首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The gene products of the mutL and mutS loci play essential roles in the dam-directed mismatch repair in both Salmonella typhimurium LT2 and Escherichia coli K-12. Mutations in these genes result in a spontaneous mutator phenotype. We have cloned the mutL and mutS genes from S. typhimurium by generating mutL- and mutS-specific probes from an S. typhimurium mutL::Tn10 and an mutS::Tn10 strain and using these to screen an S. typhimurium library. Both the mutL and mutS genes from S. typhimurium were able to complement E. coli mutL and mutS strains, respectively. By a combination of Tn1000 insertion mutagenesis and the maxicell technique, the products of the mutL and mutS genes were shown to have molecular weights of 70,000 and 98,000 respectively. A phi (mutL'-lacZ+) gene fusion was constructed; no change in the expression of the fusion could be detected by treatment with DNA-damaging agents. In crude extracts, the MutS protein binds single-stranded DNA, but not double-stranded DNA, with high affinity.  相似文献   

3.
In Escherichia coli and related bacteria, the very-short-patch (VSP) repair pathway uses an endonuclease, Vsr, to correct T-G mismatches that result from the deamination of 5-methylcytosines in DNA to C-G. The products of mutS and mutL, which are required for adenine methylation-directed mismatch repair (MMR), enhance VSP repair. Multicopy plasmids carrying mutS alleles that are dominant negative for MMR were tested for their effects on VSP repair. Some mutS mutations (class I) did not lower VSP repair in a mutS(+) background, and most class I mutations increased VSP repair in mutS cells more than plasmids containing mutS(+). Other plasmid-borne mutS mutations (class II) and mutS(+) decreased VSP repair in the mutS(+) background. Thus, MutS protein lacking functions required for MMR can still participate in VSP repair, and our results are consistent with a model in which MutS binds transiently to the mispair and then translocates away from the mispair to create a specialized structure that enhances the binding of Vsr.  相似文献   

4.
We have recently described the presence of a high proportion of Pseudomonas aeruginosa isolates (20%) with an increased mutation frequency (mutators) in the lungs of cystic fibrosis (CF) patients. In four out of 11 independent P. aeruginosa strains, the high mutation frequency was found to be complemented with the wild-type mutS gene from P. aeruginosa PAO1. Here, we report the cloning and sequencing of two additional P. aeruginosa mismatch repair genes and the characterization, by complementation of deficient strains, of these two putative P. aeruginosa mismatch repair genes (mutL and uvrD). We also describe the alterations in the mutS, mutL and uvrD genes responsible for the mutator phenotype of hypermutable P. aeruginosa strains isolated from CF patients. Seven out of the 11 mutator strains were found to be defective in the MMR system (four mutS, two mutL and one uvrD). In four cases (three mutS and one mutL), the genes contained frameshift mutations. The fourth mutS strain showed a 3.3 kb insertion after the 10th nucleotide of the mutS gene, and a 54 nucleotide deletion between two eight nucleotide direct repeats. This deletion, involving domain II of MutS, was found to be the main one responsible for mutS inactivation. The second mutL strain presented a K310M mutation, equivalent to K307 in Escherichia coli MutL, a residue known to be essential for its ATPase activity. Finally, the uvrD strain had three amino acid substitutions within the conserved ATP binding site of the deduced UvrD polypeptide, showing defective mismatch repair activity. Interestingly, cells carrying this mutant allele exhibited a fully active UvrABC-mediated excision repair. The results shown here indicate that the putative P. aeruginosa mutS, mutL and uvrD genes are mutator genes and that their alteration results in a mutator phenotype.  相似文献   

5.
The MutS protein of Escherichia coli is part of the dam-directed MutHLS mismatch repair pathway which rectifies replication errors and which prevents recombination between related sequences. In order to more fully understand the role of MutS in these processes, dominant negative mutS mutations on a multicopy plasmid were isolated by screening transformed wild-type cells for a mutator phenotype, using a Lac+ papillation assay. Thirty-eight hydroxylamine- and 22 N-methyl-N'-nitro-N-nitrosoguanidine-induced dominant mutations were isolated. Nine of these mutations altered the P-loop motif of the ATP-binding site, resulting in four amino acid substitutions. With one exception, the remaining sequenced mutations all caused substitution of amino acids conserved during evolution. The dominant mutations in the P-loop consensus caused severely reduced repair of heteroduplex DNA in vivo in a mutS mutant host strain. In a wild-type strain, the level of repair was decreased by the dominant mutations to between 12 to 90% of the control value, which is consistent with interference of wild-type MutS function by the mutant proteins. Increasing the wild-type mutS gene dosage resulted in a reversal of the mutator phenotype in about 60% of the mutant strains, indicating that the mutant and wild-type proteins compete. In addition, 20 mutant isolates showed phenotypic reversal by increasing the gene copies of either mutL or mutH. There was a direct correlation between the levels of recombination and mutagenesis in the mutant strains, suggesting that these phenotypes are due to the same function of MutS.  相似文献   

6.
T K Bera  S K Ghosh    J Das 《Nucleic acids research》1989,17(15):6241-6251
The mutL and mutS genes of Vibrio cholerae have been identified using interspecific complementation of Escherichia coli mutL and mutS mutants with plasmids containing the gene bank of V. cholerae. The recombinant plasmid pJT470, containing a 4.7 kb fragment of V. cholerae DNA codes for a protein of molecular weight 92,000. The product of this gene reduces the spontaneous mutation frequency of the E. coli mutS mutant. The plasmid, designated pJT250, containing a 2.5 kb DNA fragment of V. cholerae and coding for a protein of molecular weight 62,000, complements the mutL gene function of E. coli mutL mutants. These gene products are involved in the repair of mismatches in DNA. The complete nucleotide sequence of mutL gene of V. cholerae has been determined.  相似文献   

7.
In prokaryotic mismatch repair the MutS protein and its homologs recognize the mismatches. The mutS gene of naturally transformable Pseudomonas stutzeri ATCC 17587 (genomovar 2) was identified and characterized. The deduced amino acid sequence (859 amino acids; 95.6 kDa) displayed protein domains I to IV and a mismatch-binding motif similar to those in MutS of Escherichia coli. A mutS::aac mutant showed 20- to 163-fold-greater spontaneous mutability. Transformation experiments with DNA fragments of rpoB containing single nucleotide changes (providing rifampin resistance) indicated that mismatches resulting from both transitions and transversions were eliminated with about 90% efficiency in mutS+. The mutS+ gene of strain ATCC 17587 did not complement an E. coli mutant but partially complemented a P. stutzeri JM300 mutant (genomovar 4). The declining heterogamic transformation by DNA with 0.1 to 14.6% sequence divergence was partially alleviated by mutS::aac, indicating that there was a 14 to 16% contribution of mismatch repair to sexual isolation. Expression of mutS+ from a multicopy plasmid eliminated autogamic transformation and greatly decreased heterogamic transformation, suggesting that there is strong limitation of MutS in the wild type for marker rejection. Remarkably, mutS::aac altered foreign DNA acquisition by homology-facilitated illegitimate recombination (HFIR) during transformation, as follows: (i) the mean length of acquired DNA was increased in transformants having a net gain of DNA, (ii) the HFIR events became clustered (hot spots) and less dependent on microhomologies, which may have been due to topoisomerase action, and (iii) a novel type of transformants (14%) had integrated foreign DNA with no loss of resident DNA. We concluded that in P. stutzeri upregulation of MutS could enforce sexual isolation and downregulation could increase foreign DNA acquisition and that MutS affects mechanisms of HFIR.  相似文献   

8.
MutS homologs, identified in nearly all bacteria and eukaryotes, include the bacterial proteins MutS1 and MutS2 and the eukaryotic MutS homologs 1 to 7, and they often are involved in recognition and repair of mismatched bases and small insertion/deletions, thereby limiting illegitimate recombination and spontaneous mutation. To explore the relationship of MutS2 to other MutS homologs, we examined conserved protein domains. Fundamental differences in structure between MutS2 and other MutS homologs suggest that MutS1 and MutS2 diverged early during evolution, with all eukaryotic homologs arising from a MutS1 ancestor. Data from MutS1 crystal structures, biochemical results from MutS2 analyses, and our phylogenetic studies suggest that MutS2 has functions distinct from other members of the MutS family. A mutS2 mutant was constructed in Helicobacter pylori, which lacks mutS1 and mismatch repair genes mutL and mutH. We show that MutS2 plays no role in mismatch or recombinational repair or deletion between direct DNA repeats. In contrast, MutS2 plays a significant role in limiting intergenomic recombination across a range of donor DNA tested. This phenotypic analysis is consistent with the phylogenetic and biochemical data suggesting that MutS1 and MutS2 have divergent functions.  相似文献   

9.
Liu X  Wu J  Zhang W  Ping S  Lu W  Chen M  Lin M 《Current microbiology》2008,57(1):66-71
MutS1 is a key protein involved in mismatch repair system for ensuring fidelity of replication and recombination in Deinococcus radiodurans. The zwf gene encodes glucose-6-phosphate dehydrogenase (G6PD) in the pentose phosphate (PP) pathway, which provides adequate metabolites as precursors of DNA repair. In this study, mutS1 and zwf were disrupted by homologous recombination. The zwf mutant (Deltazwf) and the zwf/mutS1 double mutant (Deltazwf/mutS1) were sensitive to ultraviolet (UV) light, H(2)O(2), and DNA cross-linking agent mitomycin C (MMC), whereas the mutS1 mutant (DeltamutS1) showed resistance to UV light, H(2)O(2) and MMC as the wild-type strain. Inactivation of mutS1 resulted in a 3.3-fold increase in frequency of spontaneous rifampicin-resistant mutagenesis and a 4.9-fold increment in integration efficiency of a donor point-mutation marker during bacterial transformation. Although inactivation of zwf had no obvious effect compared with the wild-type strain, dual disruption of zwf and mutS1 resulted in a 4.7-fold increase in mutation frequency and a 7.4-fold increase in integration efficiency. These results suggest that inactivation of the PP pathway decreases the resistance of D. radiodurans cells to DNA damaging agents and increases mutation frequency and integration efficiency in the mutS1 mutant background.  相似文献   

10.
The genus Acinetobacter encompasses a heterogeneous group of bacteria that are ubiquitous in the natural environment due in part to their ability to adapt genetically to novel challenges. Acinetobacter sp. strain ADP1 (also known as strain BD413) is naturally transformable and takes up DNA from any source. Donor DNA can be integrated into the chromosome by recombination provided it possesses sufficient levels of nucleotide sequence identity to the recipient's DNA. In other bacteria, the requirement for sequence identity during recombination is partly due to the actions of the mismatch repair system, a key component of which, MutS, recognizes mismatched bases in heteroduplex DNA and, along with MutL, blocks strand exchange. We have cloned mutS from strain ADP1 and examined its roles in preventing recombination between divergent DNA and in the repair of spontaneous replication errors. Inactivation of mutS resulted in 3- to 17-fold increases in transformation efficiencies with donor sequences that were 8 to 20% divergent relative to the strain ADP1. Strains lacking MutS exhibited increased spontaneous mutation frequencies, and reversion assays demonstrated that MutS preferentially recognized transition mismatches while having little effect on the repair of transversion mismatches. Inactivation of mutS also abolished the marker-specific variations in transforming efficiency seen in mutS(+) recipients where transition and frameshift alleles transformed at eightfold lower frequencies than transversions or large deletions. Comparison of the MutS homologs from five individual Acinetobacter strains with those of other gram-negative bacteria revealed that a number of unique indels are conserved among the Acinetobacter amino acid sequences.  相似文献   

11.
DNA repair systems able to correct base pair mismatches within newly replicated DNA or within heteroduplex molecules produced during recombination are widespread among living organisms. Evidence that such generalized mismatch repair systems evolved from a common ancestor is particularly strong for two of them, the Hex system of the gram-positive Streptococcus pneumoniae and the Mut system of the gram-negative Escherichia coli and Salmonella typhimurium. The homology existing between HexA and MutS and between HexB and MutL prompted us to investigate the effect of expressing hex genes in E. coli. Complementation of mutS or mutL mutations, which confer a mutator phenotype, was assayed by introducing on a multicopy plasmid the hexA and hexB genes, under the control of an inducible promoter, either individually or together in E. coli strains. No decrease in mutation rate was conferred by either hexA or hexB gene expression. However, a negative complementation effect was observed in wild-type E. coli cells: expression of hexA resulted in a typical Mut- mutator phenotype. hexB gene expression did not increase the mutation rate either individually or in conjunction with hexA. Since expression of hexA did not affect the mutation rate in mutS mutant cells and the hexA-induced mutator effect was recA independent, it is concluded that this effect results from inhibition of the Mut system. We suggest that HexA, like its homolog MutS, binds to mismatches resulting from replication errors, but in doing so it protects them from repair by the Mut system. In agreement with this hypothesis, an increase in mutS gene copy number abolished the hexA-induced mutator phenotype. HexA protein could prevent repair either by being unable to interact with Mut proteins or by producing nonfunctional repair complexes.  相似文献   

12.
Overexpression of the MutS repair protein significantly decreased the rate of lacZ GC --> TA transversion mutation in stationary-phase and exponentially growing bacteria and in mutY and mutM mutants, which accumulate mismatches between 8-oxoguanine (8-oxoG) and adenine residues in DNA. Conversely, GC --> TA transversion increased in mutL or mutS mutants in stationary phase. In contrast, overexpression of MutS did not appreciably reduce lacZ AT --> CG transversion mutation in a mutT mutant. These results suggest that MutS-dependent repair can correct 8-oxoG:A mismatches in Escherichia coli cells but may not be able to compete with mutation fixation by MutY in mutT mutants.  相似文献   

13.
Chlorambucil (CLB) is a bifunctional alkylating drug widely used as an anticancer agent and as an immunosuppressant. It is known to be mutagenic, teratogenic and carcinogenic. The cellular actions of CLB have remained poorly investigated. It is very likely that DNA damage and its repair are the key elements determining the destiny of CLB-exposed cells. We investigated the role of two specific DNA repair pathways involved in CLB-induced mutagenicity and gene expression changes by using Escherichia coli strains lacking either (i) two DNA methyltransferase functions (O(6)-methylguanine-DNA methyltransferase I (ada) and II (ogt)), or (ii) mismatch repair (MutS (mutS)). Mutagenicity was determined as the development of ciproxin and rifampicin resistance and the gene expression changes were assessed using expression profiling of all E. coli 4290 open reading frames (ORFs) by cDNA array. Chlorambucil-induced mutants in mutS cells, implying the importance of mismatch repair in preventing CLB-induced mutations. It also induced mutants in the ada, ogt strain, but to a lesser extent than in the wild-type strain. The simultaneous upregulation of several genes of the SOS response, cellular efflux and oxidative stress response, was demonstrated in both of the DNA repair-deficient strains but not in the wild-type cells. These and our previous results show that single-gene knock-out cells use specific gene regulation strategies to avoid mutations and cell death induced by agents such as chlorambucil.  相似文献   

14.
The human gastric pathogenic bacterium Helicobacter pylori lacks a MutSLH-like DNA mismatch repair system. Here, we have investigated the functional roles of a mutS homologue found in H. pylori, and show that it plays an important physiological role in repairing oxidative DNA damage. H. pylori mutS mutants are more sensitive than wild-type cells to oxidative stress induced by agents such as H2O2, paraquat or oxygen. Exposure of mutS cells to oxidative stress results in a significant ( approximately 10-fold) elevation of mutagenesis. Strikingly, most mutations in mutS cells under oxidative stress condition are G:C to T:A transversions, a signature of 8-oxoguanine (8-oxoG). Purified H. pylori MutS protein binds with a high specific affinity to double-stranded DNA (dsDNA) containing 8-oxoG as well as to DNA Holliday junction structures, but only weakly to dsDNA containing a G:A mismatch. Under oxidative stress conditions, mutS cells accumulate higher levels (approximately threefold) of 8-oxoG DNA lesions than wild-type cells. Finally, we observe that mutS mutant cells have reduced colonization capacity in comparison to wild-type cells in a mouse infection model.  相似文献   

15.
Homologs of the Escherichia coli (mutL, S and uvrD) and Streptococcus pneumoniae (hexA, B) genes involved in mismatch repair are known in several distantly related organisms. Degenerate oligonucleotide primers based on conserved regions of E. coli MutS protein and its homologs from Salmonella typhimurium, S. pneumoniae and human were used in the polymerase chain reaction (PCR) to amplify and clone mutS/hexA homologs from Saccharomyces cerevisiae. Two DNA sequences were amplified whose deduced amino acid sequences both shared a high degree of homology with MutS. These sequences were then used to clone the full-length genes from a yeast genomic library. Sequence analysis of the two MSH genes (MSH = mutS homolog), MSH1 and MSH2, revealed open reading frames of 2877 bp and 2898 bp. The deduced amino acid sequences predict polypeptides of 109.3 kD and 109.1 kD, respectively. The overall amino acid sequence identity with the E. coli MutS protein is 28.6% for MSH1 and 25.2% for MSH2. Features previously found to be shared by MutS homologs, such as the nucleotide binding site and the helix-turn-helix DNA binding motif as well as other highly conserved regions whose function remain unknown, were also found in the two yeast homologs. Evidence presented in this and a companion study suggest that MSH1 is involved in repair of mitochondrial DNA and that MSH2 is involved in nuclear DNA repair.  相似文献   

16.
Deletion mutation analysis of the mutS gene in Escherichia coli   总被引:1,自引:0,他引:1  
The MutS protein is part of the dam-directed MutHLS mismatch repair pathway in Escherichia coli. We have constructed deletion derivatives in the mutS gene, which retain the P-loop coding region for ATP binding. The mutant proteins were assayed for ATP hydrolysis, heteroduplex DNA binding, heterodimer MutS formation, and the ability to interact with MutL. Dimerization was assayed by expressing His6-tagged wild-type and non-tagged deletion mutant proteins in the same cell and isolating the His6-tagged protein followed by MutS immunoblotting after SDS-polyacrylamide gel electrophoresis. MutS-MutL interaction was measured using the same technique except that the MutL protein carried the His6 tag. Our results indicate that DNA binding ability resides in the N-terminal end of MutS, and dimerization and MutL interactions are located in the C-terminal end. Given the extensive amino acid homology in the MutS family our results with E. coli should be applicable to MutS homologues in other prokaryotes and eukaryotes.  相似文献   

17.
18.
After pulse-labeling with 3H-thymidine for 30 s at 42 degrees C, the newly-synthesized DNA from uvrB5 lig-7, uvrB5 lig-7 ung-1 (or ung152), uvrB5 lig-7 mutL218 (or mutS215), and uvrB5 lig-7 ung-1 mutL218 (or mutS215) cells sedimented very slowly in alkaline sucrose gradients. The bulk of these DNA molecules were smaller than 2,000 nucleotides long (i.e., about the size of Okazaki fragments), and none of the 3H-radioactivity was found to sediment as high-molecular-weight DNA. These results indicate that the apparent discontinuous DNA replication observed in lig-7 strains is not the result of mismatch repair, nucleotide-excision repair, or the base-excision repair of DNA uracil.  相似文献   

19.
Mispair specificity of methyl-directed DNA mismatch correction in vitro   总被引:52,自引:0,他引:52  
To evaluate the substrate specificity of methyl-directed mismatch repair in Escherichia coli extracts, we have constructed a set of DNA heteroduplexes, each of which contains one of the eight possible single base pair mismatches and a single hemimethylated d(GATC) site. Although all eight mismatches were located at the same position within heteroduplex molecules and were embedded within the same sequence environment, they were not corrected with equal efficiencies in vitro. G-T was corrected most efficiently, with A-C, C-T, A-A, T-T, and G-G being repaired at rates 40-80% of that of the G-T mispair. Correction of each of these six mispairs occurred in a methyl-directed manner in a reaction requiring mutH, mutL, and mutS gene products. C-C and A-G mismatches showed different behavior. C-C was an extremely poor substrate for correction while repair of A-G was anomalous. Although A-G was corrected to A-T by the mutHLS-dependent, methyl-directed pathway, repair of A-G to C-G occurred largely by a pathway that is independent of the methylation state of the heteroduplex and which does not require mutH, mutL, or mutS gene products. Similar results were obtained with a second A-G mismatch in a different sequence environment suggesting that a novel pathway may exist for processing A-G mispairs to C-G base pairs. As judged by DNase I footprint analysis, MutS protein is capable of recognizing each of the eight possible base-base mismatches. Use of this method to estimate the apparent affinity of MutS protein for each of the mispairs revealed a rough correlation between MutS affinity and efficiency of correction by the methyl-directed pathway. However, the A-C mismatch was an exception in this respect indicating that interactions other than mismatch recognition may contribute to the efficiency of repair.  相似文献   

20.
M Lieb 《Journal of bacteriology》1987,169(11):5241-5246
Certain amber mutations in the cI gene of bacteriophage lambda appear to recombine very frequently with nearby mutations. The aberrant mutations included C-to-T transitions at the second cytosine in 5'CC(A/T)GG sequences (which are subject to methylation by bacterial cytosine methylase) and in 5'CCAG and 5'CAGG sequences. Excess cI+ recombinants arising in crosses that utilize these mutations are attributable to the correction of mismatches by a bacterial very-short-patch (VSP) mismatch repair system. In the present study I found that two genes required for methyladenine-directed (long-patch) mismatch repair, mutL and mutS, also functioned in VSP mismatch repair; mutH and mutU (uvrD) were dispensable. VSP mismatch repair was greatly reduced in a dcm Escherichia coli mutant, in which 5-methylcytosine was not methylated. However, mismatches in heteroduplexes prepared from lambda DNA lacking 5-methylcytosine were repaired in dcm+ bacteria. These results indicate that the product of gene dcm has a repair function in addition to its methylase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号