首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data from thermal transitions were evaluated for their usefulness in detecting similarities in the deoxyribonucleic acid (DNA) of micro-organisms. Levels of reproducibility were determined for thermal transition analysis; methods of purification of DNA and the solvents, pH, and temperature intervals used during thermal transitions did not greatly affect the reproducibility of the values obtained. The shape of the thermal transition curve is a stable property of a given kind of DNA, and this property can be described quantitatively and with satisfactory precision.  相似文献   

2.
Using differential scanning calorimetry, the thermal denaturation of calf thymus DNA with different content of water (from 12 to 92%) was investigated. Dependences of melting temperature and enthalpy on the biopolymer hydration degree were established. Within the range of water concentrations from 92 to 50% the values of thermodynamic parameters of denaturation were obtained being in good agreement with the published data. Besides, a calorimetric manifestation of renaturation process at different cooling conditions after denaturation was studied. Special attention was paid to thermal properties of denatured and native DNA in the samples containing only the bound water. The temperature dependence of heat capacity in the denatured samples, which have completely lost their renaturation ability due to the proper thermal treatment, demonstrated a characteristic jump of thermal capacity. The value of this jump has been determined to be equal to 1.0 cal/g. degree C, related to dry weight, and almost not dependent on humidity. Temperature position of the jump (Tg) depends on the content of water which serves as a plasticizer. It is shown that the observed anomaly demonstrates all the properties characteristic of vitrification process in synthetic polymers and proteins. General similarity of thermal properties of the samples of native DNA, containing only the bound water, with those of denatured DNA also indicates a transition from the glassy into the rabber-like state. A possibility of existence of both native and denatured DNA in the glassy state at room temperature for the samples with low humidity (about 25%) has been demonstrated experimentally. It can be suggested that the formation of glassy state at dehydration of native DNA ensures its thermostability and the ability of restoration of its functional properties at a subsequent dehydration.  相似文献   

3.
The human RAD52 protein plays an important role in the earliest stages of chromosomal double-strand break repair via the homologous recombination pathway. Individual subunits of RAD52 associate into seven-membered rings. These rings can form higher order complexes. RAD52 binds to DNA breaks, and recent studies suggest that the higher order self-association of the rings promotes DNA end joining. Monomers of the RAD52(1--192) deletion mutant also associate into ring structures but do not form higher order complexes. The thermal stability of wild-type and mutant RAD52 was studied by differential scanning calorimetry. Three thermal transitions (labeled A, B, and C) were observed with melting temperatures of 38.8, 73.1, and 115.2 degrees C. The RAD52(1--192) mutant had only two thermal transitions at 47.6 and 100.9 degrees C (labeled B and C). Transitions were labeled such that transition C corresponds to complete unfolding of the protein. The effect of temperature and protein concentration on RAD52 self-association was analyzed by dynamic light scattering. From these data a four-state hypothetical model was developed to explain the thermal denaturation profile of wild-type RAD52. The three thermal transitions in this model were assigned as follows. Transition A was attributed to the disruption of higher order assemblies of RAD52 rings, transition B to the disruption of rings to individual subunits, and transition C to complete unfolding. The ring-shaped quaternary structure of RAD52 and the formation of higher ordered complexes of rings appear to contribute to the extreme stability of RAD52. Higher ordered complexes of rings are stable at physiological temperatures in vitro.  相似文献   

4.
J B Chaires 《Biochemistry》1986,25(26):8436-8439
Poly(dG-m5dC) in phosphate buffer containing 50 mM NaCl and Mg2+ will undergo a reversible thermally driven conversion from the B to the left-handed Z conformation. The temperature at the midpoint of the thermally driven B to Z transition (denoted Tz) is dependent upon the total Mg2+ concentration, with [d(1/Tz)]/(d ln [Mg]) = 0.0134 K-1. The Mg2+ concentration at the midpoint of the equilibrium B to Z transition curve, denoted [Mg]1/2, is dependent on temperature, with (d ln [Mg]1/2)/(d ln T) = -1.02. Binding of the anticancer drug daunomycin to the polymer results in a pronounced increase in Tz, dependent on the molar ratio of added drug. Tz is increased by 71.9 degrees C with nearly saturating amounts of drug bound. Transition profiles are biphasic at less than saturating amounts of bound drug. By experiments monitoring such biphasic curves at a visible wavelength sensitive to the binding of daunomycin, it may be demonstrated that no drug is released until the later phase of the transition. These results are analogous to the effects of intercalating drugs on the thermal denaturation of DNA and indicate that drug molecules preferentially interact with B-form DNA and are redistributed to regions in the B conformation over the course of the transition. Comparative studies show that some intercalators stabilize right-handed DNA more effectively than others. At similar initial binding ratios, the following order, from most to least effective, was experimentally observed: actinomycin greater than daunomycin greater than ethidium greater than proflavin.  相似文献   

5.
Y Baba  A Kagemoto 《Biopolymers》1974,13(2):339-344
The thermal effect of magnesium ions on the helix–coil transition of DNA was studied calorimetrically by a modified differential scanning calorimeter (DSC). It was found that the transition temperature of DNA depends on both the DNA and magnesium ion concentrations. The dependence of the helix–coil transition of DNA on the mole ratio of magnesium ions to DNA(P) can be classified into two groups. When this mole ratio is less than 1, magnesium ions tend to stabilize the double-helix DNA, so that the transition temperature increases linearly and the heat of transition increases significantly with increasing mole ratio. When the mole ratio is more than 1, magnesium ions tend to destabilize the double-helix DNA, so that DNA precipitates when the temperature is raised above the transition temperature. In this case, both the transition temperature and the heat of transition decrease with increasing mole ratio.  相似文献   

6.
Thermodynamics of the thermal dissociation transitions of 10 bp PNA/DNA duplexes and their corresponding DNA/DNA duplexes in 10 mM sodium phosphate buffer (pH 7.0) were determined from differential scanning calorimetry (DSC) measurements. The PNA/DNA transition temperatures ranged from 329 to 343 K and the calorimetric transition enthalpies ranged from 209 +/- 6 to 283 +/- 37 kJ mol(-1). The corresponding DNA/DNA transition temperatures were 7-20 K lower and the transition enthalpies ranged from 72 +/- 29 to 236 +/- 24 kJ mol(-1). Agreement between the DSC and UV monitored melting (UVM) determined transition enthalpies validated analyzing the UVM transitions in terms of a two-state transition model. The transitions exhibited reversibility and were analyzed in terms of an AB = A + B two-state transition model which yielded van't Hoff enthalpies in agreement with the transition enthalpies. Extrapolation of the transition enthalpies and free energy changes to ambient temperatures yielded more negative values than those determined directly from isothermal titration calorimetry measurements on formation of the duplexes. This discrepancy was attributed to thermodynamic differences in the single-strand structures at ambient and at the transition temperatures, as indicated by UVM measurements on single DNA and PNA strands.  相似文献   

7.
Smith KA  Low PS 《Plant physiology》1989,90(2):575-581
Sensitive differential scanning calorimetry was employed to investigate thylakoid membrane structure. Calorimetric scans of chloroplast membranes suspended in a low ionic strength Hepesbuffered medium revealed endothermic transitions centered at the following temperatures (°C): A (42.5), B (60.6), C1 (64.9), C2 (69.6), D (75.8), E (84.3), and F (88.9). The B transition was demonstrated by several different methods to originate from denaturation of the photosystem II reaction center complex. Evidence for this conclusion is as follows: (a) the isolated reaction center complex denatures near the temperature of the B transition; (b) inorganic phosphate destablizes the isolated reaction center complex and the B endotherm to a similar extent; (c) heat inactivation of the photosystem II-mediated 1,5-diphenylcarbazide → dichloroindophenol photoreaction occurs at the temperature of the B transition and is influenced in a manner similar to B by the presence of phosphate; (d) thermal gel analysis indicates that the 43 and 47 kilodalton polypeptides of the photosystem reaction center complex denature at the temperature of the B transition, both in the presence and absence of phosphate; (e) low temperature (77 Kelvin) fluorescence reveals that a change in photosystem II emission at 695 nanometers occurs during the B transition; and (f) ioxynil, a specific inhibitor of photosystem II, selectively stabilizes the B endotherm. With the identification of the B transition established, the origins of six of the eight major transitions of the chloroplast membrane have now been determined.  相似文献   

8.
Highly oriented calf-thymus NaDNA fibers, prepared by a wet-spinning method, were complexed with netropsin in ethanol-water and trifluoroethanol (TFE)-water solutions. The relative fiber length, L/L0, was measured at room temperature as a function of ethanol or TFE concentration to obtain information on the B-A conformational transition. The B-A transition point and transition cooperativity of the fibers were calculated. The binding of netropsin to NaDNA fibers was found to stabilize B form and to displace the B-A transition to higher ethanol concentration, as indicated by its elongational effect on the fiber bundles. An increased salt concentration was found to reduce netropsin binding. In netropsin-free ethanol solution, the dissociation of bound netropsin from the DNA fibers was observable. Pure B-NaDNA fibers were found to be more stable in TFE solution than in ethanol solution. This was interpreted as being due to a different steric factor and a larger polarity of TFE compared with ethanol, resulting in its smaller capacity to reduce the water activity and dielectric constant of the medium in the immediate vicinity of DNA fibers. Therefore, the effect of netropsin binding on the B-A transition of NaDNA fibers became less obvious in TFE solution. In another series of experiments, L/L0 was measured as a function of temperature to obtain information on the helix-coil transition, or melting, as well as the B-A transition of NaDNA and NaDNA-netropsin fibers. The melting temperature and helix-coil transition width were calculated from the melting curves. A phenomenological approach was used to describe the melting behavior of the fibers in and around the B-A transition region. The effect of netropsin on the melting of DNA fibers was attributed mainly to the stabilization of B-DNA and to a higher melting cooperativity in the B-DNA region.  相似文献   

9.
Surgically implanted activity-circuit radio transmitters (40 MHz) were used to study the seasonal activities of 21 adult (males: 23 to 35 cm f.l. and females 38 to 55 cm f.l. ) Barbus barbus (Pisces, Cyprinidae) in the River Ourthe (Southern Belgium) in 1989–1991. During the autumnal thermal transition (water temperature 9 to 10° C), the typical dusk and dawn pattern observed in summer turned to a trimodal pattern with the emergence of a diurnal phase. The auroral then crepuscular and finally diurnal activity periods progressively vanished as water temperature decreased down to the thermal limit for activity (4.0° C), when barbel entered a dormancy period. An opposite progressive shift was observed during the spring thermal transition. Daily activity budgets ranged from 0 to 720 min—on the annual cycle and were significantly ( r 2=0.686, P <0.05, d.f. = 36) dependent on water temperature and on morphodynamic unit size, while fish size was non-significant. Although the dusk and dawn rhythm pattern was consistent throughout summer, water temperature significantly ( P <0.05) interfered with the respective duration of crepuscular and auroral activities ( r 2=0.586, d.f. = 57 and r 2=0.692, d.f. = 55). The precise timing of activities was also thermal-related and the activities of small male barbel were proportionally more nocturnal than those of large female barbel (ANCOVA, F =80.61, d.f. = 31 and F =4.s5, d.f. = 23, at dusk and dawn respectively), possibly due to predation pressure on small fish. It is concluded that the seasonal variations of activity budgets, rhythm patterns and timings in B. barbus correspond to a form of time-budgeting partly to achieve thermal homeostasis in a variable environment.  相似文献   

10.
Extrusion of pectin/starch blends plasticized with glycerol   总被引:5,自引:0,他引:5  
The microstructural and thermal dynamic mechanical properties of extruded pectin/starch/glycerol (PSG) edible and biodegradable films were measured by scanning electron microscopy (SEM) and thermal dynamic mechanical analysis (TDMA). SEM revealed that the temperature profile (TP) in the extruder and the amount of water present during extrusion could be used to control the degree to which the starch was gelatinized. TDMA revealed that moisture and TP during extrusion and by inference the amount of starch gelatinization had little effect on the mechanical properties of PSG films. Furthermore, TDMA revealed that PSG films underwent a glass transition commencing at about −50°C and two other thermal transitions above room temperature. Finally, it was concluded that the properties of extruded PSG films were comparable to those cast from solution.  相似文献   

11.
Natural DNAs and some polynucleotides organised in fiber present the A--B form transition at a relative humidity (r.h.) which depends on the temperature. A shift of the midpoint of that helix--helix transition to higher r.h. values is observed when the temperature is risen. It is shown that the average number of water molecules associated to a nucleotide pair is the relevant parameter for the A-B transition and that this parameter can be given a precise value by a combination of different r.h. and temperature values. The minimum number of water molecules necessary to get the B form depends on the base composition of the DNA. It is observed that AT base pairs have a higher affinity toward water molecules than GC base pairs. In the B form there are 27 water molecules per GC nucleotide pair and 44 per AT pair. Moreover, we noted that the fraction of nucleotides in the B form as a function of the average number of water molecules associated per base pair does not depend on the temperature. The A helical form is obtained with about 11 water molecules per nucleotide pair and this number is not very sensitive to the base composition of DNA.  相似文献   

12.
The activity of Aspergillus orzae nuclease S1 on DNA has been investigated under varying pH and metal ion conditions. Nuclease S1 was found to preferentially digest denatured DNA. With native DNA as substrate the enzyme could only digest the DNA when caffeine was added to the reaction mixture. The enzyme was more active in sodium acetate buffer (pH 4.5), than in either standard saline citrate (PH 7.0) or sodium phosphate buffer (pH 6.8). Caffeine was also found to affect the thermal stability of DNA, resulting in a melting profile characterized by two transitions. The first transition (poorly defined) was below the normal melting temperature of the DNA, while the next transition was at the normal melting temperature of the DNA, while the next transition was at the normal melting temperature of the DNA. The susceptibility of caffeine-treated DNA to nuclease digestion seems to be a result of the local unwinding that caffeine causes in the regions of DNA that melt in the first transition. This selective destabilization presumably sensitizes the unwound regions to nuclease hydrolysis. The hydrolysates of the DNA digested by nuclease S1 were subjected first to ion exchange chromatography followed by paper chromatography. The results from this partial characterization of the digestion products showed that they contain mononucleotides as well as oligonucleotides of varying lengths. The base composition of the mononucleotide digests suggests that caffeine has greater preference for interacting with A-T base-pairs in DNA.  相似文献   

13.
The size of DNA involved in the interaction with a histone octamer in H1-depleted chromatin was re-examined. We compared the thermal untwisting of chromatin DNA and naked DNA using CD and electrophoretic topoisomer analysis, and found that DNA of 175 +/- 10 base pairs (bp) in length interacted with the histone core under physiological conditions. The decrease of ionic strength below 20 mM NaCl reduced this length down to 145 bp: apparently, an extra 30 bp DNA dissociated from the histone core to yield well-known 145-bp core particle. Histone cores partly dissociate within the temperature range of 25 to 40 degrees C. Quantitative analysis of histone thermal dissociation from DNA shows that the size of DNA protected against thermal untwisting would be significantly overestimated if this effect is neglected. The results presented in this paper also suggest that the dimers (H2A, H2B) act as a lock, which prevents transmission of conformational alterations from a linker to nucleosome core DNA. The histone core dissociation as well as (H2A, H2B) dimer displacement are discussed in the light of their possible participation in the eukaryotic genome activation.  相似文献   

14.
Derivative denaturation profiles of calf thymus DNA in the presence of copper(II) ions have been directly obtained from high resolution thermal denaturation profiles recorded in an isoabsorbance wavelength of the AT and GC hyperchromic spectra. The analysis of the very sensitive profiles provides further evidence that the melting temperature (Tm) of DNA decreases in the presence of stoichiometric ratio of copper(II) ions to nucleotide. Also, evidence is given of peculiar behaviour at higher temperatures where a new melting transition is observed. This phenomenon could be in line with the presence of bridging of DNA single strands by copper ions which are disrupted when the temperature is raised.  相似文献   

15.
The helix-to-coil denaturation transition in DNA has been investigated in mixed solvents at high concentration using ultraviolet light absorption spectroscopy and small-angle neutron scattering. Two solvents have been used: water and ethylene glycol. The "melting" transition temperature was found to be 94 degrees C for 4% mass fraction DNA/d-water and 38 degrees C for 4% mass fraction DNA/d-ethylene glycol. The DNA melting transition temperature was found to vary linearly with the solvent fraction in the mixed solvents case. Deuterated solvents (d-water and d-ethylene glycol) were used to enhance the small-angle neutron scattering signal and 0.1M NaCl (or 0.0058 g/g mass fraction) salt concentration was added to screen charge interactions in all cases. DNA structural information was obtained by small-angle neutron scattering, including a correlation length characteristic of the inter-distance between the hydrogen-containing (desoxyribose sugar-amine base) groups. This correlation length was found to increase from 8.5 to 12.3 A across the melting transition. Ethylene glycol and water mixed solvents were found to mix randomly in the solvation region in the helix phase, but nonideal solvent mixing was found in the melted coil phase. In the coil phase, solvent mixtures are more effective solvating agents than either of the individual solvents. Once melted, DNA coils behave like swollen water-soluble synthetic polymer chains.  相似文献   

16.
B Goins  E Freire 《Biochemistry》1988,27(6):2046-2052
The thermal stability of cholera toxin free in solution and in association with its cell-surface receptor ganglioside GM1 has been studied by using high-sensitivity differential scanning calorimetry and differential solubility thermal gel analysis. In the absence of ganglioside GM1, cholera toxin undergoes two distinct thermally induced transitions centered at 51 and 74 degrees C, respectively. The low-temperature transition has been assigned to the irreversible thermal denaturation of the active A subunit. The second transition has been assigned to the reversible unfolding of the B subunit pentamer. The isolated B subunit pentamer exhibits a single transition also centered at 74 degrees C, suggesting that the attachment of the A subunit does not contribute to the stability of the pentamer. In the intact toxin, the A subunit dissociates from the B subunit pentamer at a temperature that coincides with the onset of the B subunit thermal unfolding. In aqueous solution, the denatured A subunit precipitates after dissociation from the B subunit pentamer. This phenomenon can be detected calorimetrically by the appearance of an exothermic heat effect. In the presence of ganglioside GM1, the B subunit is greatly stabilized as indicated by an increase of 20 degrees C in the transition temperature. In addition, ganglioside GM1 greatly enhances the cooperative interactions between B subunits. In the absence of ganglioside, each monomer within the B pentamer unfolds in an independent fashion whereas the fully ganglioside-bound pentamer behaves as a single cooperative unit. On the contrary, the thermotropic behavior of the A subunit is only slightly affected by the presence of increasing concentrations of ganglioside GM1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The effect of alpha-particle radiation on the thermal stability and size of calf thymus DNA molecules in deoxygenated aqueous solutions was investigated by thermal transition spectrophotometry, pulsed-field gel electrophoresis, and standard agarose gel electrophoresis. The thermal transition of DNA from helix to coil was studied through analysis of the UV A(260) absorbance. The results obtained for alpha particles of mean LET of 128 keV microm(-1) reveal a dual dose response: a tendency for thermal stability of the DNA helix at "low" doses, followed by an increasing instability at higher doses. The same phenomenon was observed for the mean molecular weight of DNA molecules exposed to alpha particles. The results reported here for alpha particles in the low-dose region of 0-16 Gy are consistent with our previous hypothesis of inter- and intramolecular interactions of a covalent character in gamma-irradiated DNA molecules in the dose region of 0-4 Gy.  相似文献   

18.
Tau could protect DNA double helix structure   总被引:5,自引:0,他引:5  
The hyperchromic effect has been used to detect the effect of tau on the transition of double-stranded DNA to single-stranded DNA. It was shown that tau increased the melting temperature of calf thymus DNA from 67 to 81 degrees C and that of plasmid from 75 to 85 degrees C. Kinetically, rates of increase in absorbance at 260 nm of DNA incubated with tau were markedly slower than those of DNA and DNA/bovine serum albumin used as controls during thermal denaturation. In contrast, rates of decrease in the DNA absorbance with tau were faster than those of controls when samples were immediately transferred from thermal conditions to room temperature. It revealed that tau prevented DNA from thermal denaturation, and improved renaturation of DNA. Circular dichroic spectra results indicated that there were little detectable conformational changes in DNA double helix when tau was added. Furthermore, tau showed its ability to protect DNA from hydroxyl radical (.OH) attacking in vitro, implying that tau functions as a DNA-protecting molecule to the radical.  相似文献   

19.
The idea of modifying DNA with bisulfite has paved the way for a variety of polymerase chain reaction (PCR) methods for accurately mapping 5-methylcytosine at specific genes. Bisulfite selectively deaminates cytosine to uracil under conditions where 5-methylcytosine remains unreacted. Following conventional PCR amplification of bisulfite-treated DNA, original cytosines appear as thymine while 5-methylcytosines appear as cytosine. Because the relative thermostability of a DNA duplex increases with increasing content of G:C base pairs, PCR products originating from DNA templates with different contents of 5-methylcytosine differ in melting temperature, i.e., the temperature required to convert the double helix into random coils. We describe two methods that resolve differentially methylated DNA sequences on the basis of differences in melting temperature. The first method integrates PCR amplification of bisulfite-treated DNA and subsequent melting analysis by using a thermal cycler coupled with a fluorometer. By including in the reaction a PCR-compatible, fluorescent dye that specifically binds to double-stranded DNA, the melting properties of the PCR product can be examined directly in the PCR tube by continuous fluorescence monitoring during a temperature transition. The second method relies on resolution of alleles with different 5-methylcytosine contents by analysis of PCR products in a polyacrylamide gel containing a gradient of chemical denaturants. Optimal resolution of differences in melting temperature is achieved by a special design of PCR primers. Both methods allow resolution of "heterogeneous" methylation, i.e., the situation where the content and distribution of 5-methylcytosine in a target gene differ between different molecules in the same sample.  相似文献   

20.
Rapid cycle DNA amplification: time and temperature optimization   总被引:21,自引:0,他引:21  
Rapid temperature cycling with hot air allows rigorous optimization of the times and temperatures required for each stage of the polymerase chain reaction. A thermal cycler based on recirculating hot air was used for rapid temperature control of 10-microliters samples in thin glass capillary tubes with the sample temperature monitored by a miniature thermocouple probe. The temperatures and times of denaturation, annealing and elongation were individually optimized for the amplification of a 536-base pair beta-globin fragment from human genomic DNA. Optimal denaturation at 92 degrees-94 degrees C occurred in less than one second; yield decreased with denaturation times greater than 30 seconds. Annealing for one second or less at 54 degrees-56 degrees C gave the best product specificity and yield. Non-specific amplification was minimized with a rapid denaturation to annealing temperature transition (9 seconds) as compared to a longer transition (25 seconds). An elongation temperature of 75 degrees-79 degrees C gave the greatest yield and increased yields were obtained with longer elongation times. Product specificity was improved with rapid air cycling when compared to slower conventional heat block cycling. Rapid thermal control of the temperature-dependent reactions in DNA amplification can improve product specificity significantly while decreasing the required amplification time by an order of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号