首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yao H  Sun X  Gu X  Wang J  Haddad GG 《Journal of neurochemistry》2007,103(4):1644-1653
Using an in vitro model that simulates the microenvironment in the ischemic infarct rim, we have examined the temporal profile and possible mechanisms of cell death in the neuropil (an astrocyte-rich area or ARA) of organotypic hippocampal slice cultures. Two-photon confocal microscopy, propidium iodide, and GFAP-GFP transgenic mice were used to confirm cell death in astrocytes. An 'ischemic solution' (IS) induced major cell death throughout the hippocampus over 24 h, with the earliest injury starting in ARA. Our studies using IS or ion replacements in IS revealed that cell death in ARA was modest when K+ was increased or pH lowered. High K+ is most effective in reducing cell death when HCO3 is normal or high. When Cl or HCO3 was reduced, cell injury was worsened. 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) protected cells from IS-induced death in a dose-dependent manner (1–4000 μmol/L). We conclude that (i) various areas of the hippocampal formation respond differently to ionic replacements; (ii) K+ interacts with other ions to protect cells in ARA; and (iii) DIDS has a substantial protective effect in ARA by blocking DIDS-sensitive membrane exchangers or by interfering with intracellular signaling pathways.  相似文献   

2.
Impaired regulation of mitochondrial dynamics, which shifts the balance towards fission, is associated with neuronal death in age-related neurodegenerative diseases, such as Alzheimer's disease or Parkinson's disease. A role for mitochondrial dynamics in acute brain injury, however, has not been elucidated to date. Here, we investigated the role of dynamin-related protein 1 (Drp1), one of the key regulators of mitochondrial fission, in neuronal cell death induced by glutamate toxicity or oxygen-glucose deprivation (OGD) in vitro, and after ischemic brain damage in vivo. Drp1 siRNA and small molecule inhibitors of Drp1 prevented mitochondrial fission, loss of mitochondrial membrane potential (MMP), and cell death induced by glutamate or tBid overexpression in immortalized hippocampal HT-22 neuronal cells. Further, Drp1 inhibitors protected primary neurons against glutamate excitotoxicity and OGD, and reduced the infarct volume in a mouse model of transient focal ischemia. Our data indicate that Drp1 translocation and associated mitochondrial fission are key features preceding the loss of MMP and neuronal cell death. Thus, inhibition of Drp1 is proposed as an efficient strategy of neuroprotection against glutamate toxicity and OGD in vitro and ischemic brain damage in vivo.  相似文献   

3.
Elevated levels of extracellular glutamate cause excitotoxic oligodendrocyte cell death and contribute to progressive oligodendrocyte loss and demyelination in white matter disorders such as multiple sclerosis and periventricular leukomalacia. However, the mechanism by which glutamate homeostasis is altered in such conditions remains elusive. We show here that microglial cells, in their activated state, compromise glutamate homeostasis in cultured oligodendrocytes. Both activated and resting microglial cells release glutamate by the cystine-glutamate antiporter system xc-. In addition, activated microglial cells act to block glutamate transporters in oligodendrocytes, leading to a net increase in extracellular glutamate and subsequent oligodendrocyte death. The blocking of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors or the system xc- antiporter prevented the oligodendrocyte injury produced by exposure to LPS-activated microglial cells in mixed glial cultures. In a whole-mount rat optic nerve, LPS exposure produced wide-spread oligodendrocyte injury that was prevented by AMPA/kainate receptor block and greatly reduced by a system xc- antiporter block. The cell death was typified by swelling and disruption of mitochondria, a feature that was not found in closely associated axonal mitochondria. Our results reveal a novel mechanism by which reactive microglia can contribute to altering glutamate homeostasis and to the pathogenesis of white matter disorders.  相似文献   

4.
Adenosine and its derivatives may induce acute changes, i.e., injury and death, in muscle cells. In the present work, we evaluated the intracellular calcium concentration in C2C12 myogenic cells differentiated in vitro to form myotubes and exposed to a metabolically stable analogue of adenosine, 2-chloro-adenosine. The compound was able to significantly modify ionic homeostasis by sensitizing muscle cells to the excitatory amino acid glutamate. A single exposure to glutamate led to a marked increase in intracellular calcium level. This is the first demonstration that adenosine analogues can regulate muscle cell integrity and function via an indirect increase of intracellular calcium ions.  相似文献   

5.
6.
The role of Bax in glutamate-induced nerve cell death   总被引:4,自引:0,他引:4  
The role of the Bax gene product was examined in three forms of cortical nerve cell death in primary cultures. These include spontaneous cell death, oxidative glutamate toxicity, in which exogenous glutamate inhibits cystine uptake resulting in toxic oxidative stress, and ionotropic glutamate receptor-mediated excitotoxicity following a brief exposure to 10 microM glutamate. Primary cortical and hippocampal neuron cultures were established from embryos of Bax -/+ x Bax -/+ matings and the embryos genotyped and assayed for cell death in the three experimental paradigms. Cell death induced by oxidative glutamate toxicity and glutamate-mediated excitotoxicity was not altered in the Bax -/- homozygous knockout animals. In contrast, there was an approximately 50% inhibition of spontaneous cell death. These results suggest that a classical Bax-dependent apoptotic pathway contributes to the spontaneous cell death that takes place when nerve cells are initially exposed to cell culture conditions. A Bax-dependent programmed cell death pathway is not, however, utilized in oxidative glutamate toxicity and NMDA receptor-mediated excitotoxicity following a brief exposure to low concentrations of glutamate.  相似文献   

7.
Daphnetin (DAP), a coumarin derivative, has been reported to have multiple pharmacological actions including analgesia, antimalarial, anti-arthritic, and anti-pyretic properties. It is unclear whether DAP has neuroprotective effects on ischemic brain injury. In this study, we found that DAP treatment (i.c.v.) reduced the infarct volume at 24 h after ischemia/reperfusion injury and improved neurological behaviors in a middle cerebral artery occlusion mouse model. Moreover, we provided evidences that DAP had protective effects on infarct volume in neonate rats even it was administrated at 4 h after cerebral hypoxia/ischemia injury. To explore its neuroprotective mechanisms of DAP, we examined the protection of DAP on glutamate toxicity-induced cell death in hippocampal HT-22 cells. Our results demonstrated that DAP protected against glutamate toxicity in HT-22 cells in a concentration-dependent manner. Further, we found that DAP maintained the cellular levels of glutathione and superoxide dismutase activity, suggesting the anti-oxidatant activity of DAP. Since DAP has been used for the treatment of coagulation disorder and rheumatoid arthritis for long time with a safety profile, DAP will be a promising agent for the treatment of stroke.  相似文献   

8.
9.
Acute myocardial infarction (AMI) and the heart failure (HF) that often result remain the leading causes of death and disability worldwide. As such, new therapeutic targets need to be discovered to protect the myocardium against acute ischaemia/reperfusion (I/R) injury in order to reduce myocardial infarct (MI) size, preserve left ventricular function and prevent the onset of HF. Mitochondrial dysfunction during acute I/R injury is a critical determinant of cell death following AMI, and therefore, ion channels in the inner mitochondrial membrane, which are known to influence cell death and survival, provide potential therapeutic targets for cardioprotection. In this article, we review the role of mitochondrial ion channels, which are known to modulate susceptibility to acute myocardial I/R injury, and we explore their potential roles as therapeutic targets for reducing MI size and preventing HF following AMI.  相似文献   

10.

Background

Acidosis impairs cognitions and behaviors presumably by acidification-induced changes in neuronal metabolism. Cortical GABAergic neurons are vulnerable to pathological factors and their injury leads to brain dysfunction. How acidosis induces GABAergic neuron injury remains elusive. As the glia cells and neurons interact each other, we intend to examine the role of the astrocytes in acidosis-induced GABAergic neuron injury.

Results

Experiments were done at GABAergic cells and astrocytes in mouse cortical slices. To identify astrocytic involvement in acidosis-induced impairment, we induced the acidification in single GABAergic neuron by infusing proton intracellularly or in both neurons and astrocytes by using proton extracellularly. Compared the effects of intracellular acidification and extracellular acidification on GABAergic neurons, we found that their active intrinsic properties and synaptic outputs appeared more severely impaired in extracellular acidosis than intracellular acidosis. Meanwhile, extracellular acidosis deteriorated glutamate transporter currents on the astrocytes and upregulated excitatory synaptic transmission on the GABAergic neurons. Moreover, the antagonists of glutamate NMDA-/AMPA-receptors partially reverse extracellular acidosis-induced injury in the GABAergic neurons.

Conclusion

Our studies suggest that acidosis leads to the dysfunction of cortical GABAergic neurons by astrocyte-mediated excitotoxicity, in addition to their metabolic changes as indicated previously.  相似文献   

11.
《Cellular signalling》2014,26(4):697-704
Na+/H+ exchanger-1 (NHE-1) activity is known to play a critical role in the neuronal injury caused by glutamate. However, the underlying mechanism is not clear. This study shows that NHE-1 activation and its phosphorylation during glutamate exposure were attenuated by the inhibition of protein kinase C (PKC)-βI and -βII, leading to reduced neuronal death. In addition, activations of PKC-βI and -βII by PKC-βI and -βII CAT plasmid or by PMA, PKC-β pharmacological activator have stimulated the activity and phosphorylation of NHE-1, which were abolished by inhibition of PKC-β in neuronal cells. Furthermore, the inhibition of PKC-β has mediated neuroprotective effect on glutamate-induced cells, which is similar to neuroprotective efficacy of siRNA NHE-1 transfection. Taken together, these results suggest that activation of the PKC-βI and -βII pathway by glutamate increases the activity and phosphorylation of NHE-1, and that these increases contribute to neuronal cell death. In this study, we demonstrate that PKC-βI and -βII are involved in the regulation of NHE-1 activation following glutamate exposure in neuron.  相似文献   

12.
Although the potential of adult neural stem cells to repair damage via cell replacement has been widely reported, the ability of endogenous stem cells to positively modulate damage is less well studied. We investigated whether medium conditioned by adult hippocampal stem/progenitor cells altered the extent of excitotoxic cell death in hippocampal slice cultures. Conditioned medium significantly reduced cell death following 24 h of exposure to 10 μM NMDA. Neuroprotection was greater in the dentate gyrus, a region neighboring the subgranular zone where stem/progenitor cells reside compared with pyramidal cells of the cornis ammonis. Using mass spectrometric analysis of the conditioned medium, we identified a pentameric peptide fragment that corresponded to residues 26–30 of the insulin B chain which we termed 'pentinin'. The peptide is a putative breakdown product of insulin, a constituent of the culture medium, and may be produced by insulin-degrading enzyme, an enzyme expressed by the stem/progenitor cells. In the presence of 100 pM of synthetic pentinin, the number of mature and immature neurons killed by NMDA-induced toxicity was significantly reduced in the dentate gyrus. These data suggest that progenitors in the subgranular zone may convert exogenous insulin into a peptide capable of protecting neighboring neurons from excitotoxic injury.  相似文献   

13.
In traumatic brain injury (TBI), the primary, irreversible damage associated with the moment of impact consists of cells dying from necrosis. This contributes to fuelling a chronic central nervous system (CNS) inflammation with increased formation of proinflammatory cytokines, enzymes and reactive oxygen species (ROS). ROS promote oxidative stress, which leads to neurodegeneration and ultimately results in programmed cell death (secondary injury). Since this delayed, secondary tissue loss occurs days to months following the primary injury it provides a therapeutic window where potential neuroprotective treatment could alleviate ongoing neurodegeneration, cell death and neurological impairment following TBI. Various neuroprotective drug candidates have been described, tested and proven effective in pre-clinical studies, including glutamate receptor antagonists, calcium-channel blockers, and caspase inhibitors. However, most of the scientific efforts have failed in translating the experimental results into clinical trials. Despite intensive research, effective neuroprotective therapies are lacking in the clinic, and TBI continues to be a major cause of morbidity and mortality.This paper provides an overview of the TBI pathophysiology leading to cell death and neurological impairment. We also discuss endogenously expressed neuroprotectants and drug candidates, which at this stage may still hold the potential for treating brain injured patients.  相似文献   

14.
The sequential occurrence of plasma and mitochondrial membrane alterations, intra-cellular pH shifts and changes in intracellular Ca2+ concentration after induction of cell death was monitored by flow cytometry in Jurkat and HSB2-cells. Cell death was induced by treatment with anti-Fas antibodies or by irradiation. Phosphatidylserine (PS) exposure and plasma membrane integrity were measured with FITC-Annexin V adhesion and by Propidium Iodide exclusion. Transition of the mitochondrial membrane potential was monitored by the occurrence of decay of DiOC6 fluorescence. Intracellular pH shifts were monitored by changes in the ratio of fluorescence at 575 nm and at 635 nm of SNARF-1-AM. Fluctuations in intracellular Ca2+ concentration were established by changes in Fura red quenching.The Jurkat cells were sensitive to anti-Fas treatment, while HSB-2 cells were not. HSB-2 cells appeared more sensitive to radiation damage than Jurkat cells.In all experiments the transition of mitochondrial membrane potential occurred first, almost immediately followed by PS exposure. Fluctuations in intracellular Ca2+ concentration occurred later and were less outspoken. A decrease in intracellular pH occurred not earlier than 24 hours after anti-Fas treatment. Chelation of intracellular Ca2+ concentration with BAPTA-AM had no effect on the time sequence of cell death related events.  相似文献   

15.
OPC (oligodendrocyte progenitor cell) death contributes significantly to the pathology and functional deficits following hypoxic-ischemic injury in the immature brain and to deficits resulting from demyelinating diseases, trauma and degenerative disorders in the adult CNS. Glutamate toxicity is a major cause of oligodendroglial death in diverse CNS disorders, and previous studies have demonstrated that AMPA/kainate receptors require the pro-apoptotic protein Bax in OPCs undergoing apoptosis. The goal of the present study was to define the pro-apoptotic and anti-apoptotic effectors that regulate Bax in healthy OPCs and after exposure to excess glutamate in vitro and following H–I (hypoxia–ischemia) in the immature rat brain. We show that Bax associates with a truncated form of Bid, a BH3-only domain protein, subsequent to glutamate treatment. Furthermore, glutamate exposure reduces Bax association with the anti-apoptotic Bcl family member, Bcl-xL. Cell fractionation studies demonstrated that both Bax and Bid translocate from the cytoplasm to mitochondria during the early stages of cell death consistent with a role for Bid as an activator, whereas Bcl-xL, which normally complexes with both Bax and Bid, disassociates from these complexes when OPCs are exposed to excess glutamate. Bax remained unactivated in the presence of insulin-like growth factor-1, and the Bcl-xL complexes were protected. Our data similarly demonstrate loss of Bcl-xL–Bax association in white matter following H–I and implicate active Bad in Bax-mediated OPC death. To identify other Bax-binding partners, we used proteomics and identified cofilin as a Bax-associated protein in OPCs. Cofilin and Bax associated in healthy OPCs, whereas the Bax–cofilin association was disrupted during glutamate-induced OPC apoptosis.  相似文献   

16.
The ability of cells to rapidly detect and react to alterations in their chemical environment, such as pH, ionic strength and redox potential, is essential for cell function and survival. We present here evidence that cells can respond to such environmental alterations by rapid induction of matriptase autoactivation. Specifically, we show that matriptase autoactivation can occur spontaneously at physiological pH, and is significantly enhanced by acidic pH, both in a cell-free system and in living cells. The acid-accelerated autoactivation can be attenuated by chloride, a property that may be part of a safety mechanism to prevent unregulated matriptase autoactivation. Additionally, the thio-redox balance of the environment also modulates matriptase autoactivation. Using the cell-free system, we show that matriptase autoactivation is suppressed by cytosolic reductive factors, with this cytosolic suppression being reverted by the addition of oxidizing agents. In living cells, we observed rapid induction of matriptase autoactivation upon exposure to toxic metal ions known to induce oxidative stress, including CoCl2 and CdCl2. The metal-induced matriptase autoactivation is suppressed by N-acetylcysteine, supporting the putative role of altered cellular redox state in metal induced matriptase autoactivation. Furthermore, matriptase knockdown rendered cells more susceptible to CdCl2-induced cell death compared to control cells. This observation implies that the metal-induced matriptase autoactivation confers cells with the ability to survive exposure to toxic metals and/or oxidative stress. Our results suggest that matriptase can act as a cellular sensor of the chemical environment of the cell that allows the cell to respond to and protect itself from changes in the chemical milieu.  相似文献   

17.
Maintenance of low extracellular glutamate ([Glu](O)) preventing excitotoxic cell death requires fast removal of glutamate from the synaptic cleft. This clearance is mainly provided by high affinity sodium-dependent glutamate transporters. These transporters can, however, also be reversed and release glutamate to the extracellular space in situations with energy failure. In this study the cellular localisation of the glutamate transporters GLAST and GLT-1 in organotypic hippocampal slice cultures was studied by immunofluorescence confocal microscopy, under normal culture conditions, and after a simulated ischemic insult, achieved by oxygen and glucose deprivation (OGD). In accordance with in vivo findings, GLAST and GLT-1 were primarily expressed by astrocytes under normal culture conditions, but after OGD some damaged neurons also expressed GLAST and GLT-1. The potential damaging effect of inhibition of the glutamate transporters by DL-threo-beta-benzyloxyaspartate (DL-TBOA) was studied using cellular uptake of propidium iodide (PI) as a quantitative marker for the cell death. Addition of DL-TBOA for 48 h was found to induce significant cell death in all hippocampal regions, with EC(50) values ranging from 38 to 48 microM for the different hippocampal subregions. The cell death was prevented by addition of the glutamate receptor antagonists NBQX and MK-801, together with an otherwise saturating concentration of DL-TBOA (100 microM). Finally, the effect of inhibition of glutamate release, via reverse operating transporters during OGD, was investigated. Addition of a sub-toxic (10 microM) dose of DL-TBOA during OGD, but not during the subsequent 48 h recovery period, significantly reduced the OGD-induced PI uptake. It is concluded: (1) that the cellular expression of the glutamate transporters GLAST and GLT-1 in hippocampal slice cultures in general corresponds to the expression in vivo, (2) that inhibition of the glutamate transporters induces cell death in the slice cultures, and (3) that partial inhibition during simulation of ischemia by OGD protects against the induced PI uptake, most likely by blocking the reverse operating transporters otherwise triggered by the energy failure.  相似文献   

18.
Ca2+ toxicity remains the central focus of ischemic brain injury. The mechanism by which toxic Ca2+ loading of cells occurs in the ischemic brain has become less clear as multiple human trials of glutamate antagonists have failed to show effective neuroprotection in stroke. Acidosis is a common feature of ischemia and is assumed to play a critical role in brain injury; however, the mechanism(s) remain ill defined. Here, we show that acidosis activates Ca2+ -permeable acid-sensing ion channels (ASICs), inducing glutamate receptor-independent, Ca2+ -dependent, neuronal injury inhibited by ASIC blockers. Cells lacking endogenous ASICs are resistant to acid injury, while transfection of Ca2+ -permeable ASIC1a establishes sensitivity. In focal ischemia, intracerebroventricular injection of ASIC1a blockers or knockout of the ASIC1a gene protects the brain from ischemic injury and does so more potently than glutamate antagonism. Thus, acidosis injures the brain via membrane receptor-based mechanisms with resultant toxicity of [Ca2+]i, disclosing new potential therapeutic targets for stroke.  相似文献   

19.
This paper reviews the current state of the use of organotypic brain slice cultures for neurotoxicological and neuropharmacological screening and mechanistic studies, as exemplified by excitotoxin application. At present, no in vitro systems have been approved by the regulatory authorities for neurotoxicity testing. For the evaluation of the slice culture method, organotypic hippocampal slice cultures were exposed to toxic doses of the excitotoxins, glutamate, N-methyl-D-aspartate (NMDA), kainic acid and 2-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), and the glial toxin, DL-alpha-aminoadipic acid (DLAAA). Neuronal cell death was quantified by propidium iodide (PI) uptake, and visualised by Fluoro-Jade (FJ) staining. General cell death was monitored by lactate dehydrogenase (LDH) release into the culture medium. EC50 values for the different compounds, based on PI uptake after exposure for 48 hours in entire cultures, were: glutamate, 3.5 mM; DL-AAA, 2.3 mM; kainic acid, 13 microM; NMDA, 11 microM; and AMPA, 3.7 microM. In the slice cultures, the hippocampal subfields displayed the same differences in vulnerability as those observed in vivo. When subfield analysis was performed on the cultures, the CA1 subfield was most susceptible to glutamate, NMDA and AMPA, while CA3 was most susceptible to kainic acid. The amount of LDH release for DL-AAA was about four times that of L-glutamate, in accordance with the additional toxic effect on glial cells, which was also found by confocal microscopy to stain for FJ. In conclusion, it was found that organotypic brain slice culture, combined with standardised protocols and quantifiable markers, such as PI and FJ staining, is a relevant and feasible in vitro system for neurotoxicity testing. Considering the amount and quality of the available published data, it is recommended that the brain slice culture method could be subjected to pre-validation and formal validation for inclusion in a tiered in vitro neurotoxicity testing scheme to supplement and replace conventional animal tests.  相似文献   

20.
The function of the orphan glutamate receptor delta subunits (GluRdelta1 and GluRdelta2) remains unclear. GluRdelta2 is expressed exclusively in the Purkinje cells of the cerebellum, and GluRdelta1 is prominently expressed in inner ear hair cells and neurons of the hippocampus. We found that mice lacking the GluRdelta1 protein displayed significant cochlear threshold shifts for frequencies of >16 kHz. These deficits correlated with a substantial loss of type IV spiral ligament fibrocytes and a significant reduction of endolymphatic potential in high-frequency cochlear regions. Vulnerability to acoustic injury was significantly enhanced; however, the efferent innervation of hair cells and the classic efferent inhibition of outer hair cells were unaffected. Hippocampal and vestibular morphology and function were normal. Our findings show that the orphan GluRdelta1 plays an essential role in high-frequency hearing and ionic homeostasis in the basal cochlea, and the locus encoding GluRdelta1 represents a candidate gene for congenital or acquired high-frequency hearing loss in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号