共查询到20条相似文献,搜索用时 9 毫秒
1.
Three-way DNA junctions can adopt several different conformers, which differ in the coaxial stacking of the arms. These structural variants are often dominated by one conformer, which is determined by the DNA sequence. In this study we have compared several three-way DNA junctions in order to assess how the arrangement of bases around the branch point affects the conformer distribution. The results show that rearranging the different arms, while retaining their base sequences, can affect the conformer distribution. In some instances this generates a structure that appears to contain parallel coaxially stacked helices rather than the usual anti-parallel arrangement. Although the conformer equilibrium can be affected by the order of purines and pyrimidines around the branch point, this is not sufficient to predict the conformer distribution. We find that the folding of three-way junctions can be separated into two groups of dinucleotide steps. These two groups show distinctive stacking properties in B-DNA, suggesting there is a correlation between B-DNA stacking and coaxial stacking in DNA junctions. 相似文献
2.
Topology of three-way junctions in folded RNAs 总被引:7,自引:2,他引:7
The three-way junctions contained in X-ray structures of folded RNAs have been compiled and analyzed. Three-way junctions with two helices approximately coaxially stacked can be divided into three main families depending on the relative lengths of the segments linking the three Watson-Crick helices. Each family has topological characteristics with some conservation in the non-Watson-Crick pairs within the linking segments as well as in the types of contacts between the segments and the helices. The most populated family presents tertiary interactions between two helices as well as extensive shallow/minor groove contacts between a linking segment and the third helix. On the basis of the lengths of the linking segments, some guidelines could be deduced for choosing a topology for a three-way junction on the basis of a secondary structure. Examples and prediction bas'ed on those rules are discussed. 相似文献
3.
DNA aptamers that bind to cholic acid were previously isolated by an in vitro selection method. Secondary structural prediction and deletion-mutant experiments suggested that the cholic-acid binding regions of 19 sequenced clones could form three-way-junction structures. In this article, the secondary structures of the sequenced clones and the structural requirements for binding to cholic acid were evaluated. A course of mutational-analysis and chemical-modification experiments provided strong support for the predicted secondary structure and also indicated that the binding site is located at the branching point of the three-way junction. Sequence analysis revealed that the sequences of the three base pairs flanking the junction of the three stems are highly conserved among selected clones. The evaluation of the relative binding of several bile acids and structurally related steroids with the aptamer was also carried out. The results revealed a broad range of selectivity and preference for hydrophobic steroids rather than for cholic acid upon binding, indicating that the binding is driven by a hydrophobic interaction. The experimental results reported here allowed us to propose a structural model of a binding site formed by three Watson–Crick base pairs. 相似文献
4.
Recently, hammerhead ribozyme (HHR) motifs have been utilized as powerful tools for gene regulation. Here we present a novel design of expanded full-length HHRs that allows attaching additional functionalities to the ribozyme. These features allowed us to construct a very efficient artificial riboswitch in bacteria. Following the design of naturally occurring three-way junctions we attached an additional helix (IV) to stem I of the HHR while maintaining very fast cleavage rates. We found that the cleavage activity strongly depends on the exact design of the junction site. Incorporation of the novel ribozyme scaffold into a bacterial mRNA allowed the control of gene expression mediated by autocatalytic cleavage of the ribozyme. Appending an aptamer to the newly introduced stem enabled the identification of very powerful theophylline-inducible RNA switches by in vivo screening. Further investigations revealed a cascading system operating beyond the ribozyme-dependent mechanism. In conclusion, we extended the hammerhead toolbox for synthetic biology applications by providing an additional position for the attachment of regulatory modules for in vivo control of gene expression. 相似文献
5.
We have studied a series of three-way DNA junctions containing unpaired bases on one strand at the branch-point of the junctions. The global conformation of the arms of the junctions has been analysed by means of polyacrylamide gel electrophoresis, as a function of conditions. We find that in the absence of added metal ions, all the results for all the junctions can be accounted for by extended structures, with the largest angle being that between the arms defined by the strand containing the extra bases. Upon addition of magnesium (II) or hexamine cobalt (III) ions, the electrophoretic patterns change markedly, indicative of ion-dependent folding transitions for some of the junctions. For the junction lacking the unpaired bases, the three inter-arm angles appear to be quite similar, suggesting an extended structure. However, the addition of unpaired bases permits the three-way junction to adopt a significantly different structure, in which one angle becomes smaller than the other two. These species also exhibit marked protection against osmium addition to thymine bases at the point of strand exchange. These results are consistent with a model in which two of the helical arms undergo coaxial stacking in the presence of magnesium ions, with the third arm defining an angle that depends upon the number of unpaired bases. 相似文献
6.
Riboswitches are highly structured cis-acting elements located in the 5'-untranslated region of messenger RNAs that directly bind small molecule metabolites to regulate gene expression. Structural and biochemical studies have revealed riboswitches experience significant ligand-dependent conformational changes that are coupled to regulation. To monitor the coupling of ligand binding and RNA folding within the aptamer domain of the purine riboswitch, we have chemically probed the RNA with N-methylisatoic anhydride (NMIA) over a broad temperature range. Analysis of the temperature-dependent reactivity of the RNA in the presence and absence of hypoxanthine reveals that a limited set of nucleotides within the binding pocket change their conformation in response to ligand binding. Our data demonstrate that a distal loop-loop interaction serves to restrict the conformational freedom of a significant portion of the three-way junction, thereby promoting ligand binding under physiological conditions. 相似文献
7.
Molinari M 《Nature chemical biology》2007,3(6):313-320
The endoplasmic reticulum (ER) is the site of folding for proteins that are resident in the ER or that are destined for the Golgi, endosomes, lysosomes, the plasma membrane, or secretion. Cotranslational addition of preassembled glucose(3)-mannose(9)-N-acetylglucosamine(2) core oligosaccharides (N-glycosylation) is a common event for polypeptides synthesized in this compartment. Protein-bound oligosaccharides are exposed to several ER glycanases that sequentially remove terminal glucose or mannose residues. Their activity must be tightly regulated because the N-glycan composition determines whether the associated protein is subjected to folding attempts in the ER lumen or whether it is retrotranslocated into the cytosol and degraded. 相似文献
8.
Stability and structure of three-way DNA junctions containing unpaired nucleotides. 总被引:4,自引:6,他引:4 下载免费PDF全文
Non-paired nucleotides stabilize the formation of three-way helical DNA junctions. Two or more unpaired nucleotides located in the junction region enable oligomers ten to fifteen nucleotides long to assemble, forming conformationally homogeneous junctions, as judged by native gel electrophoresis. The unpaired bases can be present on the same strand or on two different strands. Up to five extra bases on one strand have been tested and found to produce stable junctions. The formation of stable structures is favored by the presence of a divalent cation such as magnesium and by high monovalent salt concentration. The order-disorder transition of representative three-way junctions was monitored optically in the ultraviolet and analyzed to quantify thermodynamically the stabilization provided by unpaired bases in the junction region. We report the first measurements of the thermodynamics of adding an unpaired nucleotide to a nucleic acid three-way junction. We find that delta delta G degrees (37 degrees C) = +0.5 kcal/mol for increasing the number of unpaired adenosines from two to three. Three-way junctions having reporter arms 40 base-pairs long were also prepared. Each of the three reporter arms contained a unique restriction site 15 base-pairs from the junction. Asymmetric complexes produced by selectively cleaving each arm were analyzed on native gels. Cleavage of the double helical arm opposite the strand having the two extra adenosines resulted in a complex that migrated more slowly than complexes produced by cleavage at either of the other two arms. It is likely that the strand containing the unpaired adenosines is kinked at an acute angle, forming a Y-shaped, rather than a T-shaped junction. 相似文献
9.
Cohen A Bocobza S Veksler I Gabdank I Barash D Aharoni A Shapira M Kedem K 《In silico biology》2008,8(2):105-120
Three-way junctions in folded RNAs have been investigated both experimentally and computationally. The interest in their analysis stems from the fact that they have significantly been found to possess a functional role. In recent work, three-way junctions have been categorized into families depending on the relative lengths of the segments linking the three helices. Here, based on ideas originating from computational geometry, an algorithm is proposed for detecting three-way junctions in data sets of genes that are related to a metabolic pathway of interest. In its current implementation, the algorithm relies on a moving window that performs energy minimization folding predictions, and is demonstrated on a set of genes that are involved in purine metabolism in plants. The pattern matching algorithm can be extended to other organisms and other metabolic cycles of interest in which three-way junctions have been or will be discovered to play an important role. In the test case presented here with, the computational prediction of a three-way junction in Arabidopsis that was speculated to have an interesting functional role is verified experimentally. 相似文献
10.
Allele-specific silencing using small interfering RNAs targeting heterozygous single-nucleotide polymorphisms (SNPs) is a promising therapy for human trinucleotide repeat diseases such as Huntington's disease. Linking SNP identities to the two HTT alleles, normal and disease-causing, is a prerequisite for allele-specific RNA interference. Here we describe a method, SNP linkage by circularization (SLiC), to identify linkage between CAG repeat length and nucleotide identity of heterozygous SNPs using Huntington's disease patient peripheral blood samples. 相似文献
11.
Shlyakhtenko LS Potaman VN Sinden RR Gall AA Lyubchenko YL 《Nucleic acids research》2000,28(18):3472-3477
We have used atomic force microscopy (AFM) to study the conformation of three-way DNA junctions, intermediates of DNA replication and recombination. Immobile three-way junctions with one hairpin arm (50, 27, 18 and 7 bp long) and two relatively long linear arms were obtained by annealing two partially homologous restriction fragments. Fragments containing inverted repeats of specific length formed hairpins after denaturation. Three-way junctions were obtained by annealing one strand of a fragment from a parental plasmid with one strand of an inverted repeat-containing fragment, purified from gels, and examined by AFM. The molecules are clearly seen as three-armed molecules with one short arm and two flexible long arms. The AFM analysis revealed two important features of three-way DNA junctions. First, three-way junctions are very dynamic structures. This conclusion is supported by a high variability of the inter-arm angle detected on dried samples. The mobility of the junctions was observed directly by imaging the samples in liquid (AFM in situ). Second, measurements of the angle between the arms led to the conclusion that three-way junctions are not flat, but rather pyramid-like. Non-flatness of the junction should be taken into account in analysis of the AFM data. 相似文献
12.
Subtilisin E (SbtE) is a member of the ubiquitous superfamily of serine proteases called subtilases and serves as a model for understanding propeptide-mediated protein folding mechanisms. Unlike most proteins that adopt thermodynamically stable conformations, the native state of SbtE is trapped into a kinetically stable conformation. While kinetic stability offers distinct functional advantages to the native state, the constraints that dictate the selection between kinetic and thermodynamic folding and stability remain unknown. Using highly conserved subtilases, we demonstrate that adaptive evolution of sequence dictates selection of folding pathways. Intracellular and extracellular serine proteases (ISPs and ESPs, respectively) constitute two subfamilies within the family of subtilases that have highly conserved sequences, structures, and catalytic activities. Our studies on the folding pathways of subtilisin E (SbtE), an ESP, and its homologue intracellular serine protease 1 (ISP1), an ISP, show that although topology, contact order, and hydrophobicity that drive protein folding reactions are conserved, ISP1 and SbtE fold through significantly different pathways and kinetics. While SbtE absolutely requires the propeptide to fold into a kinetically trapped conformer, ISP1 folds to a thermodynamically stable state more than 1 million times faster and independent of a propeptide. Furthermore, kinetics establish that ISP1 and SbtE fold through different intermediate states. An evolutionary analysis of folding constraints in subtilases suggests that observed differences in folding pathways may be mediated through positive selection of specific residues that map mostly onto the protein surface. Together, our results demonstrate that closely related subtilases can fold through distinct pathways and mechanisms, and suggest that fine sequence details can dictate the choice between kinetic and thermodynamic folding and stability. 相似文献
13.
The androgen receptor (AR) gene, located on the X chromosome, is an important regulator of human spermatogenesis. In the past decade, the link between the CAG polyglutamine tract, situated on exon one of the AR gene, and reduced spermatogenesis has become a controversial one. Alterations in the length of the CAG polyglutamine tract have been associated with prostate cancer at a reduced intrinsic length and neuromuscular diseases at a CAG repeat length of 40. Minimal intermediate increases have been linked with depressed spermatogenesis in infertile males. Asian and Australian groups have published an association between increased CAG repeat length and reduced spermatogenesis while many European studies have found no such association. The aim of this study was to document the association between increased CAG repeat length and reduced spermatogenesis in a group of Irish infertile males and controls known to have fathered at least one child. The study employed the ABI 377 DNA sequencer to size the CAG repeat region of exon one of the AR gene in each group. Statistical analysis revealed no actual link between the length of the CAG tract and a reduction of spermatogenesis in a cohort of infertile patients (n = 66) of Irish ethnic origin when compared to a fertile control group (n = 77) (p = 0.599). 相似文献
14.
Local hydrophobic collapse of the polypeptide chain and transient long-range interactions in unfolded states of apomyoglobin appear to occur in regions of the amino acid sequence which, upon folding, bury an above-average area of hydrophobic surface. To explore the role of these interactions in protein folding, we prepared and characterized apomyoglobins with compensating point mutations designed to change the average buried surface area in local regions of the sequence, while conserving as much as possible the constitution of the hydrophobic core. The behavior of the mutants in quench-flow experiments to determine the folding pathway was exactly as predicted by the changes in the buried surface area parameter calculated from the amino acid sequence. In addition, spin label experiments with acid-unfolded mutant apomyoglobin showed that the transient long-range contacts that occur in the wild-type protein are abolished in the mutant, while new contacts are observed between areas that now have above-average buried surface area. We conclude that specific groupings of amino acid side-chains, which can be predicted from the sequence, are responsible for early hydrophobic interactions in the first phase of folding in apomyoglobin, and that these early interactions determine the subsequent course of the folding process. 相似文献
15.
Helical stacking in DNA three-way junctions containing two unpaired pyrimidines: proton NMR studies. 总被引:2,自引:0,他引:2
N B Leontis M T Hills M Piotto I V Ouporov A Malhotra D G Gorenstein 《Biophysical journal》1995,68(1):251-265
The proton NMR spectra of DNA three-way junction complexes (TWJ) having unpaired pyrimidines, 5'-TT- and 5'-TC- on one strand at the junction site were assigned from 2D NOESY spectra acquired in H2O and D2O solvents and homonuclear 3D NOESY-TOCSY and 3D NOESY-NOESY in D2O solvent. TWJ are the simplest branched structures found in biologically active nucleic acids. Unpaired nucleotides are common features of such structures and have been shown to stabilize junction formation. The NMR data confirm that the component oligonucleotides assemble to form conformationally homogeneous TWJ complexes having three double-helical, B-form arms. Two of the helical arms stack upon each other. The unpaired pyrimidine bases lie in the minor groove of one of the helices and are partly exposed to solvent. The coaxial stacking arrangement deduced is different from that determined by Rosen and Patel (Rosen, M.A., and D.J. Patel. 1993. Biochemistry. 32:6576-6587) for a DNA three-way junction having two unpaired cytosines, but identical to that suggested by Welch et al. (Welch, J. B., D. R. Duckett, D. M. J. Lilley. 1993. Nucleic Acids Res. 21:4548-4555) on the basis of gel electrophoretic studies of DNA three-way junctions containing unpaired adenosines and thymidines. 相似文献
16.
Hadjkacem L Hadj-Kacem H Boulila A Bahloul A Ayadi H Ammar-Keskes L 《Annales de génétique》2004,47(3):217-224
Several reports implicated a relation between the trinucleotide (CAG) repeat length in the androgen receptor (AR) gene and male infertility. But such result was not reproduced in others. To test this hypothesis, we investigated the number of (CAG) repeats in the AR gene among two groups of infertile (n = 129) and fertile Tunisian men (n = 98), using polymerase chain reaction (PCR) targeting the AR CAG repeat tract, followed by electrophoresis on polyacrylamide gel (6%). For statistical analysis we used Student, Kolmogorov-Smirnov (KS) and chi(2)-tests. Significance was reached when P < 0.05. No statistically significant difference in the mean length of the CAG repeat was found between infertile and control groups (P = 0.47). Moreover, using KS test, we have not found a difference in the distribution of allele frequencies between infertile and controls (D(obs) = 0.046 < D(crit) = 0.180). We also did not found a statistically significant relationship between the size of the CAG repeat and impaired sperm production in Tunisian population. Our results may be attributed to the high probability that infertile males may represent a heterogeneous group with respect to the causes of defective spermatogenesis. 相似文献
17.
We show that the folding rates (k(F)s) of RNA are determined by N, the number of nucleotides. By assuming that the distribution of free-energy barriers separating the folded and the unfolded states is Gaussian, which follows from central limit theorem arguments and polymer physics concepts, we show that k(F)≈k(0)exp(-αN(0.5)). Remarkably, the theory fits experimental rates spanning over 7 orders of magnitude with k(0)~1.0(μs)(-1). Our finding suggests that the speed limit of RNA folding is ~ 1 μs, [corrected] just as it is in the folding of globular proteins. 相似文献
18.
DNA three-way junctions (TWJ) are branched molecules having three ‘arms’. We studied long-distance radical cation migration in these assemblies by incorporating anthraquinone (AQ) groups linked by a covalent tether to one strand of one arm of the TWJ. Excitation of the AQ at 350 nm results in one-electron oxidation of the DNA, which generates a base radical cation. This leads to relatively inefficient (compared with duplex DNA) strand cleavage at guanines following piperidine treatment of the irradiated samples. When the AQ is linked to the 5′-terminus of arm III by a flexible tether, gel electrophoretic analysis shows that strand cleavage occurs at the guanines in all three arms. We also investigated a TWJ in which the anthraquinone is specifically intercalated in arm III. In this case, a different pattern of strand cleavage is detected. We conclude that there are at least two mechanisms for long-distance radical cation migration in TWJs: (i) by inefficient charge hopping through the junction; (ii) by a through-space, cross-arm interaction when the AQ is on a flexible tether. 相似文献
19.
Many small, single-domain proteins show equilibrium and kinetic folding mechanisms that appear to be adequately described as two state. The two-state model makes several predictions that can be tested experimentally. First, the conformational stability determined at or extrapolated to a set of reference conditions should be independent of the measurement method (thermal or solvent denaturation or hydrogen exchange). Second, model-independent measures of the cardinal thermodynamic parameters (T(m), DeltaH) as determined from direct calorimetric means should be identical to those determined from the two-state analysis of thermal unfolding data. Third, the ratio of the kinetic folding and unfolding rate constants should be equal to K(eq) determined from an equilibrium measurement under the same conditions. Here, we show that the wild-type HPr protein from Bacillus subtilis does not meet all of these criteria under our standard conditions. However, if we replace the side chain of Asp69, or add moderate concentrations of salt, we find excellent two-state behavior in both equilibrium and kinetic folding. Thus, for this protein and possibly others, very subtle changes in the primary structure or in the solution conditions can dramatically alter the relative stabilities of the native intermediate, and unfolded ensembles can cause an observable change in the nature of the folding mechanism. 相似文献
20.
Nerve terminals with different length of their branches and with different types of ramification have been studied in the experiments performed on frog cutaneous-pectoralis muscle using electrophysiological and morphological techniques. It has been found that the spatial distribution of the nerve impulse-evoked transmitter secretion along each terminal branch is complex: The secretion increases distalward along the proximal by nearly a third of the terminal length and decreases linearly along its more distal portions. An increase in terminal length is followed by distalward shift of the secretion peak, by more gradual decay in the secretion if plotted along distal portions of the terminal, and by a decreased contribution of the secretion from distal portions to total secretion from the terminal. The critical terminal length at which total secretion from the terminal reached its maximum has been estimated. The distalward decrease of a secretion along the secondary terminal branches is similar to that found in the distal portion of the main terminal branch next to the ramification knot. An increase in terminal length and in the number of branchings is followed by decreased conduction velocity and transmitter release synchronism. The mechanisms determining limitations of the terminal length and the appearance of secondary terminal branches are discussed.Neirofiziologiya/Neurophysiology, Vol. 25, No. 3, pp. 170–175, May–June, 1993. 相似文献