共查询到20条相似文献,搜索用时 0 毫秒
1.
Guerrero R Vernia S Sanz R Abreu-Rodríguez I Almaraz C García-Hoyos M Michelucci R Tassinari CA Riguzzi P Nobile C Sanz P Serratosa JM Gómez-Garre P 《PloS one》2011,6(6):e21294
Lafora disease is an autosomal recessive form of progressive myoclonus epilepsy with no effective therapy. Although the outcome is always unfavorable, onset of symptoms and progression of the disease may vary. We aimed to identify modifier genes that may contribute to the clinical course of Lafora disease patients with EPM2A or EPM2B mutations. We established a list of 43 genes coding for proteins related to laforin/malin function and/or glycogen metabolism and tested common polymorphisms for possible associations with phenotypic differences using a collection of Lafora disease families. Genotype and haplotype analysis showed that PPP1R3C may be associated with a slow progression of the disease. The PPP1R3C gene encodes protein targeting to glycogen (PTG). Glycogen targeting subunits play a major role in recruiting type 1 protein phosphatase (PP1) to glycogen-enriched cell compartments and in increasing the specific activity of PP1 toward specific glycogenic substrates (glycogen synthase and glycogen phosphorylase). Here, we report a new mutation (c.746A>G, N249S) in the PPP1R3C gene that results in a decreased capacity to induce glycogen synthesis and a reduced interaction with glycogen phosphorylase and laforin, supporting a key role of this mutation in the glycogenic activity of PTG. This variant was found in one of two affected siblings of a Lafora disease family characterized by a remarkable mild course. Our findings suggest that variations in PTG may condition the course of Lafora disease and establish PTG as a potential target for pharmacogenetic and therapeutic approaches. 相似文献
2.
The carbohydrate-binding domain of Lafora disease protein targets Lafora polyglucosan bodies 总被引:5,自引:0,他引:5
Ganesh S Tsurutani N Suzuki T Hoshii Y Ishihara T Delgado-Escueta AV Yamakawa K 《Biochemical and biophysical research communications》2004,313(4):1101-1109
Lafora's disease (LD) is an autosomal recessive and fatal form of epilepsy with onset in late childhood or adolescence. One of the characteristic features of LD pathology is the presence of periodic acid-Schiff (PAS) positive Lafora inclusion bodies. Lafora bodies are present primarily in neurons, but they have also been found in other organs. Histochemical and biochemical studies have indicated that Lafora bodies are composed mainly of polysaccharides. The LD gene, EPM2A, encodes a 331 amino acid long protein named laforin that contains an N-terminal carbohydrate-binding domain (CBD) and a C-terminal dual-specificity phosphatase domain (DSPD). Here we demonstrate that the CBD of laforin targets the protein to Lafora inclusion bodies and this property could be evolutionarily conserved. We also tested in vitro the effects of five LD missense mutations on laforin's affinity to Lafora body. While the missense mutant W32G failed to bind to purified Lafora body, four other mutants (S25P, E28L, F88L, and R108C) did not show any effect on the binding affinity. Based on these observations we propose the existence of a laforin-mediated glycogen metabolic pathway regulating the disposal of pathogenic polyglucosan inclusions. This is the first report demonstrating a direct association between the LD gene product and the disease-defining storage product, the Lafora bodies. 相似文献
3.
4.
5.
Albumin depletion of human plasma also removes low abundance proteins including the cytokines 总被引:7,自引:0,他引:7
The use of proteomics for efficient, accurate, and complete analysis of clinical samples poses a variety of technical challenges. The presence of higher abundance proteins in the plasma, such as albumin, may mask the detection of lower abundance proteins such as the cytokines. Methods have been proposed to deplete the sample of these higher abundance proteins to facilitate detection of those with lower abundance. In this study, a commercially available albumin depletion kit was used to determine if removal of albumin would measurably reduce detection of lower abundance cytokine proteins in human plasma. The Montage Albumin Deplete Kit (Millipore) was used to deplete albumin from LPS-stimulated whole blood from 15 normal human donors. Albumin depletion was measured using the BCG reagent and SDS-PAGE, and cytokine recovery was determined by a microassay immunoassay that measures both pro- and anti-inflammatory cytokines. Average albumin depletion from the samples was 72%. However, several cytokines were also significantly reduced when the albumin was removed from the plasma. Additionally, there was a variable reduction in cytokine recovery from a known mixture of cytokines in a minimal amount of plasma that were loaded onto the columns. These data demonstrate that there may be a non-specific loss of cytokines following albumin depletion, which may confound subsequent proteomic analysis. 相似文献
6.
Tiberia E Turnbull J Wang T Ruggieri A Zhao XC Pencea N Israelian J Wang Y Ackerley CA Wang P Liu Y Minassian BA 《The Journal of biological chemistry》2012,287(30):25650-25659
The solubility of glycogen, essential to its metabolism, is a property of its shape, a sphere generated through extensive branching during synthesis. Lafora disease (LD) is a severe teenage-onset neurodegenerative epilepsy and results from multiorgan accumulations, termed Lafora bodies (LB), of abnormally structured aggregation-prone and digestion-resistant glycogen. LD is caused by loss-of-function mutations in the EPM2A or EPM2B gene, encoding the interacting laforin phosphatase and malin E3 ubiquitin ligase enzymes, respectively. The substrate and function of malin are unknown; an early counterintuitive observation in cell culture experiments that it targets laforin to proteasomal degradation was not pursued until now. The substrate and function of laforin have recently been elucidated. Laforin dephosphorylates glycogen during synthesis, without which phosphate ions interfere with and distort glycogen construction, leading to LB. We hypothesized that laforin in excess or not removed following its action on glycogen also interferes with glycogen formation. We show in malin-deficient mice that the absence of malin results in massively increased laforin preceding the appearance of LB and that laforin gradually accumulates in glycogen, which corresponds to progressive LB generation. We show that increasing the amounts of laforin in cell culture causes LB formation and that this occurs only with glycogen binding-competent laforin. In summary, malin deficiency causes increased laforin, increased laforin binding to glycogen, and LB formation. Furthermore, increased levels of laforin, when it can bind glycogen, causes LB. We conclude that malin functions to regulate laforin and that malin deficiency at least in part causes LB and LD through increased laforin binding to glycogen. 相似文献
7.
Tagliabracci VS Heiss C Karthik C Contreras CJ Glushka J Ishihara M Azadi P Hurley TD DePaoli-Roach AA Roach PJ 《Cell metabolism》2011,13(3):274-282
Glycogen is a branched polymer of glucose that serves as an energy store. Phosphate, a trace constituent of glycogen, has profound effects on glycogen structure, and phosphate hyperaccumulation is linked to Lafora disease, a fatal progressive myoclonus epilepsy that can be caused by mutations of laforin, a glycogen phosphatase. However, little is known about the metabolism of glycogen phosphate. We demonstrate here that the biosynthetic enzyme glycogen synthase, which normally adds glucose residues to glycogen, is capable of incorporating the β-phosphate of its substrate UDP-glucose at a rate of one phosphate per approximately 10,000 glucoses, in what may be considered a catalytic error. We show that the phosphate in glycogen is present as C2 and C3 phosphomonoesters. Since hyperphosphorylation of glycogen causes Lafora disease, phosphate removal by laforin may thus be considered a repair or damage control mechanism. 相似文献
8.
Solís MV 《Revista de biología tropical》2000,48(2-3):703-706
The Lafora disease is an uncommon genetic condition. Four cases (two families) were detected in Zarcero, a small town in Costa Rica (population under 2000). They belonged to two separate consanguineous marriages but both families had common ancestors. The diagnosis of Lafora disease was confirmed by liver biopsy in one of the patients. The ages of onset were 13, 14, 16 and 17 years. Patients died after four, nine, six and five years of severe progressive physical and mental deterioration, respectively. The gene for Lafora disease arrive to Zarcero from one of its founders. There are no other cases reported from Costa Rica: this is an example of genetic drift, or more specifically, founder effect. 相似文献
9.
Lafora progressive myoclonus epilepsy: narrowing the chromosome 6q24 locus by recombinations and homozygosities. 总被引:4,自引:0,他引:4 下载免费PDF全文
J Sainz B A Minassian J M Serratosa M N Gee L M Sakamoto R Iranmanesh S Bohlega R J Baumann S Ryan R S Sparkes A V Delgado-Escueta 《American journal of human genetics》1997,61(5):1205-1209
10.
BACKGROUND: Extended wakefulness disrupts acquisition of short-term memories in mammals. However, the underlying molecular mechanisms triggered by extended waking and restored by sleep are unknown. Moreover, the neuronal circuits that depend on sleep for optimal learning remain unidentified. RESULTS: Learning was evaluated with aversive phototaxic suppression. In this task, flies learn to avoid light that is paired with an aversive stimulus (quinine-humidity). We demonstrate extensive homology in sleep-deprivation-induced learning impairment between flies and humans. Both 6 hr and 12 hr of sleep deprivation are sufficient to impair learning in Canton-S (Cs) flies. Moreover, learning is impaired at the end of the normal waking day in direct correlation with time spent awake. Mechanistic studies indicate that this task requires intact mushroom bodies (MBs) and requires the dopamine D1-like receptor (dDA1). Importantly, sleep-deprivation-induced learning impairments could be rescued by targeted gene expression of the dDA1 receptor to the MBs. CONCLUSIONS: These data provide direct evidence that extended wakefulness disrupts learning in Drosophila. These results demonstrate that it is possible to prevent the effects of sleep deprivation by targeting a single neuronal structure and identify cellular and molecular targets adversely affected by extended waking in a genetically tractable model organism. 相似文献
11.
The EPM2A gene, defective in the fatal neurodegenerative disorder Lafora disease (LD), is known to encode two distinct proteins by differential splicing; a phosphatase active cytoplasmic isoform and a phosphatase inactive nuclear isoform. We report here the identification of three novel EPM2A splice variants with potential to code for five distinct proteins in alternate reading frames. These novel isoforms, when ectopically expressed in cell lines, show distinct subcellular localization, interact with and serve as substrates of malin ubiquitin ligase-the second protein defective in LD. Two phosphatase active isoforms interact to form a heterodimeric complex that is inactive as a phosphatase in vitro, suggesting an antagonistic function for laforin isoforms if expressed endogenously in significant amounts in human tissues. Thus alternative splicing could possibly be one of the mechanisms by which EPM2A may regulate the cellular functions of the proteins it codes for. 相似文献
12.
Wang W Lohi H Skurat AV DePaoli-Roach AA Minassian BA Roach PJ 《Archives of biochemistry and biophysics》2007,457(2):264-269
Laforin, encoded by the EPM2A gene, by sequence is a member of the dual specificity protein phosphatase family. Mutations in the EPM2A gene account for around half of the cases of Lafora disease, an autosomal recessive neurodegenerative disorder, characterized by progressive myoclonus epilepsy. The hallmark of the disease is the presence of Lafora bodies, which contain polyglucosan, a poorly branched form of glycogen, in neurons, muscle and other tissues. Glycogen metabolizing enzymes were analyzed in a transgenic mouse over-expressing a dominant negative form of laforin that accumulates Lafora bodies in several tissues. Skeletal muscle glycogen was increased 2-fold as was the total glycogen synthase protein. However, the -/+glucose-6-P activity of glycogen synthase was decreased from 0.29 to 0.16. Branching enzyme activity was increased by 30%. Glycogen phosphorylase activity was unchanged. In whole brain, no differences in glycogen synthase or branching enzyme activities were found. Although there were significant differences in enzyme activities in muscle, the results do not support the hypothesis that Lafora body formation is caused by a major change in the balance between glycogen elongation and branching activities. 相似文献
13.
Tagliabracci VS Girard JM Segvich D Meyer C Turnbull J Zhao X Minassian BA Depaoli-Roach AA Roach PJ 《The Journal of biological chemistry》2008,283(49):33816-33825
Lafora disease is a progressive myoclonus epilepsy with onset in the teenage years followed by neurodegeneration and death within 10 years. A characteristic is the widespread formation of poorly branched, insoluble glycogen-like polymers (polyglucosan) known as Lafora bodies, which accumulate in neurons, muscle, liver, and other tissues. Approximately half of the cases of Lafora disease result from mutations in the EPM2A gene, which encodes laforin, a member of the dual specificity protein phosphatase family that is able to release the small amount of covalent phosphate normally present in glycogen. In studies of Epm2a(-/-) mice that lack laforin, we observed a progressive change in the properties and structure of glycogen that paralleled the formation of Lafora bodies. At three months, glycogen metabolism remained essentially normal, even though the phosphorylation of glycogen has increased 4-fold and causes altered physical properties of the polysaccharide. By 9 months, the glycogen has overaccumulated by 3-fold, has become somewhat more phosphorylated, but, more notably, is now poorly branched, is insoluble in water, and has acquired an abnormal morphology visible by electron microscopy. These glycogen molecules have a tendency to aggregate and can be recovered in the pellet after low speed centrifugation of tissue extracts. The aggregation requires the phosphorylation of glycogen. The aggregrated glycogen sequesters glycogen synthase but not other glycogen metabolizing enzymes. We propose that laforin functions to suppress excessive glycogen phosphorylation and is an essential component of the metabolism of normally structured glycogen. 相似文献
14.
Thioredoxin 1 (Trx1) is a key regulator of cellular redox balance and participates in cellular signaling events. Recent evidence from yeast indicates that members of the Trx family interact with the 20S proteasome, indicating redox regulation of proteasome activity. However, there is little information about the interrelationship of Trx proteins with the proteasome system in mammalian cells, especially in the nucleus. Here, we have investigated this relationship under various cellular conditions in mammalian cells. We show that Trx1 levels and its subcellular localization (cytosol, endoplasmic reticulum, and nucleus) depend on proteasome activity during the cell cycle in NIH3T3 fibroblasts and under stress conditions, when proteasomes are inhibited. In addition, we also studied in these cells how the main cellular antioxidant systems are stimulated when proteasome activity is inhibited. Finally, we describe a reduction in Trx1 levels in Lafora disease fibroblasts and demonstrate that the nuclear colocalization of Trx1 with 20S proteasomes in laforin-deficient cells is altered compared with control cells. Our results indicate a close relationship between Trx1 and the 20S nuclear proteasome and give a new perspective to the study of diseases or physiopathological conditions in which defects in the proteasome system are associated with oxidative stress. 相似文献
15.
Knecht E Criado-García O Aguado C Gayarre J Duran-Trio L Garcia-Cabrero AM Vernia S San Millán B Heredia M Romá-Mateo C Mouron S Juana-López L Domínguez M Navarro C Serratosa JM Sanchez M Sanz P Bovolenta P Rodríguez de Córdoba S 《Autophagy》2012,8(4):701-703
Lafora disease (LD), a fatal neurodegenerative disorder characterized by intracellular inclusions called Lafora bodies (LBs), is caused by recessive loss-of-function mutations in the genes encoding either laforin or malin. Previous studies suggested a role of these proteins in regulating glycogen biosynthesis, in glycogen dephosphorylation and in the modulation of intracellular proteolytic systems. However, the contribution of each of these processes to LD pathogenesis is unclear. Here we review our recent finding that dysfunction of autophagy is a common feature of both laforin- and malin-deficient mice, preceding other pathological manifestations. We propose that autophagy plays a primary role in LD pathogenesis and is a potential target for its treatment. 相似文献
16.
《Autophagy》2013,9(4):701-703
Lafora disease (LD), a fatal neurodegenerative disorder characterized by intracellular inclusions called Lafora bodies (LBs), is caused by recessive loss-of-function mutations in the genes encoding either laforin or malin. Previous studies suggested a role of these proteins in regulating glycogen biosynthesis, in glycogen dephosphorylation and in the modulation of intracellular proteolytic systems. However, the contribution of each of these processes to LD pathogenesis is unclear. Here we review our recent finding that dysfunction of autophagy is a common feature of both laforin- and malin-deficient mice, preceding other pathological manifestations. We propose that autophagy plays a primary role in LD pathogenesis and is a potential target for its treatment. 相似文献
17.
18.
Lafora disease is a progressive myoclonus epilepsy with an early fatal issue. Two genes were identified thus far, the mutations of which cause the disease. The first one, EPM2A, encodes the consensus sequence of a protein tyrosine phosphatase. Its product, laforin, is the object of the present work. We analysed in detail the amino acid sequence of this protein. This suggested, as also observed by others, that it could present two domains, a carbohydrate-binding domain (CBM20, known as a starch-binding domain) and the catalytic domain of a dual-specificity protein phosphatase. We produced the enzyme as two different GST-fused proteins and as an N-terminally His-tagged protein. Differences in solubility were observed between the constructs. Moreover, the N-terminal carbohydrate-binding domain contains a thrombin cleavage site, which is hidden in the simplest GST-fusion protein we produced, but was accessible after introducing a five-residue linker between the engineered cleavage site and the enzyme N-terminus. The two types of constructs hydrolyse pNPP and OMFP with kinetic parameters consistent with those of a dual-specificity phosphatase. We show in addition that the protein not only binds glycogen, but also starch, amylose and cyclodextrin. Neither binding of glycogen nor of beta-cyclodextrin appreciably affects the phosphatase activity. These results suggest that the role of the N-terminal domain is rather that of targeting the protein in the cell, probably to glycogen and the protein complexes attached to it, rather than that of directly modulating the catalytic activity. 相似文献
19.
Recent findings shed light on the physiological function of enigmatic structures called Hirano bodies, which were first described more than 30 years ago. 相似文献
20.
Deficiency of the alpha subunit of succinate-coenzyme A ligase causes fatal infantile lactic acidosis with mitochondrial DNA depletion 下载免费PDF全文
Ostergaard E Christensen E Kristensen E Mogensen B Duno M Shoubridge EA Wibrand F 《American journal of human genetics》2007,81(2):383-387
Fatal infantile lactic acidosis is a severe metabolic disorder characterized by the onset of lactic acidosis within the 1st d of life and early death. We found a combined respiratory-chain enzyme deficiency associated with mitochondrial DNA (mtDNA) depletion in a small consanguineous family with this disorder. To identify the disease-causing gene, we performed single-nucleotide polymorphism homozygosity mapping and found homozygous regions on four chromosomes. DNA sequencing revealed a homozygous 2-bp deletion in SUCLG1, a gene that encodes the alpha subunit of the Krebs-cycle enzyme succinate-coenzyme A ligase (SUCL). The mtDNA depletion is likely explained by decreased mitochondrial nucleoside diphosphate kinase (NDPK) activity resulting from the inability of NDPK to form a complex with SUCL. 相似文献