首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The assembly of the ribosomal subunits is facilitated by ribosome biogenesis factors. The universally conserved methyltransferase KsgA modifies two adjacent adenosine residues in the 3'-terminal helix 45 of the 16 S ribosomal RNA (rRNA). KsgA recognizes its substrate adenosine residues only in the context of a near mature 30S subunit and is required for the efficient processing of the rRNA termini during ribosome biogenesis. Here, we present the cryo-EM structure of KsgA bound to a nonmethylated 30S ribosomal subunit. The structure reveals that KsgA binds to the 30S platform with the catalytic N-terminal domain interacting with substrate adenosine residues in helix 45 and the C-terminal domain making extensive contacts to helix 27 and helix 24. KsgA excludes the penultimate rRNA helix 44 from adopting its position in the mature 30S subunit, blocking the formation of the decoding site and subunit joining. We suggest that the activation of methyltransferase activity and subsequent dissociation of KsgA control conformational changes in helix 44 required for final rRNA processing and translation initiation.  相似文献   

2.
The methyltransferase KsgA modifies two adjacent adenosines in 16S rRNA by adding two methyl groups to the N(6) position of each nucleotide. Unlike nearly all other rRNA modifications, these modifications and the responsible enzyme are highly conserved phylogenetically, suggesting that the modification system has an important role in ribosome biogenesis. It has been known for some time that KsgA recognizes a complex pre-30S substrate in vitro, but there is disagreement in the literature as to what that substrate can be. That disagreement is resolved in this report; KsgA is unable to methylate 30S subunits in the translationally active conformation, but rather can modify 30S when in an experimentally well established translationally inactive conformation. Recent 30S crystal structures provide some basis for explaining why it is impossible for KsgA to methylate 30S in the translationally active conformation. Previous work identified one set of ribosomal proteins important for efficient methylation by KsgA and another set refractory methylation. With the exception of S21 the recent crystal structures of 30S also instructs that the proteins important for KsgA activity all exert their influence indirectly. Unfortunately, S21, which is inhibitory to KsgA activity, has not had its position determined by X-ray crystallography. A reevaluation of published biophysical data on the location also suggests that the refractory nature of S21 is also indirect. Therefore, it appears that KsgA solely senses the conformation 16S rRNA when carrying out its enzymatic activity.  相似文献   

3.
While the general blueprint of ribosome biogenesis is evolutionarily conserved, most details have diverged considerably. A striking exception to this divergence is the universally conserved KsgA/Dim1p enzyme family, which modifies two adjacent adenosines in the terminal helix of small subunit ribosomal RNA (rRNA). While localization of KsgA on 30S subunits [small ribosomal subunits (SSUs)] and genetic interaction data have suggested that KsgA acts as a ribosome biogenesis factor, mechanistic details and a rationale for its extreme conservation are still lacking. To begin to address these questions we have characterized the function of Escherichia coli KsgA in vivo using both a ksgA deletion strain and a methyltransferase-deficient form of this protein. Our data reveal cold sensitivity and altered ribosomal profiles are associated with a DeltaksgA genotype in E. coli. Our work also indicates that loss of KsgA alters 16S rRNA processing. These findings allow KsgAs role in SSU biogenesis to be integrated into the network of other identified factors. Moreover, a methyltransferase-inactive form of KsgA, which we show to be deleterious to cell growth, profoundly impairs ribosome biogenesis-prompting discussion of KsgA as a possible antimicrobial drug target. These unexpected data suggest that methylation is a second layer of function for KsgA and that its critical role is as a supervisor of biogenesis of SSUs in vivo. These new findings and this proposed regulatory role offer a mechanistic explanation for the extreme conservation of the KsgA/Dim1p enzyme family.  相似文献   

4.
Biogenesis of ribosomal subunits involves enzymatic modifications of rRNA that fine-tune functionally important regions. The universally conserved prokaryotic dimethyltransferase KsgA sequentially modifies two universally conserved adenosine residues in helix 45 of the small ribosomal subunit rRNA, which is in proximity of the decoding site. Here we present the cryo-EM structure of Escherichia coli KsgA bound to an E. coli 30S at a resolution of 3.1 Å. The high-resolution structure reveals how KsgA recognizes immature rRNA and binds helix 45 in a conformation where one of the substrate nucleotides is flipped-out into the active site. We suggest that successive processing of two adjacent nucleotides involves base-flipping of the rRNA, which allows modification of the second substrate nucleotide without dissociation of the enzyme. Since KsgA is homologous to the essential eukaryotic methyltransferase Dim1 involved in 40S maturation, these results have also implications for understanding eukaryotic ribosome maturation.  相似文献   

5.
KsgA, a universally conserved small ribosomal subunit (SSU) rRNA methyltransferase, has recently been shown to facilitate a checkpoint within the ribosome maturation pathway. Under standard growth conditions removal of the KsgA checkpoint has a subtle impact on cell growth; yet, upon overexpresssion of RbfA, a ribosome maturation factor, KsgA becomes essential. Our results demonstrate the requirement of KsgA, in the presence of excess RbfA, both for the incorporation of ribosomal protein S21 to the developing SSU, and for final maturation of SSU rRNA. Also, when SSU biogenesis is perturbed by an imbalance in KsgA and RbfA, a population of 70S‐like particles accumulates that is compositionally, functionally and structurally distinct from mature 70S ribosomes. Thus, our work suggests that KsgA and RbfA function together and are required for SSU maturation, and that additional checkpoints likely act to modulate malfunctional 70S particle formation in vivo.  相似文献   

6.
BUD23 was identified from a bioinformatics analysis of Saccharomyces cerevisiae genes involved in ribosome biogenesis. Deletion of BUD23 leads to severely impaired growth, reduced levels of the small (40S) ribosomal subunit, and a block in processing 20S rRNA to 18S rRNA, a late step in 40S maturation. Bud23 belongs to the S-adenosylmethionine-dependent Rossmann-fold methyltransferase superfamily and is related to small-molecule methyltransferases. Nevertheless, we considered that Bud23 methylates rRNA. Methylation of G1575 is the only mapped modification for which the methylase has not been assigned. Here, we show that this modification is lost in bud23 mutants. The nuclear accumulation of the small-subunit reporters Rps2-green fluorescent protein (GFP) and Rps3-GFP, as well as the rRNA processing intermediate, the 5' internal transcribed spacer 1, indicate that bud23 mutants are defective for small-subunit export. Mutations in Bud23 that inactivated its methyltransferase activity complemented a bud23Delta mutant. In addition, mutant ribosomes in which G1575 was changed to adenosine supported growth comparable to that of cells with wild-type ribosomes. Thus, Bud23 protein, but not its methyltransferase activity, is important for biogenesis and export of the 40S subunit in yeast.  相似文献   

7.
8.
Bacterial genome sequencing has revealed a novel family of P-loop GTPases that are often essential for growth. Accumulating evidence suggests that these proteins are involved in biogenesis of the 30S or 50S ribosomal subunits. YqeH is a member of this Obg/Era GTPase family, with its function remains to be uncovered. Here, we present results showing that YqeH is involved in the 30S subunit biogenesis in Bacillus subtilis. We observed a reduction in the 70S ribosome and accumulation of the free 50S subunit in YqeH-depleted cells. Interestingly, no free 30S subunit accumulation was evident. Consistent with the theory that YqeH is involved in 30S subunit biogenesis, a precursor of 16S rRNA and its degradation products were detected. Additionally, the reduction of free 30S subunit was not observed in Era-depleted cells. YqeH overexpression did not compensate for growth defects in mutants devoid of Era and vice versa. Moreover, in vitro GTPase analyses showed that YqeH possessed high intrinsic GTPase activity. In contrast, Era showed slow GTPase activity, which was enhanced by the 30S ribosomal subunit. Our findings strongly suggest that YqeH and Era function at distinct checkpoints during 30S subunit assembly. B. subtilis yqeH is classified as an essential gene due to the inability of the IPTG-dependent P(spac)-yqeH mutant to grow on LB or PAB agar plates in the absence of IPTG. However, in our experiments, the P(spac)-yqeH mutant grew in PAB liquid medium without IPTG supplementation, albeit at an impaired rate. This finding raises the interesting possibility that YqeH participates in assembly of the 30S ribosomal subunit as well as other cellular functions essential for growth on solid media.  相似文献   

9.
To examine the function of the central pseudoknot in 16S rRNA, we have studied Escherichia coli 30S subunits with the A18 mutation in this structure element. Previously, this mutation, which changes the central base pair of helix 2, C18--G917, to an A18xG917 mismatch, was shown to inhibit translation in vivo and a defect in initiation was suggested. Here, we find that the mutant 30S particles are impaired in forming 70S tight couples and predominantly accumulate as free 30S subunits. Formation of a 30S initiation complex, as measured by toeprinting, was almost as efficient for mutant 30S subunits, derived from the tight couple fraction, as for the wild-type control. However, the A18 mutation has a profound effect on the overall stability of the subunit. The mutant ribosomes were inactivated by affinity chromatography and high salt treatment, due to easy loss of ribosomal proteins. Accordingly, the particles could be reactivated by partial in vitro reconstitution with 30S ribosomal proteins. Mutant 30S subunits from the free subunit fraction were already inactive upon isolation, but could also be reactivated by reconstitution. Apparently, the inactivity in initiation of these mutant 30S subunits is, at least in part, also due to the lack of essential ribosomal proteins. We conclude that disruption of helix 2 of the central pseudoknot by itself does not affect the formation of a 30S initiation complex. We suggest that the in vivo translational defect of the mutant ribosomes is caused by their inability to form 70S initiation complexes.  相似文献   

10.
Bacterial resistance to 4,6-type aminoglycoside antibiotics, which target the ribosome, has been traced to the ArmA/RmtA family of rRNA methyltransferases. These plasmid-encoded enzymes transfer a methyl group from S-adenosyl-L-methionine to N7 of the buried G1405 in the aminoglycoside binding site of 16S rRNA of the 30S ribosomal subunit. ArmA methylates mature 30S subunits but not 16S rRNA, 50S, or 70S ribosomal subunits or isolated Helix 44 of the 30S subunit. To more fully characterize this family of enzymes, we have investigated the substrate requirements of ArmA and to a lesser extent its ortholog RmtA. We determined the Mg+2 dependence of ArmA activity toward the 30S ribosomal subunits and found that the enzyme recognizes both low Mg+2 (translationally inactive) and high Mg+2 (translationally active) forms of this substrate. We tested the effects of LiCl pretreatment of the 30S subunits, initiation factor 3 (IF3), and gentamicin/kasugamycin resistance methyltransferase (KsgA) on ArmA activity and determined whether in vivo derived pre-30S ribosomal subunits are ArmA methylation substrates. ArmA failed to methylate the 30S subunits generated from LiCl washes above 0.75 M, despite the apparent retention of ribosomal proteins and a fully mature 16S rRNA. From our experiments, we conclude that ArmA is most active toward the 30S ribosomal subunits that are at or very near full maturity, but that it can also recognize more than one form of the 30S subunit.  相似文献   

11.
The 5-formyluracil (5-foU), a major mutagenic oxidative damage of thymine, is removed from DNA by Nth, Nei and MutM in Escherichia coli. However, DNA polymerases can also replicate past the 5-foU by incorporating C and G opposite the lesion, although the mechanism of correction of the incorporated bases is still unknown. In this study, using a borohydride-trapping assay, we identified a protein trapped by a 5-foU/C-containing oligonucleotide in an extract from E. coli mutM nth nei mutant. The protein was subsequently purified from the E. coli mutM nth nei mutant and was identified as KsgA, a 16S rRNA adenine methyltransferase. Recombinant KsgA also formed the trapped complex with 5-foU/C- and thymine glycol (Tg)/C-containing oligonucleotides. Furthermore, KsgA excised C opposite 5-foU, Tg and 5-hydroxymethyluracil (5-hmU) from duplex oligonucleotides via a β-elimination reaction, whereas it could not remove the damaged base. In contrast, KsgA did not remove C opposite normal bases, 7,8-dihydro-8-oxoguanine and 2-hydroxyadenine. Finally, the introduction of the ksgA mutation increased spontaneous mutations in E. coli mutM mutY and nth nei mutants. These results demonstrate that KsgA has a novel DNA glycosylase/AP lyase activity for C mispaired with oxidized T that prevents the formation of mutations, which is in addition to its known rRNA adenine methyltransferase activity essential for ribosome biogenesis.  相似文献   

12.
Helix 34 of 16 S rRNA is located in the head of the 30 S ribosomal subunit close to the decoding center and has been invoked in a number of ribosome functions. In the present work, we have studied the effects of mutations in helix 34 both in vivo and in vitro. Several nucleotides in helix 34 that are either highly conserved or form important tertiary contacts in 16 S rRNA (U961, C1109, A1191, and A1201) were mutated, and the mutant ribosomes were expressed in the Escherichia coli MC250 Delta7 strain that lacks all seven chromosomal rRNA operons. Mutations at positions A1191 and U961 reduced the efficiency of subunit association and resulted in structural rearrangements in helix 27 (position 908) and helix 31 (position 974) of 16 S rRNA. All mutants exhibited increased levels of frameshifting and nonsense readthrough. The effects on frameshifting were specific in that -1 frameshifting was enhanced with mutant A1191G and +1 frameshifting with the other mutants. Mutations of A1191 moderately (approximately 2-fold) inhibited tRNA translocation. No significant effects were found on efficiency and rate of initiation, misreading of sense codons, or binding of tRNA to the E site. The data indicate that helix 34 is involved in controlling the maintenance of the reading frame and in tRNA translocation.  相似文献   

13.
Ribosome biogenesis is a complicated process, involving numerous cleavage, base modification and assembly steps. All ribosomes share the same general architecture, with small and large subunits made up of roughly similar rRNA species and a variety of ribosomal proteins. However, the fundamental assembly process differs significantly between eukaryotes and eubacteria, not only in distribution and mechanism of modifications but also in organization of assembly steps. Despite these differences, members of the KsgA/Dim1 methyltransferase family and their resultant modification of small-subunit rRNA are found throughout evolution and therefore were present in the last common ancestor. In this paper we report that KsgA orthologs from archaeabacteria and eukaryotes are able to complement for KsgA function in bacteria, both in vivo and in vitro. This indicates that all of these enzymes can recognize a common ribosomal substrate, and that the recognition elements must be largely unchanged since the evolutionary split between the three domains of life.  相似文献   

14.
15.
The large and small subunits of the ribosome are joined by a series of bridges that are conserved among mitochondrial, bacterial, and eukaryal ribosomes. In addition to joining the subunits together at the initiation of protein synthesis, a variety of other roles have been proposed for these bridges. These roles include transmission of signals between the functional centers of the two subunits, modulation of tRNA-ribosome and factor-ribosome interactions, and mediation of the relative movement of large and small ribosomal subunits during translocation. The majority of the bridges involve RNA-RNA interactions, and to gain insight into their function, we constructed mutations in the 23 S rRNA regions involved in forming 7 of the 12 intersubunit bridges in the Escherichia coli ribosome. The majority of the mutants were viable in strains expressing mutant rRNA exclusively but had distinct growth phenotypes, particularly at 30 degrees C, and the mutant ribosomes promoted a variety of miscoding errors. Analysis of subunit association activities both in vitro and in vivo indicated that, with the exception of the bridge B5 mutants, at least one mutation at each bridge site affected 70 S ribosome formation. These results confirm the structural data linking bridges with subunit-subunit interactions and, together with the effects on decoding fidelity, indicate that intersubunit bridges function at multiple stages of protein synthesis.  相似文献   

16.
The in vivo assembly of ribosomal subunits requires assistance by maturation proteins that are not part of mature ribosomes. One such protein, RbfA, associates with the 30S ribosomal subunits. Loss of RbfA causes cold sensitivity and defects of the 30S subunit biogenesis and its overexpression partially suppresses the dominant cold sensitivity caused by a C23U mutation in the central pseudoknot of 16S rRNA, a structure essential for ribosome function. We have isolated suppressor mutations that restore partially the growth of an RbfA-lacking strain. Most of the strongest suppressor mutations alter one out of three distinct positions in the carboxy-terminal domain of ribosomal protein S5 (S5) in direct contact with helix 1 and helix 2 of the central pseudoknot. Their effect is to increase the translational capacity of the RbfA-lacking strain as evidenced by an increase in polysomes in the suppressed strains. Overexpression of RimP, a protein factor that along with RbfA regulates formation of the ribosome''s central pseudoknot, was lethal to the RbfA-lacking strain but not to a wild-type strain and this lethality was suppressed by the alterations in S5. The S5 mutants alter translational fidelity but these changes do not explain consistently their effect on the RbfA-lacking strain. Our genetic results support a role for the region of S5 modified in the suppressors in the formation of the central pseudoknot in 16S rRNA.  相似文献   

17.
A 16S rRNA methyltransferase, KsgA, identified originally in Escherichia coli is highly conserved in all living cells, from bacteria to humans. KsgA orthologs in eukaryotes possess functions in addition to their rRNA methyltransferase activity. E. coli Era is an essential GTP-binding protein. We recently observed that KsgA functions as a multicopy suppressor for the cold-sensitive cell growth of an era mutant [Era(E200K)] strain (Q. Lu and M. Inouye, J. Bacteriol. 180:5243-5246, 1998). Here we observed that although KsgA(E43A), KsgA(G47A), and KsgA(E66A) mutations located in the S-adenosylmethionine-binding motifs severely reduced its methyltransferase activity, these mutations retained the ability to suppress the growth defect of the Era(E200K) strain at a low temperature. On the other hand, a KsgA(R248A) mutation at the C-terminal domain that does not affect the methyltransferase activity failed to suppress the growth defect. Surprisingly, E. coli cells overexpressing wild-type KsgA, but not KsgA(R248A), were found to be highly sensitive to acetate even at neutral pH. Such growth inhibition also was observed in the presence of other weak organic acids, such as propionate and benzoate. These chemicals are known to be highly toxic at acidic pH by lowering the intracellular pH. We found that KsgA-induced cells had increased sensitivity to extreme acid conditions (pH 3.0) compared to that of noninduced cells. These results suggest that E. coli KsgA, in addition to its methyltransferase activity, has another unidentified function that plays a role in the suppression of the cold-sensitive phenotype of the Era(E200K) strain and that the additional function may be involved in the acid shock response. We discuss a possible mechanism of the KsgA-induced acid-sensitive phenotype.  相似文献   

18.
Translocation during the elongation phase of protein synthesis involves the relative movement of the 30S and 50S ribosomal subunits. This movement is the target of tuberactinomycin antibiotics. Here, we describe the isolation and characterization of mutants of Thermus thermophilus selected for resistance to the tuberactinomycin antibiotic capreomycin. Two base substitutions, A1913U and mU1915G, and a single base deletion, DeltamU1915, were identified in helix 69 of 23S rRNA, a structural element that forms part of an interribosomal subunit bridge with the decoding center of 16S rRNA, the site of previously reported capreomycin resistance base substitutions. Capreomycin resistance in other bacteria has been shown to result from inactivation of the TlyA methyltransferase which 2'-O methylates C1920 of 23S rRNA. Inactivation of the tlyA gene in T. thermophilus does not affect its sensitivity to capreomycin. Finally, none of the mutations in helix 69 interferes with methylation at C1920 or with pseudouridylation at positions 1911 and 1917. We conclude that the resistance phenotype is a consequence of structural changes introduced by the mutations.  相似文献   

19.
Four decades after early in vitro assembly studies demonstrated that ribosome assembly is a controlled process, our understanding of ribosome assembly is still incomplete. Just as structure determination has been so important to understanding ribosome function, so too will it be critical to sorting out the assembly process. Here, we used a viable deletion in the yjeQ gene, a recognized ribosome assembly factor, to isolate and structurally characterize immature 30S subunits assembled in vivo. These small ribosome subunits contained unprocessed 17S rRNA and lacked some late ribosomal proteins. Cryo-electron microscopy reconstructions revealed that the presence of precursor sequences in the rRNA induces a severe distortion in the 3' minor domain of the subunit involved in the decoding of mRNA and interaction with the large ribosome subunit. These findings suggest that rRNA processing events induce key local conformational changes directing the structure toward the mature assembly. We concluded that rRNA processing, folding, and the entry of tertiary r-proteins are interdependent events in the late stages of 30S subunit assembly. In addition, we demonstrate how studies of emerging assembly factors in ribosome biogenesis can help to elucidate the path of subunit assembly in vivo.  相似文献   

20.
Pseudouridine modifications in helix 69 (H69) of 23S ribosomal RNA are highly conserved among all organisms. H69 associates with helix 44 of 16S rRNA to form bridge B2a, which plays a vital role in bridging the two ribosomal subunits and stabilizing the ribosome. The three pseudouridines in H69 were shown earlier to play an important role in 50S subunit assembly and in its association with the 30S subunit. In Escherichia coli, these three modifications are made by the pseudouridine synthase, RluD. Previous work showed that RluD is required for normal ribosomal assembly and function, and that it is the only pseudouridine synthase required for normal growth in E. coli. Here, we show that RluD is far more efficient in modifying H69 in structured 50S subunits, compared to free or synthetic 23S rRNA. Based on this observation, we suggest that pseudouridine modifications in H69 are made late in the assembly of 23S rRNA into mature 50S subunits. This is the first reported observation of a pseudouridine synthase being able to modify a highly structured ribonucleoprotein particle, and it may be an important late step in the maturation of 50S ribosomal subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号