首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A PCR approach was used to construct a database of nasA genes (called narB genes in cyanobacteria) and to detect the genetic potential for heterotrophic bacterial nitrate utilization in marine environments. A nasA-specific PCR primer set that could be used to selectively amplify the nasA gene from heterotrophic bacteria was designed. Using seawater DNA extracts obtained from microbial communities in the South Atlantic Bight, the Barents Sea, and the North Pacific Gyre, we PCR amplified and sequenced nasA genes. Our results indicate that several groups of heterotrophic bacterial nasA genes are common and widely distributed in oceanic environments.  相似文献   

2.
ABSTRACT: BACKGROUND: Copper mining has led to Cu pollution in agricultural soils. In this report, the effects of Cu pollution on bacterial communities of agricultural soils from Valparaiso region, central Chile, were studied. Denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA genes was used for the characterization of bacterial communities from Cu-polluted and non-polluted soils. Cu-resistant bacterial strains were isolated from Cu-polluted soils and characterized. RESULTS: DGGE showed a similar high number of bands and banding pattern of the bacterial communities from Cu-polluted and non-polluted soils. The presence of copA genes encoding the multi-copper oxidase that confers Cu-resistance in bacteria was detected by PCR in metagenomic DNA from the three Cu-polluted soils, but not in the non-polluted soil. The number of Cu-tolerant heterotrophic cultivable bacteria was significantly higher in Cu-polluted soils than in the non-polluted soil. Ninety two Cu-resistant bacterial strains were isolated from three Cu-polluted agricultural soils. Five isolated strains showed high resistance to copper (MIC ranged from 3.1 to 4.7 mM) and also resistance to other heavy metals. 16S rRNA gene sequence analyses indicate that these isolates belong to the genera Sphingomonas, Stenotrophomonas and Arthrobacter. The Sphingomonas sp. strains O12, A32 and A55 and Stenotrophomonas sp. C21 possess plasmids containing the Cu-resistance copA genes. Arthrobacter sp. O4 possesses the copA gene, but plasmids were not detected in this strain. The amino acid sequences of CopA from Sphingomonas isolates (O12, A32 and A55), Stenotrophomonas strain (C21) and Arthrobacter strain (O4) are closely related to CopA from Sphingomonas, Stenotrophomonas and Arthrobacter strains, respectively. CONCLUSIONS: This study suggests that bacterial communities of agricultural soils from central Chile exposed to long-term Cu-pollution have been adapted by acquiring Cu genetic determinants. Five bacterial isolates showed high copper resistance and additional resistance to other heavy metals. Detection of copA gene in plasmids of four Cu-resistant isolates indicates that mobile genetic elements are involved in the spreading of Cu genetic determinants in polluted environments.  相似文献   

3.
The occurrence of 22 bacterial human virulence genes (encoding toxins, adhesins, secretion systems, regulators of virulence, inflammatory mediators, and bacterial resistance) in beech wood soil, roadside soil, organic agricultural soil, and freshwater biofilm was investigated by nested PCR. The presence of clinically relevant bacterial groups known to possess virulence genes was tested by PCR of 16S and 23S rRNA genes. For each of the virulence genes detected in the environments, sequencing and NCBI BLAST analysis confirmed the identity of the PCR products. The virulence genes showed widespread environmental occurrence, as 17 different genes were observed. Sixteen genes were detected in beech wood soil, and 14 were detected in roadside and organic agricultural soils, while 11 were detected in the freshwater biofilm. All types of virulence traits were represented in all environments; however, the frequency at which they were detected was variable. A principal-component analysis suggested that several factors influenced the presence of the virulence genes; however, their distribution was most likely related to the level of contamination by polycyclic aromatic hydrocarbons and pH. The occurrence of the virulence genes in the environments generally did not appear to be the result of the presence of clinically relevant bacteria, indicating an environmental origin of the virulence genes. The widespread occurrence of the virulence traits and the high degree of sequence conservation between the environmental and clinical sequences suggest that soil and freshwater environments may constitute reservoirs of virulence determinants normally associated with human disease.  相似文献   

4.
Aims: In the last decades, the worldwide increase in copper wastes release by industrial activities like mining has driven environmental metal contents to toxic levels. For this reason, the study of the biological copper‐resistance mechanisms in natural environments is important. Therefore, an appropriate molecular tool for the detection and tracking of copper‐resistance genes was developed. Methods and Results: In this work, we designed a PCR primer pair to specifically detect copper P‐type ATPases gene sequences. These PCR primers were tested in bacterial isolates and metagenomic DNA from intertidal marine environments impacted by copper pollution. As well, T‐RFLP fingerprinting of these gene sequences was used to compare the genetic composition of such genes in microbial communities, in normal and copper‐polluted coastal environments. New copper P‐type ATPases gene sequences were found, and a high degree of change in the genetic composition because of copper exposure was also determined. Conclusions: This PCR based method is useful to track bacterial copper‐resistance gene sequences in the environment. Significance and Impact of the Study: This study is the first to report the design and use of a PCR primer pair as a molecular marker to track bacterial copper‐resistance determinants, providing an excellent tool for long‐term analysis of environmental communities exposed to metal pollution.  相似文献   

5.
Klebsiella pneumoniae can use nitrate and nitrite as sole nitrogen sources through the nitrate assimilation pathway. We previously identified structural genes for assimilatory nitrate and nitrite reductases, nasA and nasB, respectively. We report here our further identification of four genes, nasFEDC, upstream of the nasBA genes. The nasFEDCBA genes probably form an operon. Mutational and complementation analyses indicated that both the nasC and nasA genes are required for nitrate assimilation. The predicted NASC protein is homologous to a variety of NADH-dependent oxidoreductases. Thus, the NASC protein probably mediates electron transfer from NADH to the NASA protein, which contains the active site for nitrate reduction. The deduced NASF, NASE, and NASD proteins are homologous to the NRTA, NRTB, and NRTD proteins, respectively, that are involved in nitrate uptake in Synechococcus sp. (T. Omata, X. Andriesse, and A. Hirano, Mol. Gen. Genet. 236:193-202, 1993). Mutational and complementation studies indicated that the nasD gene is required for nitrate but not nitrite assimilation. By analogy with the Synechococcus nrt genes, we propose that the nasFED genes are involved in nitrate transport in K. pneumoniae.  相似文献   

6.
We describe a rapid, reproducible, and sensitive method for detection and quantification of archaea in naturally occurring microbial communities. A domain-specific PCR primer set and a domain-specific fluorogenic probe having strong and weak selectivity, respectively, for archaeal rRNA genes (rDNAs) were designed. A universal PCR primer set and a universal fluorogenic probe for both bacterial and archaeal rDNAs were also designed. Using these primers and probes, we demonstrated that detection and quantification of archaeal rDNAs in controlled microbial rDNA assemblages can be successfully achieved. The system which we designed was also able to detect and quantify archaeal rDNAs in DNA samples obtained not only from environments in which thermophilic archaea are abundant but also from environments in which methanogenic archaea are abundant. Our findings indicate that this method is applicable to culture-independent molecular analysis of microbial communities in various environments.  相似文献   

7.
We describe a rapid, reproducible, and sensitive method for detection and quantification of archaea in naturally occurring microbial communities. A domain-specific PCR primer set and a domain-specific fluorogenic probe having strong and weak selectivity, respectively, for archaeal rRNA genes (rDNAs) were designed. A universal PCR primer set and a universal fluorogenic probe for both bacterial and archaeal rDNAs were also designed. Using these primers and probes, we demonstrated that detection and quantification of archaeal rDNAs in controlled microbial rDNA assemblages can be successfully achieved. The system which we designed was also able to detect and quantify archaeal rDNAs in DNA samples obtained not only from environments in which thermophilic archaea are abundant but also from environments in which methanogenic archaea are abundant. Our findings indicate that this method is applicable to culture-independent molecular analysis of microbial communities in various environments.  相似文献   

8.
The diversity of bacteria present in the caecum of the rabbit was investigated. Partial bacterial 16S rRNA genes from a digested sample collected from the caecum of an adult rabbit were amplified by PCR. Sequence analysis of the amplified fragments indicated highest similarity was to bacterial sequences previously described from other gut environments. However, only one sequence showed significant identity (97% threshold) to any previously described bacterial 16S rRNA genes. Furthermore, most of the sequences clustered together in groups lacking representatives from sequences already described, suggesting that the rabbit caecal flora contains organisms not previously described.  相似文献   

9.
Dissolved inorganic nitrogen (DIN) uptake by marine heterotrophic bacteria has important implications for the global nitrogen (N) and carbon (C) cycles. Bacterial nitrate utilization is more prevalent in the marine environment than traditionally thought, but the taxonomic identity of bacteria that utilize nitrate is difficult to determine using traditional methodologies. (15) N-based DNA stable isotope probing was applied to document direct use of nitrate by heterotrophic bacteria on the West Florida Shelf. Seawater was incubated in the presence of 2 μM (15) N ammonium or (15) N nitrate. DNA was extracted, fractionated via CsCl ultracentrifugation, and each fraction was analyzed by terminal restriction fragment length polymorphism (TRFLP) analysis. TRFs that exhibited density shifts when compared to controls that had not received (15) N amendments were identified by comparison with 16S rRNA gene sequence libraries. Relevant marine proteobacterial lineages, notably Thalassobacter and Alteromonadales, displayed evidence of (15) N incorporation. RT-PCR and functional gene microarray analysis could not demonstrate the expression of the assimilatory nitrate reductase gene, nasA, but mRNA for dissimilatory pathways, i.e. nirS, nirK, narG, nosZ, napA, and nrfA was detected. These data directly implicate several bacterial populations in nitrate uptake, but suggest a more complex pattern for N flow than traditionally implied.  相似文献   

10.
A range of autotrophic and heterotrophic enrichment cultures were established to determine the cultural bacterial diversity present in samples obtained from the acidic runoff of a chalcocite overburden heap and from laboratory-scale (1- to 4-liter) batch and continuous bioreactors which were being used for the commercial assessment of the bioleachability of zinc sulfide ore concentrates. Strains identified as Thiobacillus ferrooxidans, Thiobacillus thiooxidans, "Leptospirillum ferrooxidans," and Acidiphilium cryptum were isolated from both the natural site and the batch bioreactor, but only "L. ferrooxidans," a moderately thermophilic strain of T. thiooxidans, and a moderately thermophilic iron-oxidizing bacterium could be recovered from the continuous bioreactor running under steady-state conditions. Sequence analysis of the 16S rRNA genes of 33 representative strains revealed that all of the strains were closely related to strains which have been sequenced previously and also confirmed the phylogenetic diversity of bacteria present in bioleaching environments.  相似文献   

11.
To evaluate the role of bacteria in the transformation of organic matter in subarctic waters, we investigated the effect of mineral nutrients (ammonia and phosphate) and organic carbon (glucose) enrichment on heterotrophic bacterial processes and community structure. Eight experiments were done in the Norwegian Sea during May and June 2008. The growth-limiting factor (carbon or mineral nutrient) for heterotrophic bacteria was inferred from the combination of nutrient additions that stimulated highest bacterial oxygen consumption, biomass, production, growth rate and bacterial efficiency. We conclude that heterotrophic bacteria were limited by organic carbon and co-limited by mineral nutrients during the prevailing early nano-phytoplankton (1–10 μm) bloom conditions. High nucleic acid (HNA) bacteria became dominant (>80%) only when labile carbon and mineral nutrient sources were available. Changes in bacterial community structure were investigated using denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR)-amplified 16S ribosomal RNA genes. The bacterial community structure changed during incubation time, but neither carbon nor mineral nutrient amendment induced changes at the end of the experiments. The lack of labile organic carbon and the availability of mineral nutrients are key factors controlling bacterial activity and the role of the microbial food web in carbon sequestration.  相似文献   

12.
Biofilms were cultivated on polycarbonate strips in rotating annular reactors using South Saskatchewan River water during the fall of 1999 and the fall of 2001, supplemented with carbon (glucose), nitrogen (NH4Cl), phosphorus (KH2PO4), or combined nutrients (CNP), with or without hexadecane, a model compound representing aliphatic hydrocarbons used to simulate a pollutant. In fall 1999 and fall 2001, comparable denitrification activities and catabolic potentials were observed in the biofilms, implying that denitrifying populations showed similar activity patterns and catabolic potentials during the fall from year to year in this river ecosystem, when environmental conditions were similar. Both nirS and nirK denitrification genes were detected by PCR amplification, suggesting that both denitrifying bacterial subpopulations can potentially contribute to total denitrification. Between 91.7 and 99.8% of the consumed N was emitted in the form of N2, suggesting that emission of N2O, a major potent greenhouse gas, by South Saskatchewan River biofilms is low. Denitrification was markedly stimulated by the addition of CNP, and nirS and nirK genes were predominant only in the presence of CNP. In contrast, individual nutrients had no impact on denitrification and on the occurrence of nirS and nirK genes detected by PCR amplification. Similarly, only CNP resulted in significant increases in algal and bacterial biomass relative to control biofilms. Biomass measurements indicated a linkage between autotrophic and heterotrophic populations in the fall 1999 biofilms. Correlation analyses demonstrated a significant relationship (P < or = 0.05) between the denitrification rate and the biomass of algae and heterotrophic bacteria but not cyanobacteria. At the concentration assessed (1 ppb), hexadecane partially inhibited denitrification in both years, slightly more in the fall of 2001. This study suggested that the response of the anaerobic heterotrophic biofilm community may be cyclic and predictable from year to year and that there are interactive effects between nutrients and the contaminant hexadecane.  相似文献   

13.
The occurrence of the tnpA genes of the transposons Tn3, Tn21, and Tn501 was assessed in total bacterial community DNA isolated from different marine environments. The PCR technique was employed, together with most probable number statistics, to determine the abundance of the target tnpA genes. All three genes could be detected, and the Tn21 tnpA sequences predominated in all samples. The smallest amount of total community DNA in which the Tn21 tnpA sequence could be detected was 0.037 ng, and on the basis of our results, we estimated that this sequence was present in 1 of 1,000 to 10,000 bacteria. Hybridization of the PCR products with the respective tnpA probes verified the Tn21 and Tn501 tnpA sequences but only some of the Tn3 tnpA amplification products. The distribution and dissemination of transposons in natural bacterial communities are discussed.  相似文献   

14.
Klebsiella pneumoniae can use nitrate and nitrite as sole nitrogen sources during aerobic growth. Assimilatory nitrate and nitrite reductases convert nitrate through nitrite to ammonium. We report here the molecular cloning of the nasA and nasB genes, which encode assimilatory nitrate and nitrite reductase, respectively. These genes are tightly linked and probably form a nasBA operon. In vivo protein expression and DNA sequence analysis revealed that the nasA and nasB genes encode 92- and 104-kDa proteins, respectively. The NASA polypeptide is homologous to other prokaryotic molybdoenzymes, and the NASB polypeptide is homologous to eukaryotic and prokaryotic NADH-nitrite reductases. The narL gene product positively regulates expression of the structural genes for respiratory nitrate reductase, narGHJI. Surprisingly, we found that the nasBA operon is tightly linked to the narL-narGHJI region in K. pneumoniae, even though the nitrate assimilatory and respiratory enzymes serve different physiological functions.  相似文献   

15.
The Cytophaga-Flavobacterium group is known to be abundant in aquatic ecosystems and to have a potentially unique role in the utilization of organic material. However, relatively little is known about the diversity and abundance of uncultured members of this bacterial group, in part because they are underrepresented in clone libraries of 16S rRNA genes. To circumvent a suspected bias in PCR, a primer set was designed to amplify 16S rRNA genes from the Cytophaga-Flavobacterium group and was used to construct a library of these genes from the Delaware Estuary. This library had several novel Cytophaga-like 16S rRNA genes, of which about 40% could be grouped together into two clusters (DE clusters 1 and 2) defined by sequences initially observed only in the Delaware library; the other 16S rRNA genes were classified into an additional four clades containing sequences from other environments. An oligonucleotide probe was designed for the cluster with the most clones (DE cluster 2) and was used in fluorescence in situ hybridization assays. Bacteria in DE cluster 2 accounted for about 10% of the total prokaryotic abundance in the Delaware Estuary and in a depth profile of the Chukchi Sea (Arctic Ocean). The presence of DE cluster 2 in the Arctic Ocean was confirmed by results from 16S rRNA clone libraries. The contribution of this cluster to the total bacterial biomass is probably larger than is indicated by the abundance of its members, because the average cell volume of bacteria in DE cluster 2 was larger than those of other bacteria and prokaryotes in the Delaware Estuary and Chukchi Sea. DE cluster 2 may be one of the more abundant bacterial groups in the Delaware Estuary and possibly other marine environments.  相似文献   

16.
Chitin is an abundant biopolymer whose degradation is mediated primarily by bacterial chitinases. We developed a degenerate PCR primer set to amplify a approximately 900-bp fragment of family 18, group I chitinase genes and used it to retrieve these gene fragments from environmental samples. Clone libraries of presumptive chitinase genes were created for nine water and six sediment samples from 10 aquatic environments including freshwater and saline lakes, estuarine water and sediments, and the central Arctic Ocean. Putative chitinase sequences were also retrieved from the Sargasso Sea metagenome sequence database. We were unable to obtain PCR product with these primers from an alkaline, hypersaline lake (Mono Lake, California). In total, 108 partial chitinase gene sequences were analyzed, with a minimum of 5 and a maximum of 13 chitinase sequences obtained from each library. All chitinase sequences were novel compared to previously identified sequences. Intralibrary sequence diversity was low, while we found significant differences between libraries from different water column samples and between water column and sediment samples. However, identical sequences were retrieved from samples collected at widely distributed locations that did not necessarily represent similar environments, suggesting homogeneity of chitinoclastic communities between some environments.  相似文献   

17.
Chitin is an abundant biopolymer whose degradation is mediated primarily by bacterial chitinases. We developed a degenerate PCR primer set to amplify a ~900-bp fragment of family 18, group I chitinase genes and used it to retrieve these gene fragments from environmental samples. Clone libraries of presumptive chitinase genes were created for nine water and six sediment samples from 10 aquatic environments including freshwater and saline lakes, estuarine water and sediments, and the central Arctic Ocean. Putative chitinase sequences were also retrieved from the Sargasso Sea metagenome sequence database. We were unable to obtain PCR product with these primers from an alkaline, hypersaline lake (Mono Lake, California). In total, 108 partial chitinase gene sequences were analyzed, with a minimum of 5 and a maximum of 13 chitinase sequences obtained from each library. All chitinase sequences were novel compared to previously identified sequences. Intralibrary sequence diversity was low, while we found significant differences between libraries from different water column samples and between water column and sediment samples. However, identical sequences were retrieved from samples collected at widely distributed locations that did not necessarily represent similar environments, suggesting homogeneity of chitinoclastic communities between some environments.  相似文献   

18.
A unique community of bacteria colonizes the dorsal integument of the polychaete annelid Alvinella pompejana, which inhabits the high-temperature environments of active deep-sea hydrothermal vents along the East Pacific Rise. The composition of this bacterial community was characterized in previous studies by using a 16S rRNA gene clone library and in situ hybridization with oligonucleotide probes. In the present study, a pair of PCR primers (P94-F and P93-R) were used to amplify a segment of the dissimilatory bisulfite reductase gene from DNA isolated from the community of bacteria associated with A. pompejana. The goal was to assess the presence and diversity of bacteria with the capacity to use sulfate as a terminal electron acceptor. A clone library of bisulfite reductase gene PCR products was constructed and characterized by restriction fragment and sequence analysis. Eleven clone families were identified. Two of the 11 clone families, SR1 and SR6, contained 82% of the clones. DNA sequence analysis of a clone from each family indicated that they are dissimilatory bisulfite reductase genes most similar to the dissimilatory bisulfite reductase genes of Desulfovibrio vulgaris, Desulfovibrio gigas, Desulfobacterium autotrophicum, and Desulfobacter latus. Similarities to the dissimilatory bisulfite reductases of Thermodesulfovibrio yellowstonii, the sulfide oxidizer Chromatium vinosum, the sulfur reducer Pyrobaculum islandicum, and the archaeal sulfate reducer Archaeoglobus fulgidus were lower. Phylogenetic analysis separated the clone families into groups that probably represent two genera of previously uncharacterized sulfate-reducing bacteria. The presence of dissimilatory bisulfite reductase genes is consistent with recent temperature and chemical measurements that documented a lack of dissolved oxygen in dwelling tubes of the worm. The diversity of dissimilatory bisulfite reductase genes in the bacterial community on the back of the worm suggests a prominent role for anaerobic sulfate-reducing bacteria in the ecology of A. pompejana.  相似文献   

19.
20.
Despite the fact that the heterotrophic dinoflagellate Pfiesteria shumwayae is an organism of high interest due to alleged toxicity, its abundance in natural environments is poorly understood. To address this inadequacy, a real-time quantitative PCR assay based on mitochondrial cytochrome b (cob) and 18S rRNA gene was developed and P. shumwayae abundance was investigated in several geographic locations. First, cob and its 5'-end region were isolated from a P. shumwayae culture, revealing three different copies, each consisting of an identical cob coding region and an unidentified region (X) of variable length and sequence. The unique sequences in cob and the X region were then used to develop a P. shumwayae-specific primer set. This primer set was used with reported P. shumwayae-specific 18S primers in parallel real-time PCRs to investigate P. shumwayae abundance from Maine to North Carolina along the U.S. east coast and along coasts in Chile, Hawaii, and China. Both genes generally gave similar results, indicating that this species was present, but at low abundance (mostly <10 cells x ml(-1)), in all the American coast locations investigated (with the exception of Long Island Sound, where which both genes gave negative results). Genetic variation was detected by use of both genes in most of the locations, and while cob consistently detected P. shumwayae or close genetic variants, some of the 18S PCR products were unrelated to P. shumwayae. We conclude that (i) the real-time PCR assay developed is useful for specific quantification of P. shumwayae, and (ii) P. shumwayae is distributed widely at the American coasts, but normally only as a minor component of plankton even in high-risk estuaries (Neuse River and the Chesapeake Bay).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号