gave a fluorescence enhancement of approximately 14% relative to SF-1. Dissociation of acto-SF-1 by ATP produced a 20--22% enhancement in fluorescence. There was no detectable fluorescence change during dissociation as evidenced by a lag in the fluorescence transient which corresponded to the kinetics of dissociation. The fluorescence change occurred at the same maximum rate as for SF-1 but there was no loss in signal amplitude at high ATP concentration. The kinetics of the fluorescence change corresponded to the rate of ATP hydrolysis, whereas tight ATP binding occurred at a much faster rate in approximate agreement with the rate of dissociation. Thus the fluorescence change in the acto-SF-1 pathway corresponds to step 3 in the SF-1 mechanism. The complete scheme can be described as follows: (formula: see text) where AM represents acto-SF-1. The tight binding step in the SF-1 pathway (k2) is sufficiently fast so that a similar step (k2') in the acto-SF-1 pathway could precede dissociation but the AM-ATP intermediate has not been detected. Following hydrolysis on the free SF-1, actin recombines with M.ADP.Pi or possibly with a second SF-1 product intermediate as proposed by Chock et al. (1976) and the fluorescence returns to the original AM level with product release.  相似文献   

13.
Fluorescence correlation spectroscopy (FCS) is a new technique that allows the determination of the diffusion constant of a fluorescent molecule in solution. Also, the binding of the fluorescent molecule to a target can be analyzed, if the difference in the diffusion coefficients of the free and bound ligand is sufficiently large. With FCS, the interaction between fluorescein-colchicine (FC) and tubulin has been studied in vitro. A fast and reversible binding is observed with an association constant at room temperature of (3.9 +/- 0.1) x 10(4) M-1. No competition with colchicine is seen, indicating that FCS reveals the existence of a new binding site on tubulin. FCS is not able to show the binding of FC to the original colchicine binding site, even though it exists, because the fluorescence of FC is strongly quenched upon binding to this site. This quenching is evident in spectrofluorometry experiments, revealing a slow binding of FC to tubulin that is subject to competition with colchicine. FCS allows the determination of the diffusion coefficients of both free and bound fluorescent colchicine which were found to be (2.6 +/- 0.2) x 10(-)10 and (2.0 +/- 0.2) x 10(-)11 m2 s-1, respectively. It can be concluded that fluorescent labeling, especially of small molecules, can interfere considerably with the binding behavior that is being studied. Although general qualitative effects in vivo are similar for colchicine and its fluorescein derivative, this quantitative study of the binding to tubulin presents a nuanced view, and the existence of a second binding site for FC can even explain some conflicting indications in the literature.  相似文献   

14.
The human AmphyphisinII/Bin1 N-BAR domain belongs to the BAR domain superfamily, whose members sense and generate membrane curvatures. The N-BAR domain is a 57 kDa homodimeric protein comprising a six helix bundle. Here we report the protein folding mechanism of this protein as a representative of this protein superfamily. The concentration dependent thermodynamic stability was studied by urea equilibrium transition curves followed by fluorescence and far-UV CD spectroscopy. Kinetic unfolding and refolding experiments, including rapid double and triple mixing techniques, allowed to unravel the complex folding behavior of N-BAR. The equilibrium unfolding transition curve can be described by a two-state process, while the folding kinetics show four refolding phases, an additional burst reaction and two unfolding phases. All fast refolding phases show a rollover in the chevron plot but only one of these phases depends on the protein concentration reporting the dimerization step. Secondary structure formation occurs during the three fast refolding phases. The slowest phase can be assigned to a proline isomerization. All kinetic experiments were also followed by fluorescence anisotropy detection to verify the assignment of the dimerization step to the respective folding phase. Based on these experiments we propose for N-BAR two parallel folding pathways towards the homodimeric native state depending on the proline conformation in the unfolded state.  相似文献   

15.
Isotypes of vertebrate tubulin have variable amino acid sequences, which are clustered at their C-terminal ends. Isotypes bind colchicine at different on-rates and affinity constants. The kinetics of colchicine binding to purified (unfractionated) brain tubulin have been reported to be biphasic under pseudo-first-order conditions. Experiments with individual isotypes established that the presence of beta(III) in the purified tubulin is responsible for the biphasic kinetics. Because the isotypes mainly differ at the C termini, the colchicine-binding kinetics of unfractionated tubulin and the beta(III) isotype, cleaved at the C termini, have been tested under pseudo-first-order conditions. Removal of the C termini made no difference to the nature of the kinetics. Sequence alignment of different beta isotypes of tubulin showed that besides the C-terminal region, there are differences in the main body as well. To establish whether these differences lie at the colchicine-binding site or not, homology modeling of all beta-tubulin isotypes was done. We found that the isotypes differed from each other in the amino acids located near the A ring of colchicine at the colchicine-binding site on beta tubulin. While the beta(III) isotype has two hydrophilic residues (serine(242) and threonine(317)), both beta(II) and beta(IV) have two hydrophobic residues (leucine(242) and alanine(317)). beta(II) has isoleucine at position 318, while beta(III) and beta(IV) have valine at that position. Thus, these alterations in the nature of the amino acids surrounding the colchicine site could be responsible for the different colchicine-binding kinetics of the different isotypes of tubulin.  相似文献   

16.
Thermodynamics of podophyllotoxin binding to tubulin and its multiple points of attachment with tubulin has been studied in detail using isothermal titration calorimetry. The calorimetric enthalpy of the association of podophyllotoxin with tubulin is negative and occurs with a negative heat capacity change (DeltaC(p) = -2.47 kJ mol(-)(1) K(-)(1)). The binding is unique with a simultaneous participation of both hydrophobic and hydrogen-bonding forces with unfavorable negative entropic contribution at higher temperature, favored with an enthalpy-entropy compensation. Interestingly, the binding of 2-methoxy-5-(2',3',4'-trimethoxyphenyl)tropone (AC, a colchicine analogue without the B ring) with tubulin is enthalpy-favored. However, the podophyllotoxin-tubulin association depending upon the temperature of the reaction has a favorable entropic and enthalpic component, which resembles both B- and C-ring properties of colchicine. On the basis of the crystal structure of the podophyllotoxin-tubulin complex, distance calculations have indicated a possible interaction between threonine 179 of alpha-tubulin and the hydroxy group on the D ring of podophyllotoxin. To confirm the involvement of the oxalone moiety as well as the lactone ring of podophyllotoxin in tubulin binding, analogues of podophyllotoxin are synthesized with methoxy substitution at the 4' position of ring D along with its isomer and another analogue epimerized at ring E. From these results, involvement of oxalone as well as the lactone ring of the drug in a specific orientation inclusive of ring A is indicated for podophyllotoxin-tubulin binding. Therefore, podophyllotoxin, like colchicine, behaves as a bifunctional ligand having properties of both the B and C rings of colchicine by making more than one point of attachment with the protein tubulin.  相似文献   

17.
Kinetics of the daunomycin--DNA interaction   总被引:2,自引:0,他引:2  
The kinetics of the interaction of daunomycin with calf thymus DNA are described. Stopped-flow and temperature-jump relaxation methods, using absorption detection, were used to study the binding reaction. Three relaxation times were observed, all of which are concentration dependent, although the two slower relaxations approach constant values at high reactant concentrations. Relaxation times over a wide range of concentrations were gathered, and the data were fit by a minimal mechanism in which a rapid bimolecular association step is followed by two sequential isomerization steps. The six rate constants for this mechanism were extracted from our data by relaxation analysis. The values determined for the six rate constants may be combined to calculate an overall equilibrium constant that is in excellent agreement with that obtained by independent equilibrium measurements. Additional stopped-flow experiments, using first sodium dodecyl sulfate to dissociate bound drug and second pseudo-first-order conditions to study the fast bimolecular step, provide independent verification of three of the six rate constants. The temperature dependence of four of the six rate constants was measured, allowing estimates of the activation energy of some of the steps to be made. We speculate that the three steps in the proposed mechanism may correspond to a rapid "outside" binding of daunomycin to DNA, followed by intercalation of the drug, followed by either conformational adjustment of the drug or DNA binding site or redistribution of bound drug to preferred sites.  相似文献   

18.
Tubulin, the constituent protein of microtubules, is an alpha beta heterodimer; both alpha and beta exist in several isotypic forms whose functional significance is not precisely known. The antimitotic alkaloid colchicine binds to mammalian brain tubulin in a biphasic manner under pseudo-first-order conditions in the presence of a large excess of colchicine (Garland, D. L. (1978) Biochemistry 17, 4266-4272). We have studied the kinetics of colchicine binding to purified beta-tubulin isotypes and find that each of the purified beta-tubulin isotypes binds colchicine in a monophasic manner. The apparent on-rate constants for the binding of colchicine to alpha beta II-, alpha beta III-, and alpha beta IV-tubulin dimers are respectively 132 +/- 5, 30 +/- 2, and 236 +/- 7 M-1 s-1. When the isotypes are mixed, the kinetics become biphasic. Scatchard analysis revealed that the isotypes differ significantly in their affinity constants (Ka) for binding colchicine. The affinity constants are 0.24 x 10(6), 0.12 x 10(6), and 3.31 x 10(6) M-1, respectively, for alpha beta II-, alpha beta III-, and alpha beta IV-tubulin dimers. Our results are in agreement with the hypothesis that the beta-subunit of tubulin plays a major role in the interaction of colchicine with tubulin. Our binding data raise the possibility that the tubulin isotypes might play important regulatory roles by interacting differently with other non-tubulin proteins in vivo, which in turn, may regulate microtubule-based functions in living cells.  相似文献   

19.
The structural change induced by binding of mild detergents to cytoplasmic calf brain tubulin and the effects on the functional properties of this protein have been characterized. Massive binding of octyl glucoside or deoxycholate monomers induces circular dichroism changes indicating a partial alpha-helix to disordered structure transition of tubulin. The protein also becomes more accessible to controlled proteolysis by trypsin, thermolysin, or V8 protease. This is consistent with the looser protein structure proposed in previous binding and hydrodynamic studies [Andreu, J. M., & Mu?oz, J. A. (1986) Biochemistry (preceding paper in this issue)]. Micelles of octyl glucoside and deoxycholate bind colchicine and its analogue 2-methoxy-5-(2,3,4-trimethoxyphenyl)-2,4,6-cycloheptatrien-1-one (MTC). This impedes the determination of colchicine binding in the presence of detergents. Both detergents cause a reduction in the number of tubulin equilibrium binding sites for the colchicine site probe MTC. Deoxycholate monomers bind poorly to the tubulin-colchicine complex, but deoxycholate above the critical micelle concentration effectively dissociates the complex. Microtubule assembly in glycerol-containing buffer is inhibited by octyl glucoside, which raises the critical protein concentration. Low concentrations of deoxycholate enhance tubulin polymerization, allowing it to proceed without glycerol. The polymers formed are microtubules, pairwise associated open microtubular sheets, and macrotubules possibly generated by helical folding of the sheets, as indicated by the optical diffraction patterns. Saturation of tubulin with octyl glucoside, followed by full dissociation of the detergent, allowed the recovery of binding to the colchicine site and microtubule assembly, indicating the reversibility of the protein structural change.  相似文献   

20.
The binding of [3H]podophyllotoxin to tubulin, measured by a DEAE-cellulose filter paper method, occurs with an affinity constant of 1.8 X 10(6) M-1 (37 degrees at pH 6.7). Like colchicine, approximately 0.8 mol of podophyllotixin are bound per mol of tubulin dimer, and the reaction is entropy-driven (43 cal deg-1 mol-1). At 37 degrees the association rate constant for podophyllotoxin binding is 3.8 X 10(6) M-1 h-1, approximtaely 10 times higher than for colchicine; this is reflected in the activation energies for binding which are 14.7 kcal/mol for podophyllotoxin and 20.3 kcal/mol for colchicine. The dissociation rate constant for the tubulin-podophyllotoxin complex is 1.9 h-1, and the affinity constant calculated from the ratio of the rates is close to that obtained by equilibrium measurements. Podophyllotxin and colchicine are mutually competitive inhibitors. This can be ascribed to the fact that both compounds have a trimethoxyphenyl ring and analogues of either compound with bulky substituents in their trimethoxyphenyl moiety are unable to inhibit the the binding of either of the two ligands. Tropolone, which inhibits colchicine binding competitively, has no effect on the podophyllotoxin/tubulin reaction. Conversely, podophyllotoxin does not influence tropolone binding. Moreover, the tropolone binding site of tubulin does not show the temperature and pH lability of the colchicine and podophyllotoxin domains, hence this lability can be ascribed to the trimethoxyphenyl binding region of tubulin. Since podophyllotoxin analogues with a modified B ring do not bind, it is concluded that both podophyllotoxin and colchicine each have at least two points of attachment to tubulin and that they share one of them, the binding region of the trimethoxyphenyl moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号