首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We prepared the lysozyme derivative in which the beta-carboxyl group of Asp101 was modified with alpha-O-methyl N-glycylglucosaminide as an amide by means of the carbodimide reaction (alpha-MGG lysozyme). Since Asp101 residue is located at the edge of the active site cleft, a 1H-NMR study was carried out for this derivative in order to investigate the interaction between the introduced substituent and the active site cleft. It was confirmed that the alpha-MGG moiety sat in the active site cleft in alpha-MGG lysozyme from the reduction of line broadening of the NH-proton of Trp63 located in the active site cleft, the remarkable chemical shift change of the methyl group of the alpha-MGG moiety upon adding a trimer of N-acetyl-D-glucosamine [(NAG)3], and the NOE between the C6-proton resonance of Trp63 and the methyl resonance of the alpha-MGG moiety. Furthermore, alpha-MGG lysozyme had increased thermal stability compared with native lysozyme. Therefore, it was concluded that the alpha-MGG moiety covalently attached to Asp101 interacted with the active site cleft to increase the thermal stability of lysozyme.  相似文献   

2.
The carboxyl groups of lysozyme were coupled with sulfanilic acid, a chromophoric nucleophile, using 1-ethyl-3-dimethylaminopropylcarbodiimide at pH 5. Other carbodiimides were less effective. Ninety percent of the carboxyl groups were sulfanilated through exhaustive reaction with 1.2 m nucleophile. Isolation and identification of the tryptic peptides from this material showed that all 10 of the carboxyls of lysozyme had reacted. In 0.05 m sulfanilic, Glu-35 and Asp-101 were most reactive while Glu-7, Asp-18, and Asp-66 were least. Change to high concentration of nucleophile (from 0.05 to 1.2 m sulfanilic) altered carboxyl reactivity. Addition of inhibitor reduced reactivity of Asp-101 and Glu-35. Side reactions were not important.  相似文献   

3.
In the cross-linking reaction of lysozyme between Leu129 (alpha-COO-) and Lys13 (epsilon-NH3+) using imidazole and 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride (EDC), a side reaction of the peptide bond inversion from alpha to beta between Asp101 and Gly102 was greatly reduced by addition of beta-(1,4)-linked trimer of N-acetyl-D-glucosamine [(NAG)3]. When methylamine or 2-hydroxyethylamine was further added, the extent of the cross-link formation was decreased and the derivative where the alpha-carboxyl group of Leu129 was modified with the amine was newly obtained. On the other hand, when ammonia was added, the beta-carboxyl group of Asp119 instead of the alpha-carboxyl group was mainly amidated. From these results, the presence of a salt bridge between Asp119 and Arg125 besides that between Lys13 and Leu129, is proposed. Enzymatic activities of the derivatives prepared here indicated that the modification of the alpha-carboxyl group reduced the activity to approximately 90% of that of native lysozyme. Des-Leu129 lysozyme, which lacks Leu129, also showed approximately 90% of the activity of native lysozyme. Therefore, the salt bridge between Lys13 and Leu129 may play some role in maintaining the active conformation of lysozyme.  相似文献   

4.
Approaches to improving the functionality of lysozyme are presented. Lysozyme was variously modified and the stabilities of the derivatives were determined by thermal denaturation experiments. Contributions of salt bridge(s), hydrophobic interactions(s), and cross-linkage(s) were evaluated. The stabilities against proteolysis were also considered. For the latter stability, it might be important to depress the rate of unfolding, i.e., to stabilize the native conformation. As a rule, salt bridges and hydrophobic interactions stabilize the native conformation and cross-linkages destabilize the denatured conformation. However, cross-linkages are apt to introduce strains in the native conformation and only suitable lengths of cross-linkages can stabilize the protein. The stabilization was shown to be generally effective in improving the functionality of proteins. Catalytic groups in lysozyme (Glu-35 and Asp-52) were variously modified and finally converted to the respective amides. The participation of these groups in the catalytic function was confirmed. The specificity of lysozyme was modified. Asp-101, which lies on the top of the active site cleft of lysozyme, was variously modified and the effects on the hydrolysis patterns of a hexamer of N-acetylglucosamine were analyzed. Some approaches to endowing lysozyme with altered functions are also presented. In order to give higher esterase activity to lysozyme, the complementarity of enzyme and substrate was investigated by modifying substrate and the active site cleft of lysozyme. An attempt was made to convert lysozyme into a transaminase by introducing pyridoxamine to the active site cleft of lysozyme. Finally, we have started to apply genetic engineering to this kind of investigation and would like to see how far we can go with protein engineering to improve the nature of proteins.This article was presented during the proceedings of the International Conference on Macromolecular Structure and Function, held at the National Defence Medical College, Tokorozawa, Japan, December 1985.  相似文献   

5.
The environments of the binding subsites in Asp 101-modified lysozyme, in which glucosamine or ethanolamine is covalently bound to the carboxyl group of Asp 101, were investigated by chemical modification and nuclear magnetic resonance spectroscopy. Trp 62 in each of the native and the modified lysozymes was nitrophenylsulfenylated. The yield of the nitrophenylsulfenylated derivative from the lysozyme modified with glucosamine at Asp 101 (GlcN-lysozyme) was considerably lower than those from native lysozyme and from the lysozyme modified with ethanolamine at Asp 101 (EtN-lysozyme). These results suggest that Trp 62 in GlcN-lysozyme is less susceptible to nitrophenylsulfenylation. Kinetic analyses of the [Trp 62 and Asp 101]-doubly modified lysozymes indicated that the nitrophenylsulfenylation of Trp 62 in the native lysozyme, EtN-lysozyme, or GlcN-lysozyme decreased the sugar residue affinity at subsite C while increasing the binding free energy change by 2.7 kcal/mol, 1.5 kcal/mol, or 0.1 kcal/mol, respectively. Although the profile of tryptophan indole NH resonances in the 1H-NMR spectrum for EtN-lysozyme was not different from that for the native lysozyme, the indole NH resonance of Trp 62 in GlcN-lysozyme was apparently perturbed in comparison with that of native lysozyme. These results suggest that the environment of subsite C in GlcN-lysozyme is considerably different from those in native lysozyme and EtN-lysozyme. The glucosamine residue attached to Asp 101 may contact the sugar residue binding site of the lysozyme, affecting the environment of subsite C.  相似文献   

6.
J A Buechler  S S Taylor 《Biochemistry》1988,27(19):7356-7361
The hydrophobic carbodiimide dicyclohexylcarbodiimide (DCCD) was previously shown to be an irreversible inhibitor of the catalytic subunit of cAMP-dependent protein kinase, and MgATP protected against inactivation [Toner-Webb, J., & Taylor, S. S. (1987) Biochemistry 26, 7371]. This inhibition by DCCD indicated that an essential carboxyl group was present at the active site of the enzyme even though identification of that carboxyl group was not possible. This presumably was because a nucleophile on the protein cross-linked to the electrophilic intermediate formed when the carbodiimide reacted with the carboxyl group. To circumvent this problem, the catalytic subunit first was treated with acetic anhydride to block accessible lysine residues, thus preventing intramolecular cross-linking. The DCCD reaction then was carried out in the presence of [14C]glycine ethyl ester in order to trap any electrophilic intermediates that were generated by DCCD. The modified protein was treated with trypsin, and the resulting peptides were separated by HPLC. Two major radioactive peptides were isolated as well as one minor peptide. MgATP protected all three peptides from covalent modification. The two major peaks contained the same modified carboxyl group, which corresponded to Asp-184. The minor peak contained a modified glutamic acid, Glu-91. Both of these acidic residues are conserved in all protein kinases, which is consistent with their playing essential roles. The positions of Asp-184 and Glu-91 have been correlated with the overall domain structure of the molecule. Asp-184 may participate as a general base catalyst at the active site. A third carboxyl group, Glu-230, also was identified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
T Endo  T Ueda  H Yamada  T Imoto 《Biochemistry》1987,26(7):1838-1845
Nuclear magnetic resonance analyses have been made of the individual hydrogen-deuterium exchange rates of tryptophan indole N-1 hydrogens in native lysozyme and its chemically modified derivatives including lysozyme with an ester cross-linkage between Glu-35 and Trp-108, lysozyme with an internal amide cross-linking between the epsilon-amino group of Lys-13 and the alpha-carboxyl group of Leu-129, and lysozyme with the beta-aspartyl sequence at Asp-101. The pH dependence curves of the exchange rates for Trp-63 and Trp-108 are different from those expected for tryptophan. The pH dependence curve for Trp-108 exchange exhibits the effects from molecular aggregation at pH above 5 and from a transition between the two conformational fluctuations at around pH 4. The exchange rates for tryptophan residues in native lysozyme and modified derivatives are not correlated with the thermodynamic or kinetic parameters in protein denaturation, suggesting that the fluctuations responsible for the exchange are not global ones. The exchange rates for tryptophan residues remote from the modification site are perturbed. Such tryptophan residues are found to be involved in a small but distinct conformational change due to the modification. Therefore, the perturbations of the N-1 hydrogen exchange rates are related to the minor change in local conformation or in conformational strain induced by the chemical modification.  相似文献   

8.
The reaction of the water-soluble carbodimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), with active papain in the presence of the nucleophile ethyl glycinate results in an irreversible inactivation of the enzyme. This inactivation is accompanied by the derivatization of the catalytically essential thiol group of the enzyme (Cys-25) and by the modification of 6 out of 14 of papain's carboxyl groups and up to 9 out of 19 of the enyzme's tyrosyl residues. No apparent irreversible modification of histidine residues is observed. Mercuripapain is also irreversibly inactivated by EDC/ethyl glycinate, again with the concomitant modification of 6 carboxyl groups, up to 10 tyrosyl residues, and no histidine residues; but in this case there is no thiol derivatization. Treatment of either modified native papain or modified mercuripapain with hydroxylamine results in the complete regeneration of free tyrosyl residues but does not restore any activity. The competitive inhibitor benzamidoacetonitrile substantially protects native papain against inactivation and against the derivatization of the essential thiol group as well as 2 of the 6 otherwise accessible carboxyl groups. The inhibitor has no effect upon tyrosyl modification. These findings are discussed in the context of a possible catalytic role for a carboxyl group in the active site of papain.  相似文献   

9.
H Yamada  R Kuroki  M Hirata  T Imoto 《Biochemistry》1983,22(19):4551-4556
The salt bridge between Lys-13 (epsilon-NH3+) and Leu-129 (alpha-COO-) in lysozyme was converted to an amide bond by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride (EDC) reaction in the presence of imidazole (0.3-1 M) at pH 5 and room temperature, followed by dialysis at pH 10. Absence of imidazole under a similar condition did not give this intramolecularly cross-linked lysozyme derivative (CL-lysozyme) but resulted in the formation of intermolecularly cross-linked lysozyme oligomers. From the mechanistic studies on the formation of CL-lysozyme, imidazole was suggested to play the following three roles. (1) Some carboxyl groups activated by EDC in lysozyme were converted to acylimidazole groups which protected them from the reaction with amino groups in other lysozyme molecules at pH 5. These could be hydrolyzed at pH 10 to regenerate free carboxyls. (2) High concentrations of imidazole (pH 5) increased the ionic strength of the solution which weakened the salt bridge in lysozyme and facilitated the activation of the alpha-carboxyl group by EDC. (3) The alpha-carboxyl group activated by EDC was converted to an acylimidazole group which could react with the epsilon-amino group of Lys-13 in the same molecule to form an amide bond. The last step may involve some conformational change of the backbone of lysozyme and be slower than the hydrolysis reaction of the alpha-carboxyl group activated by EDC itself. However, acylimidazole groups are stable against hydrolysis at pH 5. This may afford enough time to allow the epsilon-amino group of Lys-13 to attack the acylimidazole group of Leu-129.  相似文献   

10.
A lysozyme derivative in which two domains were cross-linked intramolecularly was newly prepared by means of a two-step reaction. First, the beta-carboxyl group of Asp101 in lysozyme was selectively modified with 2-(2-pyridyldithio)ethylamine in the presence of 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride. After reduction of the pyridyldithio moiety of Asp101 modified lysozyme at pH 4.5 with dithiothreitol, the derivative was allowed to cross-link intramolecularly by reaction with 1,3-dichloroacetone at pH 7. Intramolecularly cross-linked lysozyme thus formed was purified by gel chromatography followed by ion-exchange chromatography. Based on the results of 1H-NMR and peptide analyses, it was concluded that Asp101 was cross-linked to Trp62 with a -CH2COCH2SCH2CH2NH-bridge in this derivative. The derivative showed minor but distinct activity against Micrococcus lysodeikticus and glycol chitin. Its melting temperature for thermal denaturation was higher by 7.3 degrees than that of native lysozyme at pH 3.  相似文献   

11.
On the basis of the molecular evolution of hen egg white, human, and turkey lysozymes, three replacements (Trp62 with Tyr, Asn37 with Gly, and Asp101 with Gly) were introduced into the active-site cleft of hen egg white lysozyme by site-directed mutagenesis. The replacement of Trp62 with Tyr led to enhanced bacteriolytic activity at pH 6.2 and a lower binding constant for chitotriose. The fluorescence spectral properties of this mutant hen egg white lysozyme were found to be similar to those of human lysozyme, which contains Tyr at position 62. The replacement of Asn37 with Gly had little effect on the enzymatic activity and binding constant for chitotriose. However, the combination of Asn37----Gly (N37G) replacement with Asp101----Gly (D101G) and Trp62----Tyr (W62Y) conversions enhanced bacteriolytic activity much more than each single mutation and restored hydrolytic activity toward glycol chitin. Consequently, the mutant lysozyme containing triple replacements (N37G, W62Y, and D101G) showed about 3-fold higher bacteriolytic activity than the wild-type hen lysozyme at pH 6.2, which is close to the optimum pH of the wild-type enzyme.  相似文献   

12.
The X-ray structure of lysozyme from bacteriophage lambda (λ lysozyme) in complex with the inhibitor hexa-N-acetylchitohexaose (NAG6) (PDB: 3D3D) has been reported previously showing sugar units from two molecules of NAG6 bound in the active site. One NAG6 is bound with four sugar units in the ABCD sites and the other with two sugar units in the E′F′ sites potentially representing the cleavage reaction products; each NAG6 cross links two neighboring λ lysozyme molecules. Here we use NMR and MD simulations to study the interaction of λ lysozyme with the inhibitors NAG4 and NAG6 in solution. This allows us to study the interactions within the complex prior to cleavage of the polysaccharide. 1HN and 15N chemical shifts of λ lysozyme resonances were followed during NAG4/NAG6 titrations. The chemical shift changes were similar in the two titrations, consistent with sugars binding to the cleft between the upper and lower domains; the NMR data show no evidence for simultaneous binding of a NAG6 to two λ lysozyme molecules. Six 150 ns MD simulations of λ lysozyme in complex with NAG4 or NAG6 were performed starting from different conformations. The simulations with both NAG4 and NAG6 show stable binding of sugars across the D/E active site providing low energy models for the enzyme-inhibitor complexes. The MD simulations identify different binding subsites for the 5th and 6th sugars consistent with the NMR data. The structural information gained from the NMR experiments and MD simulations have been used to model the enzyme-peptidoglycan complex.  相似文献   

13.
Human lysosomal alpha-glucosidase. Characterization of the catalytic site.   总被引:5,自引:0,他引:5  
The substrate analogue conduritol B epoxide (CBE) is demonstrated to be an active site-directed inhibitor of human lysosomal alpha-glucosidase. A competitive mode of inhibition is obtained with glycogen as natural and 4-methylumbelliferyl-alpha-D-glucopyranoside as artificial substrate. The inactivation of the enzyme is time and concentration dependent and results in the covalent binding of CBE. Catalytic activity is required for binding to occur. CBE-labeled peptides containing the catalytic residue of lysosomal alpha-glucosidase were isolated and identified by microsequencing and amino acid analysis. The peptides appeared to originate from a protein domain which is highly conserved among alpha-amylases, maltase, glucoamylases, and transglucanosylases. Based on the sequence similarity and the mechanism of CBE binding, Asp-518 is predicted to be the essential carboxylate in the active site of lysosomal alpha-glucosidase. The functional importance of Asp-518 and other residues around the catalytic site was studied by expression of in vitro mutagenized alpha-glucosidase cDNA in transiently transfected COS cells. Substitution of Asp-513 by Glu-513 is shown to interfere with the posttranslational modification and the intracellular transport of the alpha-glucosidase precursor. The residues Trp-516 and Asp-518 are demonstrated to be critical for catalytic function.  相似文献   

14.
In the reaction of the intramolecular cross-linking between Lys-13 (epsilon-NH3+) and Leu-129 (alpha-COO-) in lysozyme using imidazole and 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride [Yamada, H., Kuroki, R., Hirata, M., & Imoto, T. (1983) Biochemistry 22, 4551-4556], it was found that two-thirds of the protein (both the recovered and cross-linked lysozymes) showed a lower affinity than the rest against chitin-coated Celite, an affinity adsorbent for lysozyme. The protein with the reduced affinity was separated on chitin-coated Celite affinity chromatography and found to be slightly different from native lysozyme in the elution position of the tryptic peptide of Ile-98-Arg-112 on reversed-phase high-performance liquid chromatography. In contrast with native lysozyme, the limited hydrolysis of this abnormal tryptic peptide of Ile-98-Arg-112 in 6 N HCl at 110 degrees C gave a considerable amount of beta-aspartylglycine. Therefore, it was concluded that two-thirds of the protein obtained from this reaction possessed the beta-aspartylglycyl sequence at Asp-101-Gly-102. As a result, we obtained four lysozymes from this reaction, the derivative with the beta-aspartyl sequence at Asp-101 (101-beta-lysozyme), the cross-linked derivative between Lys-13 and Leu-129 (CL-lysozyme), the CL-lysozyme derivative with the beta-aspartyl sequence at Asp-101 (101-beta-CL-lysozyme), and native lysozyme. In the ethyl esterification of Asp-52 in lysozyme with triethyloxonium fluoroborate [Parsons, S. M., Jao, L., Dahlquist, F. W., Borders, C. L., Jr., Groff, T., Racs, J., & Raftery, M. A. (1969) Biochemistry 8, 700-712; Parsons, S. M., & Raftery, M. A. (1969) Biochemistry 8, 4199-4205], the same bond rearrangement was detected in the same ratio.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Allan Beveridge 《Proteins》1996,24(3):322-334
We have performed ab initio Hartree-Fock self-consistent field calculations on the active site of endothiapepsin. The active site was modeled as a formic acid/formate anion moiety (representing the catalytic aspartates, Asp-32 and -215) and a bound water molecule. Residues Gly-34, Ser-35, Gly-217, and Thr-218, which all form hydrogen bonds to the active site, were modeled using formamide and methanol molecules. The water molecule, which is generally believed to function as the attacking nucleophile in catalysis, was allowed to bind to the active site in four distinct configurations. The geometry of each configuration was optimized using two basis sets (4-31G and 4-31G*). The results indicate that in the native enzyme the nucleophilic water is bound in a catalytically inert configuration. However, by rotating the carboxyl group of Asp-32 by about 90° the water molecule can be reorientated to attack the scissile bond of the substrate. A model of the bound enzyme-substrate complex was constructed from the crystal structure of a difluorostatone inhibitor complexed with endothiapepsin. This model suggests that the substrate itself initiates the reorientation of the nucleophilic water immediately prior to catalysis by forcing the carboxyl group of Asp-32 to rotate. The theoretical results predict that the active site of endothiapepsin undergoes a large distortion during substrate binding and this observation has been used to explain some of the kinetics results which have been reported for mutant aspartic proteinases.  相似文献   

16.
The structure of a derivative of hen egg-white lysozyme (EC 3.2.1.17) modified by N-bromosuccinimide at Trp62 has been studied by both 1H nuclear magnetic resonance spectroscopy and X-ray crystallography. It was shown that this modification, changing the tryptophan residue to an oxindolealanine2 residue, only causes minor structural changes at the site of the modification, and that the overall structure of the native enzyme is maintained in the derivative. Both diastereomers of the oxindolealanine-62 lysozyme were observed by the two methods employed, in accordance with previous observations (Norton & Allerhand, 1976). The pK values of the catalytically important carboxyl groups of Glu35 and Asp52 were identical in the native enzyme and its derivative. However, the modified enzyme is virtually inactive in the hydrolysis of the cell-wall mucopolysaccharide of Micrococcus lysodeikticus. The binding of N-acetylglucosamine oligosaccharides to both native lysozyme and Ox-62 lysozyme was studied by nuclear magnetic resonance spectroscopy, observing the perturbations on the lysozyme 1H n.m.r. resonances, and differences in the perturbations of the two systems demonstrated that binding of (GlcNAc)3 in particular was not identical in the two systems. The structure of Ox-62 lysozyme-(GlcNAc)3 was studied by X-ray crystallography and it was shown that only two GlcNAc residues make contact with the enzyme, binding the reducing end residue in a similar mode as the α-anomeric form of GlcNAc binds to the native enzyme (Blake et al., 1967a). On the basis of the results obtained by X-ray crystallography and 1H n.m.r. spectroscopy, the lack of enzymatic activity of the Ox-62 lysozyme arises from the obstruction by the oxindolealanine residue of sub-site B of the active site, preventing productive binding of the substrate.  相似文献   

17.
1-Ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC), a water-soluble carbodiimide, inhibited ECF1-F0 ATPase activity and proton translocation through F0 when reacted with Escherichia coli membrane vesicles. The site of modification was found to be in subunit c of the F0 portion of the enzyme but did not involve Asp-61, the site labeled by the hydrophobic carbodiimide dicyclohexylcarbodiimide (DCCD). EDC was not covalently incorporated into subunit c in contrast to DCCD. Instead, EDC promoted a cross-link between the C-terminal carboxyl group (Ala-79) and a near-neighbor phosphatidylethanolamine as evidenced by fragmentation of subunit c with cyanogen bromide followed by high-pressure liquid chromatography and thin-layer chromatography.  相似文献   

18.
The interaction of SDS with lysozyme was analyzed with enzyme activity and with NMR, fluorescence, and UV difference spectroscopies using various alkyl sulfates and variously modified lysozymes. SDS formed a stable complex with lysozyme without causing a gross conformational change in the enzyme molecule. Some SDS molecules bound to the active site cleft of lysozyme and therefore strongly inhibited the activity of lysozyme. Hydrophobic regions and positive charges for protein side, and a hydrophobic tail (possibly more than 8 carbons in alkyl chain) and a negative charge for detergent side were required for the formation of the complex.  相似文献   

19.
We expressed chitinase-1 (TBC-1) from tulip bulbs (Tulipa bakeri) in E. coli cells and used site-directed mutagenesis to identify amino acid residues essential for catalytic activity. Mutations at Glu-125 and Trp-251 completely abolished enzyme activity, and activity decreased with mutations at Asp-123 and Trp-172 when glycolchitin was the substrate. Activity changed with the mutations of Trp-251 to one of several amino acids with side-chains of little hydrophobicity, suggesting that hydrophobic interaction of Trp-251 is important for the activity. Molecular dynamics (MD) simulation analysis with hevamine as the model compound showed that the distance between Asp-123 and Glu-125 was extended by mutation of Trp-251. Kinetic studies of Trp-251-mutated chitinases confirmed these various phenomena. The results suggested that Glu-125 and Trp-251 are essential for enzyme activity and that Trp-251 had a direct role in ligand binding.  相似文献   

20.
Based on the three-dimensional model of the bifunctional enzyme destabilase-lysozyme of the medicinal leech (mlDL) in complex with trimer of N-acetylglucosamine (NAG)3 by site-directed mutagenesis method, the functional role of the group of amino acids (Glu14, Asp26, Ser29, Ser31, Lys38, His92) in manifestation of lysozyme (glycosidase, muramidase) and isopeptidase activities has been investigated by site-directed mutagenesis. The results obtained go well with hypothesis, that lysozyme active site of mlDL includes catalytic Glu14 and Asp26 residues, and isopeptidase site functions as Ser/Lys catalytic dyad presented by catalytic residues Ser29 and Lys38. Thus, among the invertebrate lysozymes, mlDL presents the first example of a bifunctional enzyme with identified position of the isopeptidase active site and localization of the corresponding catalytic residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号