首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Invariant Natural Killer T (iNKT) cells use highly restricted αβ T cell receptors (TCRs) to probe the repertoire of lipids presented by CD1d molecules. Here, we describe our studies of lysophosphatidylcholine (LPC) presentation by human CD1d and its recognition by a native, LPC‐specific iNKT TCR. Human CD1d presenting LPC adopts an altered conformation from that of CD1d presenting glycolipid antigens, with a shifted α1 helix resulting in an open A’ pocket. Binding of the iNKT TCR requires a 7‐Å displacement of the LPC headgroup but stabilizes the CD1d–LPC complex in a closed conformation. The iNKT TCR CDR loop footprint on CD1d–LPC is anchored by the conserved positioning of the CDR3α loop, whereas the remaining CDR loops are shifted, due in part to amino‐acid differences in the CDR3β and Jβ segment used by this iNKT TCR. These findings provide insight into how lysophospholipids are presented by human CD1d molecules and how this complex is recognized by some, but not all, human iNKT cells.  相似文献   

2.
Natural killer T cells expressing an invariant T cell antigen receptor (iNKT cells) are cells of the innate immune system. After recognizing glycolipid antigens presented by CD1d molecules on antigen presenting cells (APCs), iNKT cells rapidly produce large quantities of cytokines, thereby stimulating many types of cells. Recent studies have described several mechanisms of iNKT cell activation and the contribution of these cells to antimicrobial responses. iNKT cells can be activated by endogenous antigens and/or inflammatory cytokines from APCs. However, iNKT cells also recognize certain microbial glycolipids by their invariant T cell antigen receptor (TCR), and they contribute to pathogen clearance in certain microbial infections. These findings indicate that the iNKT TCR is useful for detecting certain microbial pathogens. Moreover, recent studies suggest that iNKT cell glycolipid antigens may be useful in antimicrobial therapy and vaccines.  相似文献   

3.
4.
Plasma membranes of eukaryotic cells are not uniform, possessing distinct cholesterol- and sphingolipid-rich lipid raft microdomains which constitute critical sites for signal transduction through various immune cell receptors and their co-receptors. CD1d is a conserved family of major histocompatibility class I-like molecules, which has been established as an important factor in lipid antigen presentation to natural killer T (NKT) cells. Unlike conventional T cells, recognition of CD1d by the T cell receptor (TCR) of NKT cells does not require CD4 or CD8 co-receptors, which are critical for efficient TCR signaling. We found that murine CD1d (mCD1d) was constitutively present in the plasma membrane lipid rafts on antigen presenting cells, and that this restricted localization was critically important for efficient signal transduction to the target NKT cells, at low ligand densities, even without the involvement of co-receptors. Further our results indicate that there may be additional regulatory molecule(s), co-located in the lipid raft with mCD1d for NKT cell signaling.  相似文献   

5.
CD1d是人类白细胞表面的抗原分子,它可以将脂质抗原递呈给天然杀伤T细胞(NKT),使其激活.而NKT是近年来发现的一类特殊的T细胞,它既可以表达T细胞表面标志,又可以表达天然杀伤细胞(NK)表面标志,能识别由CD1d递呈的抗原,广泛参与自身免疫调节.近年来,许多研究发现,CD1d/NKT可以有效抑制肝炎病毒的复制.  相似文献   

6.
Identification of self-lipids presented by CD1c and CD1d proteins   总被引:2,自引:0,他引:2  
The CD1 family consists of five proteins that are related to the peptide-presenting MHC class I family. T cells can recognize the presentation of both foreign and self-derived lipids on four CD1 family members. The identities of the self-lipids capable of stimulating autoreactive T cell responses remain elusive or controversial. Here, we employed mass spectrometry to analyze the lipid content of highly purified CD1c and CD1d protein samples. We report the identification of 11 novel self-lipids presented by CD1c and nine by CD1d. Rigorous controls provide strong evidence that the identified lipids were specifically loaded into the lipid-binding site of the CD1 molecules. The diverse but distinct population of lipids identified from each CD1 family member implies each present a different subset of self-lipids, and the enrichment of particular motifs indicates that the lipids that are presented by CD1 family members could be predicted. Finally, our results imply the CD1 system surveys the endoplasmic reticulum, Golgi apparatus, and/or secretory compartments, in addition to its well characterized surveillance of the endocytic and lysosomal compartments.  相似文献   

7.
Han  Jihye  Rho  Seung Bae  Lee  Jae Yeon  Bae  Joonbeom  Park  Se Ho  Lee  Suk Jun  Lee  Sang Yeol  Ahn  Curie  Kim  Jae Young  Chun  Taehoon 《Molecules and cells》2013,36(5):455-464
To avoid host immune surveillance, human cytomegalovirus (HCMV) encoded endoplasmic reticulum (ER)-membrane glycoprotein US2, which interferes with antigen presenting mechanism of major histocompatibility complex (MHC) class Ia and class II molecules. However, not many attempts have been made to study the effect of HCMV US2 on the expression of MHC class Ib molecules. In this study, we examined the effect of HCMV US2 on the expression and function of human CD1d (hCD1d), which presents glycolipid antigens to invariant NKT (iNKT) cells. Our results clearly showed that the physiological interaction between ER lumenal domain of HCMV US2 and α3 domain of hCD1d was observed within ER. Compared with mature form of hCD1d, immature form of hCD1d is more susceptible to ubiquitin-dependent proteasomal degradation mediated by HCMV US2. Moreover, the ectopic expression of HCMV US2 leads to the down-modulation of iNKT cell activity without significant change of hCD1d expression. These results will advance our understanding of the function of HCMV US2 in immune evasive mechanisms against anti-viral immunity of iNKT cells.  相似文献   

8.
Invariant natural killer T (iNKT) cells are innate T cells with powerful immune regulatory functions that recognize glycolipid antigens presented by the CD1D protein. While iNKT cell-activating glycolipids are currently being explored for their efficacy to improve immunotherapy against infectious diseases and cancer, little is known about the mechanisms that control CD1D antigen presentation and iNKT cell activation in vivo. CD1D molecules survey endocytic pathways to bind lipid antigens in MHC class II-containing compartments (MIICs) before recycling to the plasma membrane. Autophagosomes intersect with MIICs and autophagy-related proteins are known to support antigen loading for increased CD4+ T cell immunity. Here, we report that mice with dendritic cell (DC)-specific deletion of the essential autophagy gene Atg5 showed better CD1D1-restricted glycolipid presentation in vivo. These effects led to enhanced iNKT cell cytokine production upon antigen recognition and lower bacterial loads during Sphingomonas paucimobilis infection. Enhanced iNKT cell activation was independent of receptor-mediated glycolipid uptake or costimulatory signals. Instead, loss of Atg5 in DCs impaired clathrin-dependent internalization of CD1D1 molecules via the adaptor protein complex 2 (AP2) and, thus, increased surface expression of stimulatory CD1D1-glycolipid complexes. These findings indicate that the autophagic machinery assists in the recruitment of AP2 to CD1D1 molecules resulting in attenuated iNKT cell activation, in contrast to the supporting role of macroautophagy in CD4+ T cell stimulation.  相似文献   

9.
Invariant natural killer T (iNKT) cells are involved in various autoimmune diseases. Although iNKT cells are arthritogenic, transforming growth factor beta (TGFβ)-treated tolerogenic peritoneal macrophages (Tol-pMφ) from wild-type (WT) mice are more tolerogenic than those from CD1d knock-out iNKT cell-deficient mice in a collagen-induced arthritis (CIA) model. The underlying mechanism by which pMφ can act as tolerogenic antigen presenting cells (APCs) is currently unclear. To determine cellular mechanisms underlying CD1d-dependent tolerogenicity of pMφ, in vitro and in vivo characteristics of pMφ were investigated. Unlike dendritic cells or splenic Mφ, pMφ from CD1d+/− mice showed lower expression levels of costimulatory molecule CD86 and produced lower amounts of inflammatory cytokines upon lipopolysaccharide (LPS) stimulation compared to pMφ from CD1d-deficient mice. In a CIA model of CD1d-deficient mice, adoptively transferred pMφ from WT mice reduced the severity of arthritis. However, pMφ from CD1d-deficient mice were unable to reduce the severity of arthritis. Hence, the tolerogenicity of pMφ is a cell-intrinsic property that is probably confer-red by iNKT cells during pMφ development rather than by interactions of pMφ with iNKT cells during antigen presentation to cognate T cells.  相似文献   

10.
《Epigenetics》2013,8(4):390-399
CD1d is a MHC class-like molecule that presents glycolipids to natural killer T (NKT) cells, then regulates innate and adaptive immunity. The regulation of CD1d gene expression in solid tumors is still largely unknown. Gene expression can be epigenetically regulated by DNA methylation and histone acetylation. We found that histone deacetylase inhibitors, trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), induced CD1d gene expression in human (A549 and NCI-H292) and mouse (TC-1 and B16/F0) cancer cells. Simultaneous knockdown of HDAC1 and 2 induced CD1d gene expression. Sp1 inhibitor mitramycin A (MTM) blocked TSA- and SAHA-induced CD1d mRNA expression and Sp1 luciferase activity. Co-transfection of GAL4-Sp1 and Fc-luciferase reporters demonstrated that TSA and SAHA induced Sp1 luciferase reporter activity by enhancing Sp1 transactivation activity. The binding of Sp1 to CD1d promoter and histone H3 acetylation on Sp1 sites were increased by TSA and SAHA. These results indicate that TSA and SAHA could up-regulate CD1d expression in tumor cells through inhibition of HDAC1/2 and activation of Sp1.  相似文献   

11.
CD1d is a MHC class-like molecule that presents glycolipids to natural killer T (NKT) cells, then regulates innate and adaptive immunity. The regulation of CD1d gene expression in solid tumors is still largely unknown. Gene expression can be epigenetically regulated by DNA methylation and histone acetylation. We found that histone deacetylase inhibitors, trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), induced CD1d gene expression in human (A549 and NCI-H292) and mouse (TC-1 and B16/F0) cancer cells. Simultaneous knockdown of HDAC1 and 2 induced CD1d gene expression. Sp1 inhibitor mitramycin A (MTM) blocked TSA- and SAHA-induced CD1d mRNA expression and Sp1 luciferase activity. Co-transfection of GAL4-Sp1 and Fc-luciferase reporters demonstrated that TSA and SAHA induced Sp1 luciferase reporter activity by enhancing Sp1 transactivation activity. The binding of Sp1 to CD1d promoter and histone H3 acetylation on Sp1 sites were increased by TSA and SAHA. These results indicate that TSA and SAHA could up-regulate CD1d expression in tumor cells through inhibition of HDAC1/2 and activation of Sp1.  相似文献   

12.
Our main objective was to analyze the role of lipid rafts in the activation of Vα-14? and Vα-14+ T hybridomas by dendritic cells. We showed that activation of Vα-14+ hybridomas by dendritic cells or other CD1d-expressing cells was altered by disruption of lipid rafts with the cholesterol chelator MβCD. However, CD1d presentation to autoreactive Vα-14? anti-CD1d hybridomas which do not require the endocytic pathway was not altered. Using partitioning of membrane fractions with Brij98 at 37°C, we confirmed that CD1d was enriched in subcellular fractions corresponding to lipid rafts and we describe that α-GalCer enhanced CD1d amount in the low density detergent insoluble fraction. We conclude that the membrane environment of CD1d can influence antigen presentation mainly when the endocytic pathway is required. Flow cytometry analysis can provide additional information on lipid rafts in plasma membranes and allows a dynamics follow-up of lipid rafts partitioning. Using this method, we showed that CD1d plasma membrane expression was sensitive to low concentrations of detergent. This may suggest either that CD1d is associated with lipid rafts mainly in intracellular membranes or that its association with the lipid rafts in the plasma membrane is weak.  相似文献   

13.
Novak J  Lehuen A 《Cytokine》2011,53(3):263-270
iNKT cells, CD1d dependent natural killer T cells are a unique population of T cells. The capacity of iNKT cells to produce regulatory cytokines first provided an indication of their regulatory potential. Later on, in experimental models as well as in patients afflicted with an auto-immune disease, such as Type 1 diabetes mellitus, multiple sclerosis, and systemic lupus erythematosus along with others, a deficit in iNKT cell number was observed, suggesting the role these cells may possibly have in the prevention of auto-immune diseases. More importantly, experimental strategies which focused on increasing the volume or stimulation of iNKT cells in laboratory animals, demonstrated an improved level of protection against the development of auto-immune diseases. This article reviews the mechanism of protection against autoimmunity by iNKT cells, discusses the obstacles against and indications for the potential use of iNKT cell manipulation in the treatment of human auto-immune diseases.  相似文献   

14.
15.

Background

T cell receptors (TCRs) can recognize diverse lipid and metabolite antigens presented by MHC-like molecules CD1 and MR1, and the molecular basis of many of these interactions has not been determined. Here we applied our protein docking algorithm TCRFlexDock, previously developed to perform docking of TCRs to peptide-MHC (pMHC) molecules, to predict the binding of αβ and γδ TCRs to CD1 and MR1, starting with the structures of the unbound molecules.

Results

Evaluating against TCR-CD1d complexes with crystal structures, we achieved near-native structures in the top 20 models for two out of four cases, and an acceptable-rated prediction for a third case. We also predicted the structure of an interaction between a MAIT TCR and MR1-antigen that has not been structurally characterized, yielding a top-ranked model that agreed remarkably with a characterized TCR-MR1-antigen structure that has a nearly identical TCR α chain but a different β chain, highlighting the likely dominance of the conserved α chain in MR1-antigen recognition. Docking performance was improved by re-training our scoring function with a set of TCR-pMHC complexes, and for a case with an outlier binding mode, we found that alternative docking start positions improved predictive accuracy. We then performed unbound docking with two mycolyl-lipid specific TCRs that recognize lipid-bound CD1b, which represent a class of interactions that is not structurally characterized. Highly-ranked models of these complexes showed remarkable agreement between their binding topologies, as expected based on their shared germline sequences, while differences in residue-level interactions with their respective antigens point to possible mechanisms underlying their distinct specificities.

Conclusions

Together these results indicate that flexible docking simulations can provide accurate models and atomic-level insights into TCR recognition of MHC-like molecules presenting lipid and other small molecule antigens.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-319) contains supplementary material, which is available to authorized users.  相似文献   

16.
Under static condition, the pool size of peripheral invariant natural killer T (iNKT) cells is determined by their homeostatic proliferation, survival and thymic input. However, the underlying mechanism is not fully understood. In the present study, we found that the percentage and number of iNKT cells were significantly reduced in the spleen, but not in the thymus of mice with deletion of polybromo‐1 (Pbrm1) compared to wild type (WT) mice. Pbrm1 deletion did not affect iNKT cell proliferation and survival, instead significantly impaired their development from stage 1 to stage 2. Importantly, loss of Pbrm1 led to a dysfunction of RORγt expression and iNKT17 cell differentiation, but not iNKT1 and iNKT2 proportion. Collectively, our study reveals a novel mechanism of Pbrm1 controlling the peripheral size of iNKT cells through regulating their development and differentiation.  相似文献   

17.
Intestinal homeostasis relies on a continuous dialogue between the commensal bacteria and the immune system. Natural killer T (NKT) cells, which recognize CD1d‐restricted microbial lipids and self‐lipids, contribute to the regulation of mucosal immunity, yet the mechanisms underlying their functions remain poorly understood. Here, we demonstrate that NKT cells respond to intestinal lipids and CD11c+ cells (including dendritic cells (DCs) and macrophages) are essential to mediate lipid presentation within the gut ultimately controlling intestinal NKT cell homeostasis and activation. Conversely, CD1d and NKT cells participate in the control of the intestinal bacteria composition and compartmentalization, in the regulation of the IgA repertoire and in the induction of regulatory T cells within the gut. These changes in intestinal homeostasis require CD1d expression on DC/macrophage populations as mice with conditional deletion of CD1d on CD11c+ cells exhibit dysbiosis and altered immune homeostasis. These results unveil the importance of CD11c+ cells in controlling lipid‐dependent immunity in the intestinal compartment and reveal an NKT cell–DC crosstalk as a key mechanism for the regulation of gut homeostasis.  相似文献   

18.
CD1 molecules belong to non-polymorphic MHC class I-like proteins and present lipid antigens to T cells. Five different CD1 genes (CD1a-e) have been identified and classified into two groups. Group 1 include CD1a-c and present pathogenic lipid antigens to αβ T cells reminiscence of peptide antigen presentation by MHC-I molecules. CD1d is the only member of Group 2 and presents foreign and self lipid antigens to a specialized subset of αβ T cells, NKT cells. NKT cells are involved in diverse immune responses through prompt and massive production of cytokines. CD1d-dependent NKT cells are categorized upon the usage of their T cell receptors. A major subtype of NKT cells (type I) is invariant NKT cells which utilize invariant Vα14-Jα18 TCR alpha chain in mouse. The remaining NKT cells (type II) utilize diverse TCR alpha chains. Engineered CD1d molecules with modified intracellular trafficking produce either type I or type II NKT cell-defects suggesting the lipid antigens for each subtypes of NKT cells are processed/generated in different intracellular compartments. Since the usage of TCR by a T cell is the result of antigen-driven selection, the intracellular metabolic pathways of lipid antigen are a key in forming the functional NKT cell repertoire. [BMB Reports 2014; 47(5): 241-248]  相似文献   

19.
To address the role of CD1d in mucosal immune regulation in bacterial infection, we infected CD1d KO mice with Listeria monocytogenes (Lm). A higher systemic bacterial burden associated with inflammatory lymphocytic infiltrations within the intestine was found in CD1d KO compared with wild type (WT) mice. Lm induced strong IFN-gamma mRNA expression in the liver of WT and the intestine of CD1d KO mice, thus demonstrating the dual, opposing immune activities of IFN-gamma in Lm infection that is dependent on CD1d and/or NKT cells. Analysis of hepatic T cell population demonstrated a reduction of NK1.1(+)TCRbeta+ cells in both mice, followed by recovery only in WT mice. Last, the proportion of alpha4beta1 integrin on lung lymphocytes from CD1d KO was dramatically increased compared with WT mice. Thus, the absence of CD1d resulted in increased susceptibility towards Listeria infection, induced changes in NKT cells, and increased trafficking of alpha4beta1 molecule to inflamed lung.  相似文献   

20.
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that regulate immune responses in cancer and various pathological conditions. However, the phenotypic and functional heterogeneity of human MDSCs represents a major hurdle for the development of therapeutic strategies targeting or regulating MDSCs in tumor progression, inflammation, and graft-versus-host disease (GVHD). We previously shown that circulating HLA-DR-CD14+ monocytic MDSCs are a major contributor to clinical outcomes after allogeneic hematopoietic stem cell transplantation (allo-HSCT). In this study, we identified, using high-throughput screening, a set of surface markers that are strongly expressed in HLA-DR-CD14+ monocytic MDSCs isolated from the peripheral blood (PB) of patients receiving allo-HSCT. Subsequent experiments showed the consistent dominant expression of CD1d in monocytic MDSCs of allo-HSCT PB in comparison with granulocytic MDSCs. In addition, CD1d-expressing cells isolated from PB of allo-HSCT patients showed the suppressive activity of T cell proliferation and higher expression of MyD88 and IDO compared with CD1d? cells. Our results suggest that CD1d could be a valuable marker for further therapeutic evaluation of human monocytic MDSCs for immune-related diseases, including GVHD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号