首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under physiological conditions of loading, articular cartilage is subjected to both compressive strains, normal to the articular surface, and tensile strains, tangential to the articular surface. Previous studies have shown that articular cartilage exhibits a much higher modulus in tension than in compression, and theoretical analyses have suggested that this tension–compression nonlinearity enhances the magnitude of interstitial fluid pressurization during loading in unconfined compression, above a theoretical threshold of 33% of the average applied stress. The first hypothesis of this experimental study is that the peak fluid load support in unconfined compression is significantly greater than the 33% theoretical limit predicted for porous permeable tissues modeled with equal moduli in tension and compression. The second hypothesis is that the peak fluid load support is higher at the articular surface side of the tissue samples than near the deep zone, because the disparity between the tensile and compressive moduli is greater at the surface zone. Ten human cartilage samples from six patellofemoral joints, and 10 bovine cartilage specimens from three calf patellofemoral joints were tested in unconfined compression. The peak fluid load support was measured at 79±11% and 69±15% at the articular surface and deep zone of human cartilage, respectively, and at 94±4% and 71±8% at the articular surface and deep zone of bovine calf cartilage, respectively. Statistical analyses confirmed both hypotheses of this study. These experimental results suggest that the tension–compression nonlinearity of cartilage is an essential functional property of the tissue which makes interstitial fluid pressurization the dominant mechanism of load support in articular cartilage.  相似文献   

2.
Understanding the mechanical behaviour of arterial tissue is vital to the development and analysis of medical devices targeting diseased vessels. During angioplasty and stenting, stress softening and permanent deformation of the vessel wall occur during implantation of the device, however little data exists on the inelastic behaviour of cardiovascular tissue and how this varies through the arterial tree. The aim of this study was to characterise the magnitude of stress softening and inelastic deformations due to loading throughout the arterial tree and to investigate the anisotropic inelastic behaviour of the tissue. Cyclic compression tests were used to investigate the differences in inelastic behaviour for carotid, aorta, femoral and coronary arteries harvested from 3-4 month old female pigs, while the anisotropic behaviour of aortic and carotid tissue was determined using cyclic tensile tests in the longitudinal and circumferential directions. The differences in inelastic behaviour were correlated to the ratio of collagen to elastin content of the arteries. It was found that larger inelastic deformations occurred in muscular arteries (coronary), which had a higher collagen to elastin ratio than elastic arteries (aorta), where the smallest inelastic deformations were observed. Lower magnitude inelastic deformations were observed in the circumferential tensile direction than in the longitudinal tensile direction or due to radial compression. This may be as a result of non-collagenous components in the artery becoming more easily damaged than the collagen fibres during loading. Stress softening was also found to be dependent on artery type. In the future, computational models should consider such site dependant, anisotropic inelastic behaviour in order to better predict the outcomes of interventional procedures such as angioplasty and stenting.  相似文献   

3.
Previous models of cortical bone adaptation, in which loading is imposed on the bone, have estimated the strains in the tissue using strain gauges, analytical beam theory, or finite element analysis. We used digital image correlation (DIC), tracing a speckle pattern on the surface of the bone during loading, to determine surface strains in a murine tibia during compressive loading through the knee joint. We examined whether these surface strains in the mouse tibia are modified following two weeks of load-induced adaptation by comparison with contralateral controls. Results indicated non-uniform strain patterns with isolated areas of high strain (0.5%), particularly on the medial side. Strain measurements were reproducible (standard deviation of the error 0.03%), similar between specimens, and in agreement with strain gauge measurements (between 0.1 and 0.2% strain). After structural adaptation, strains were more uniform across the tibial surface, particularly on the medial side where peak strains were reduced from 0.5% to 0.3%. Because DIC determines local strains over the entire surface, it will provide a better understanding of how strain stimulus influences the bone response during adaptation.  相似文献   

4.
Carotid endarterectomy (CEA) is currently accepted as the gold standard for interventional revascularisation of diseased arteries belonging to the carotid bifurcation. Despite the proven efficacy of CEA, great interest has been generated in carotid angioplasty and stenting (CAS) as an alternative to open surgical therapy. CAS is less invasive compared with CEA, and has the potential to successfully treat lesions close to the aortic arch or distal internal carotid artery (ICA). Following promising results from two recent trials (CREST; Carotid revascularisation endarterectomy versus stenting trial, and ICSS; International carotid stenting study) it is envisaged that there will be a greater uptake in carotid stenting, especially amongst the group who do not qualify for open surgical repair, thus creating pressure to develop computational models that describe a multitude of plaque models in the carotid arteries and their reaction to the deployment of such interventional devices. Pertinent analyses will require fresh human atherosclerotic plaque material characteristics for different disease types. This study analysed atherosclerotic plaque characteristics from 18 patients tested on site, post-surgical revascularisation through endarterectomy, with 4 tissue samples being excluded from tensile testing based on large width-length ratios. According to their mechanical behaviour, atherosclerotic plaques were separated into 3 grades of stiffness. Individual and group material coefficients were then generated analytically using the Yeoh strain energy function. The ultimate tensile strength (UTS) of each sample was also recorded, showing large variation across the 14 atherosclerotic samples tested. Experimental Green strains at rupture varied from 0.299 to 0.588 and the Cauchy stress observed in the experiments was between 0.131 and 0.779 MPa. It is expected that this data may be used in future design optimisation of next generation interventional medical devices for the treatment and revascularisation of diseased arteries of the carotid bifurcation.  相似文献   

5.
Tangential strains were measured with strain gauges at the surface of xylem and inner bark of saplings of Cryptomeria japonica D. Don. and Fagus silvatica L. during a pressurization test. The test consists in submitting the whole sapling to an artificially imposed hydrostatic pressure of increasing magnitude. The elastic response of the stems was found linear both at the surface of xylem and inner bark. A simple geometric model allows to compute radial strains in each tissue from tangential strain data. Inside inner bark, radial strains are much larger than tangential strains, because tangential strains are restrained by the core of wood. The material compliance of each tissue was computed as the ratio between the radial strain and the pressure that caused it. The material compliance of xylem is much lower than that of inner bark, but, as its thickness is much larger, its contribution to the apparent behavior of the stem is not negligible. Computation of material compliances by this pressurization test provides information about the specific behavior of each tissue in response to hydrostatic pressure. This can be used to estimate and interpret the calibration factor linking the water status of the plant to the apparent strain measured at its surface.T. Okuyama: deceased  相似文献   

6.

Accurate estimation of mechanical properties of the different atherosclerotic plaque constituents is important in assessing plaque rupture risk. The aim of this study was to develop an experimental set-up to assess material properties of vascular tissue, while applying physiological loading and being able to capture heterogeneity. To do so, a ring-inflation experimental set-up was developed in which a transverse slice of an artery was loaded in the radial direction, while the displacement was estimated from images recorded by a high-speed video camera. The performance of the set-up was evaluated using seven rubber samples and validated with uniaxial tensile tests. For four healthy porcine carotid arteries, material properties were estimated using ultrasound strain imaging in whole-vessel-inflation experiments and compared to the properties estimated with the ring-inflation experiment. A 1D axisymmetric finite element model was used to estimate the material parameters from the measured pressures and diameters, using a neo-Hookean and Holzapfel–Gasser–Ogden material model for the rubber and porcine samples, respectively. Reproducible results were obtained with the ring-inflation experiment for both rubber and porcine samples. Similar mean stiffness values were found in the ring-inflation and tensile tests for the rubber samples as 202 kPa and 206 kPa, respectively. Comparable results were obtained in vessel-inflation experiments using ultrasound and the proposed ring-inflation experiment. This inflation set-up is suitable for the assessment of material properties of healthy vascular tissue in vitro. It could also be used as part of a method for the assessment of heterogeneous material properties, such as in atherosclerotic plaques.

  相似文献   

7.
A feedback controlled loading apparatus for the rat tail vertebra was developed to deliver precise mechanical loads to the eighth caudal vertebra (C8) via pins inserted into adjacent vertebrae. Cortical bone strains were recorded using strain gages while subjecting the C8 in four cadaveric rats to mechanical loads ranging from 25 to 100 N at 1 Hz with a sinusoidal waveform. Finite element (FE) models, based on micro computed tomography, were constructed for all four C8 for calculations of cortical and trabecular bone tissue strains. The cortical bone strains predicted by FE models agreed with strain gage measurements, thus validating the FE models. The average measured cortical bone strain during 25-100 N loading was between 298 +/- 105 and 1210 +/- 297 microstrain (muepsilon). The models predicted average trabecular bone tissue strains ranging between 135 +/- 35 and 538 +/- 138 mu epsilon in the proximal region, 77 +/- 23-307 +/- 91 muepsilon in the central region, and 155 +/- 36-621 +/- 143 muepsilon in the distal region for 25-100 N loading range. Although these average strains were compressive, it is also interesting that the trabecular bone tissue strain can range from compressive to tensile strains (-1994 to 380 mu epsilon for a 100 N load). With this novel approach that combines an animal model with computational techniques, it could be possible to establish a quantitative relationship between the microscopic stress/strain environment in trabecular bone tissue, and the biosynthetic response and gene expression of bone cells, thereby study bone adaptation.  相似文献   

8.
The ability to predict trabecular failure using microstructure-based computational models would greatly facilitate study of trabecular structure–function relations, multiaxial strength, and tissue remodeling. We hypothesized that high-resolution finite element models of trabecular bone that include cortical-like strength asymmetry at the tissue level, could predict apparent level failure of trabecular bone for multiple loading modes. A bilinear constitutive model with asymmetric tissue yield strains in tension and compression was applied to simulate failure in high-resolution finite element models of seven bovine tibial specimens. Tissue modulus was reduced by 95% when tissue principal strains exceeded the tissue yield strains. Linear models were first calibrated for effective tissue modulus against specimen-specific experimental measures of apparent modulus, producing effective tissue moduli of (mean±S.D.) 18.7±3.4 GPa. Next, a parameter study was performed on a single specimen to estimate the tissue level tensile and compressive yield strains. These values, 0.60% strain in tension and 1.01% strain in compression, were then used in non-linear analyses of all seven specimens to predict failure for apparent tensile, compressive, and shear loading. When compared to apparent yield properties previously measured for the same type of bone, the model predictions of both the stresses and strains at failure were not statistically different for any loading case (p>0.15). Use of symmetric tissue strengths could not match the experimental data. These findings establish that, once effective tissue modulus is calibrated and uniform but asymmetric tissue failure strains are used, the resulting models can capture the apparent strength behavior to an outstanding level of accuracy. As such, these computational models have reached a level of fidelity that qualifies them as surrogates for destructive mechanical testing of real specimens.  相似文献   

9.
10.
Full field strain measurements of biological tissue during loading are often limited to the quantification of fiduciary marker displacements on the tissue surface. These marker measurements can lack the necessary spatial resolution to characterize non-uniform deformation and may not represent the deformation of the load-bearing collagen microstructure. To overcome these potential limitations, a method was developed to track the deformation of the collagen fiber microstructure in ligament tissue. Using quantitative polarized light imaging, fiber alignment maps incorporating both direction and alignment strength at each pixel were generated during facet capsular ligament loading. A grid of virtual markers was superimposed over the tissue in the alignment maps, and the maximization of a vector correlation calculation between fiber alignment maps was used to track marker displacement. Tracking error was quantified through comparisons to the displacements of excised ligament tissue (n=3); separate studies applied uniaxial tension to isolated facet capsular ligament tissue (n=4) to evaluate tracking capabilities during large tissue deformations. The average difference between virtual marker and tissue displacements was 0.07±0.06 pixels. This error in marker location produced principal strain measurements of 1.2±1.6% when markers were spaced 4 pixels apart. During tensile tissue loading, substantial inhomogeneity was detected in the strain field using vector correlation tracking, and the location of maximum strain differed from that produced by standard tracking techniques using coarser meshes. These findings provide a method to directly measure fiber network strains using quantitative fiber alignment data, enabling a better understanding of structure–function relationships in tissues at different length scales.  相似文献   

11.
Calcification is a marked pathological component in carotid artery plaque. Studies have suggested that calcification may induce regions of high stress concentrations therefore increasing the potential for rupture. However, the mechanical behaviour of the plaque under the influence of calcification is not fully understood. A method of accurately characterising the calcification coupled with the associated mechanical plaque properties is needed to better understand the impact of calcification on the mechanical behaviour of the plaque during minimally invasive treatments. This study proposes a comparison of biochemical and structural characterisation methods of the calcification in carotid plaque specimens to identify plaque mechanical behaviour.Biochemical analysis, by Fourier Transform Infrared (FTIR) spectroscopy, was used to identify the key components, including calcification, in each plaque sample. However, FTIR has a finite penetration depth which may limit the accuracy of the calcification measurement. Therefore, this FTIR analysis was coupled with the identification of the calcification inclusions located internally in the plaque specimen using micro x-ray computed tomography (μX-CT) which measures the calcification volume fraction (CVF) to total tissue content. The tissue characterisation processes were then applied to the mechanical material plaque properties acquired from experimental circumferential loading of human carotid plaque specimen for comparison of the methods.FTIR characterised the degree of plaque progression by identifying the functional groups associated with lipid, collagen and calcification in each specimen. This identified a negative relationship between stiffness and 'lipid to collagen' and 'calcification to collagen' ratios. However, μX-CT results suggest that CVF measurements relate to overall mechanical stiffness, while peak circumferential strength values may be dependent on specific calcification geometries. This study demonstrates the need to fully characterise the calcification structure of the plaque tissue and that a combination of FTIR and μX-CT provides the necessary information to fully understand the mechanical behaviour of the plaque tissue.  相似文献   

12.
Computational models of diseased arteries are advancing rapidly, and a need exists to develop more accurate material models of human atherosclerotic plaques. However, intact samples for in vitro mechanical testing are not readily available. Most plaque samples are harvested from carotid endarterectomies where the geometries are not suitable for the boundary parameters necessary for classical uniaxial tensile testing. Experimental studies of biological tissue, particularly human plaque tissue, have not specified the minimum width-to-length (WL) ratio necessary for appropriate tensile testing. This study proposes either tensile or planar shear testing on whole specimen samples depending on the WL ratio. However, a “grey-area” of WL ratios exists which are unsuitable for either test, between 0.5:1 and 4:1 WL ratio. Eighteen plaque samples are investigated in this study, and according to classical approaches, two of the plaque samples have WL ratios suitable for tensile testing and four are suitable for planar shear testing. The remaining twelve samples fall in the grey-area of WL ratio. The study analyses which test method is suitable for the samples in this grey-area and what effect using the incorrect test method has on results from a computational model. The study highlights that tissues above a WL ratio of 2:1 are suitable for planar shear testing, and samples below 1:1 are more suited for tensile testing. Therefore, the “grey-area” can be reduced with certain limitations applied by the minor strain assumption which need to be taken into account during experimental testing. This study also demonstrates the influence of curve-fitting experimental results using tensile- and planar shear–based boundary parameters from eighteen plaque samples.  相似文献   

13.
Interstitial fluid flow (IFF) is a potent regulatory signal in bone. During mechanical loading, IFF is generated through two distinct mechanisms that result in spatially distinct flow profiles: poroelastic interactions within the lacunar-canalicular system, and intramedullary pressurization. While the former generates IFF primarily within the lacunar-canalicular network, the latter generates significant flow at the endosteal surface as well as within the tissue. This gives rise to the intriguing possibility that loading-induced IFF may differentially activate osteocytes or surface-residing cells depending on the generating mechanism, and that sensation of IFF generated via intramedullary pressurization may be mediated by a non-osteocytic bone cell population. To begin to explore this possibility, we used the Dmp1-HBEGF inducible osteocyte ablation mouse model and a microfluidic system for modulating intramedullary pressure (ImP) to assess whether structural adaptation to ImP-driven IFF is altered by partial osteocyte depletion. Canalicular convective velocities during pressurization were estimated through the use of fluorescence recovery after photobleaching and computational modeling. Following osteocyte ablation, transgenic mice exhibited severe losses in bone structure and altered responses to hindlimb suspension in a compartment-specific manner. In pressure-loaded limbs, transgenic mice displayed similar or significantly enhanced structural adaptation to Imp-driven IFF, particularly in the trabecular compartment, despite up to ~50% of trabecular lacunae being uninhabited following ablation. Interestingly, regression analysis revealed relative gains in bone structure in pressure-loaded limbs were correlated with reductions in bone structure in unpressurized control limbs, suggesting that adaptation to ImP-driven IFF was potentiated by increases in osteoclastic activity and/or reductions in osteoblastic activity incurred independently of pressure loading. Collectively, these studies indicate that structural adaptation to ImP-driven IFF can proceed unimpeded following a significant depletion in osteocytes, consistent with the potential existence of a non-osteocytic bone cell population that senses ImP-driven IFF independently and potentially parallel to osteocytic sensation of poroelasticity-derived IFF.  相似文献   

14.
Passive elastic behavior of arterial wall remains difficult to model. Although phenomenological and structural models exist, the question of how the three-dimensional network structure of the collagen in the artery determines its mechanical properties is still open. A model is presented that incorporates a collagen network as well as the noncollagenous material that comprise the artery. The collagen architecture is represented as a network of interconnected fibers, and a neo-Hookean constitutive equation is used to describe the contribution of the noncollagenous matrix. The model is multiscale in that volume-averaging theory is applied to the collagen network, and it is structural in that parameters of the microstructure of the collagen network were considered instead of a macroscopic constitutive law. The computational results provided a good fit to published experimental data for decellularized porcine carotid arteries. The model predicted increased circumferential compliance for increased axial stretch, consistent with previously published reports, and a relatively small sensitivity to open angle. Even at large extensions, the model predicted that the noncollagenous matrix would be in compression, preventing collapse of the collagen network. The incorporation of fiber-fiber interactions led to an accurate model of artery wall behavior with relatively few parameters. The counterintuitive result that the noncollagenous component is in compression during extension and inflation of the tissue suggests that the collagen is important even at small strains, with the noncollagenous components supporting the network, but not resisting the load directly. More accurate representation of the microstructure of the artery wall is needed to explore this issue further.  相似文献   

15.
Constitutive models facilitate investigation into load bearing mechanisms of biological tissues and may aid attempts to engineer tissue replacements. In soft tissue models, a commonly made assumption is that collagen fibers can only bear tensile loads. Previous computational studies have demonstrated that radially aligned fibers stiffen a material in unconfined compression most by limiting lateral expansion while vertically aligned fibers buckle under the compressive loads. In this short communication, we show that in conjunction with swelling, these intuitive statements can be violated at small strains. Under such conditions, a tissue with fibers aligned parallel to the direction of load initially provides the greatest resistance to compression. The results are further put into the context of a Benninghoff architecture for articular cartilage. The predictions of this computational study demonstrate the effects of varying fiber orientations and an initial tare strain on the apparent material parameters obtained from unconfined compression tests of charged tissues.  相似文献   

16.

The identification of material parameters accurately describing the region-dependent mechanical behavior of human brain tissue is crucial for computational models used to assist, e.g., the development of safety equipment like helmets or the planning and execution of brain surgery. While the division of the human brain into different anatomical regions is well established, knowledge about regions with distinct mechanical properties remains limited. Here, we establish an inverse parameter identification scheme using a hyperelastic Ogden model and experimental data from multi-modal testing of tissue from 19 anatomical human brain regions to identify mechanically distinct regions and provide the corresponding material parameters. We assign the 19 anatomical regions to nine governing regions based on similar parameters and microstructures. Statistical analyses confirm differences between the regions and indicate that at least the corpus callosum and the corona radiata should be assigned different material parameters in computational models of the human brain. We provide a total of four parameter sets based on the two initial Poisson’s ratios of 0.45 and 0.49 as well as the pre- and unconditioned experimental responses, respectively. Our results highlight the close interrelation between the Poisson’s ratio and the remaining model parameters. The identified parameters will contribute to more precise computational models enabling spatially resolved predictions of the stress and strain states in human brains under complex mechanical loading conditions.

  相似文献   

17.
Parametric geometry exploration of the human carotid artery bifurcation   总被引:1,自引:0,他引:1  
A parametric computational model of the human carotid artery bifurcation is employed to demonstrate that it is only necessary to simulate approximately one-half of a single heart pulse when performing a global exploration of the relationships between shear stress and changes in geometry. Using design of experiments and surface fitting techniques, a landscape is generated that graphically depicts these multi-dimensional relationships. Consequently, whilst finely resolved, grid and pulse independent results are traditionally demanded by the computational fluid dynamics (CFD) community, this strategy demonstrates that it is possible to efficiently detect the relative impact of different geometry parameters, and to identify good and bad regions of the landscape by only simulating a fraction of a single pulse. Also, whereas in the past comparisons have been made between the distributions of appropriate shear stress metrics, such as average wall shear stress and oscillatory shear index, this strategy requires a figure of merit to compare different geometries. Here, an area-weighted integral of negative time-averaged shear stress, tau , is used as the principal objective function, although the discussion reveals that the extent as well as the intensity of reverse flow may be important. Five geometry parameters are considered: the sinus bulb width, the angles and the outflow diameters of the internal carotid artery (ICA) and external carotid artery (ECA). A survey of the landscape confirms that bulb shape has the dominant effect on tau with maximum tau occurring for large bulb widths. Also, it is shown that different sets of geometric parameters can produce low values of tau by either relatively small intense areas, or by larger areas of less intense reverse flow.  相似文献   

18.
It is generally recognized that the organization of collagen bundles in soft tissues strongly influences their material properties. To study this, sixty failure tests were conducted on double-layered fascia lata, 'isolated' parallel-bundled tendons (gracilis and semitendinosus) and parallel-bundled bone-patellar tendon-bone units taken from about the knees of eighteen young human donors (mean age of 26 yr). Surprisingly, most material parameters for the two-layered fascia lata did not differ significantly from corresponding values for the isolated tendons and tendon-bone preparations, suggesting their longitudinal fibers predominated during loading. Differences were present however between the gracilis tendon and all other tissues for both modulus and maximum stress. The large variations in reported maximum and failure strains for tendons, fascia and other collagenous tissues prompted the other phase of the study. During 15 of the 60 failure tests, surface markers were simultaneously filmed to determine; differences between local surface strains and grip to grip values; the amount of tissue slippage and/or failure occurring in the grips; and the effect of strain measurement technique on tissue moduli and failure energy densities. Maximum local strains were found to be 25-30% of grip strains for all tissues tested. Some slippage and/or failure could be seen in all isolated tissues which were gripped directly although their maximum grip strains were similar to values for tendon-bone units. For all tissues, two to three fold differences were also found in moduli and failure energy densities between grip and midregion measurements.  相似文献   

19.
Cellular response to mechanical loading varies between the anatomic zones of the intervertebral disc. This difference may be related to differences in the structure and mechanics of both cells and extracellular matrix, which are expected to cause differences in the physical stimuli (such as pressure, stress, and strain) in the cellular micromechanical environment. In this study, a finite element model was developed that was capable of describing the cell micromechanical environment in the intervertebral disc. The model was capable of describing a number of important mechanical phenomena: flow-dependent viscoelasticity using the biphasic theory for soft tissues; finite deformation effects using a hyperelastic constitutive law for the solid phase; and material anisotropy by including a fiber-reinforced continuum law in the hyperelastic strain energy function. To construct accurate finite element meshes, the in situ geometry of IVD cells were measured experimentally using laser scanning confocal microscopy and three-dimensional reconstruction techniques. The model predicted that the cellular micromechanical environment varies dramatically between the anatomic zones, with larger cellular strains predicted in the anisotropic anulus fibrosus and transition zone compared to the isotropic nucleus pulposus. These results suggest that deformation related stimuli may dominate for anulus fibrosus and transition zone cells, while hydrostatic pressurization may dominate in the nucleus pulposus. Furthermore, the model predicted that micromechanical environment is strongly influenced by cell geometry, suggesting that the geometry of IVD cells in situ may be an adaptation to reduce cellular strains during tissue loading.  相似文献   

20.
BACKGROUND AND AIM: Titanium alloys are increasingly being used as an implant material in orthopaedics and for spinal instrumentation. In this study a metallographic analysis and mechanical testing were performed to evaluate the resistance of rods of Ti-A16-V4 in particular to tensile forces. METHOD: The surface texture of unprepared Ti-A16-V4 and a rod of the same material for spinal instrumentation were evaluated in a metallographic analysis using light microscopy and electron microscopy. Tensile strength measurements were performed on 2 rods, and the strength of the connection between rod and pedicle screws was tested in 9 cases. An electron microscopic analysis of surface changes of the connections between rod and pedicle screws after loading was performed. RESULTS: The titanium alloy Ti-A16-V4 has a mill-annealed appearance, which has a high resistance to tearing under stress. Titanium rods show high tensile strength before failure under loading. The connection between rod and pedicle screws also as high resistance to tensile loads (> 27 kN) with only little deformation of the connecting surface and no tearing. CONCLUSION: The titanium alloy Ti-A16-V4 is an appropriate material for dorsal spinal instrumentation rods because of its low weight, high biocompability and high tensile strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号