首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Vertebrate head development depends on a series of interactions between many cell populations of distinct embryological origins. Cranial mesenchymal tissues have a dual embryonic source: - the neural crest (NC), which generates most of craniofacial skeleton, dermis, pericytes, fat cells, and tenocytes; and - the mesoderm, which yields muscles, blood vessel endothelia and some posterior cranial bones. The molecular players that orchestrate co-development of cephalic NC and mesodermal cells to properly construct the head of vertebrates remain poorly understood. In this regard, Six1 gene, a vertebrate homolog of Drosophila Sine Oculis, is known to be required for development of ear, nose, tongue and cranial skeleton. However, the embryonic origin and fate of Six1-expressing cells have remained unclear. In this work, we addressed these issues in the avian embryo model by using quail-chick chimeras, cephalic NC cultures and immunostaining for SIX1.

Results

Our data show that, at early NC migration stages, SIX1 is expressed by mesodermal cells but excluded from the NC cells (NCC). Then, SIX1 becomes widely expressed in NCC that colonize the pre-otic mesenchyme. In contrast, in the branchial arches (BAs), SIX1 is present only in mesodermal cells that give rise to jaw muscles. At later developmental stages, the distribution of SIX1-expressing cells in mesoderm-derived tissues is consistent with a possible role of this factor in the myogenic program of all types of head muscles, including pharyngeal, extraocular and tongue muscles. In NC derivatives, SIX1 is notably expressed in perichondrium and chondrocytes of the nasal septum and in the sclera, although other facial cartilages such as Meckel’s were negative at the stages considered. Moreover, in cephalic NC cultures, chondrocytes and myofibroblasts, not the neural and melanocytic cells express SIX1.

Conclusion

The present results point to a dynamic tissue-specific expression of SIX1 in a variety of cephalic NC- and mesoderm-derived cell types and tissues, opening the way for further analysis of Six1 function in the coordinated development of these two cellular populations during vertebrate head formation.
  相似文献   

2.
In the vertebrate head, mesoderm cells fuse together to form a myofiber, which is attached to specific cranial neural crest (CNC)-derived skeletal elements in a highly coordinated manner. Although it has long been recognized that CNC plays a role in the formation of the head musculature, the precise molecular underpinnings of this process remain elusive. In the present study we explored the nature of the crosstalk between CNC and mesoderm cells during head muscle development, employing three models for genetic perturbations of CNC development in mice, as well as experimental ablation of CNC in chick embryos. We demonstrate that although early myogenesis is CNC-independent, the migration, patterning and differentiation of muscle precursors are regulated by CNC. In the absence of CNC cells, accumulated myoblasts are kept in a proliferative state, presumably because of an increase of Fgf8 in adjacent tissues, which leads to abnormalities in both differentiation and subsequent myofiber organization in the head. These results have uncovered a surprising degree of complexity and multiple distinct roles for CNC in the patterning and differentiation of muscles during craniofacial development. We suggest that CNC cells control craniofacial development by regulating positional interactions with mesoderm-derived muscle progenitors that together shape the cranial musculoskeletal architecture in vertebrate embryos.  相似文献   

3.
Cranial neural crest cells (CNCCs) give rise to cranial mesenchyme (CM) that differentiates into the forebrain meningeal progenitors in the basolateral and apical regions of the head. This occurs in close proximity to the other CNCC‐CM‐derivatives, such as calvarial bone and dermal progenitors. We found active Wnt signaling transduction in the forebrain meningeal progenitors in basolateral and apical populations and in the non‐meningeal CM preceding meningeal differentiation. Here, we dissect the source of Wnt ligand secretion and requirement of Wnt/β‐catenin signaling for the lineage selection and early differentiation of the forebrain meninges. We find persistent canonical Wnt/β‐catenin signal transduction in the meningeal progenitors in the absence of Wnt ligand secretion in the CM or surface ectoderm, suggesting additional sources of Wnts. Conditional mutants for Wntless and β‐catenin in the CM showed that Wnt ligand secretion and Wnt/β‐catenin signaling were dispensable for specification and proliferation of early meningeal progenitors. In the absence of β‐catenin in the CM, we found diminished laminin matrix and meningeal hypoplasia, indicating a structural and trophic role of mesenchymal β‐catenin signaling. This study shows that β‐catenin signaling is required in the CM for maintenance and organization of the differentiated meningeal layers in the basolateral and apical populations of embryonic meninges.  相似文献   

4.
Retinoids, and in particular retinoic acid (RA), are known to induce posterior fates in neural tissue. However, alterations in retinoid signalling dramatically affect anterior development. Previous reports have demonstrated a late role for retinoids in patterning craniofacial and forebrain structures, but an earlier role in anterior patterning is not well understood. We show that enzymes involved in synthesizing retinoids are expressed in the avian hypoblast and in tissues directly involved in head patterning, such as anterior definitive endoderm and prechordal mesendoderm. We found that in the vitamin A-deficient (VAD) quail model, which lacks biologically active RA from the first stages of development, anterior endodermal markers such as Bmp2, Bmp7, Hex and the Wnt antagonist crescent are affected during early gastrulation. Furthermore, prechordal mesendodermal and prospective ventral telencephalic markers are expanded posteriorly, Shh expression in the axial mesoderm is reduced, and Bmp2 and Bmp7 are abnormally expressed in the ventral midline of the neural tube. At early somite stages, VAD embryos have increased cell death in ventral neuroectoderm and foregut endoderm, but normal cranial neural crest production, whereas at later stages extensive apoptosis occurs in head mesenchyme and ventral neuroectoderm. As a result, VAD embryos end up with a single and reduced telencephalic vesicle and an abnormally patterned diencephalon. Therefore, we propose that retinoids have a dual role in patterning the anterior forebrain during development. During early gastrulation, RA acts in anterior endodermal cells to modulate the anteroposterior (AP) positional identity of prechordal mesendodermal inductive signals to the overlying neuroectoderm. Later on, at neural pore closure, RA is required for patterning of the mesenchyme of the frontonasal process and the forebrain by modulating signalling molecules involved in craniofacial morphogenesis.  相似文献   

5.
Eph receptors and their ligands ephrins have been implicated in guiding the directed migration of neural crest cells (NCCs). In this study, we found that Wnt1-Cre-mediated expression of ephrinA5-Fc along the dorsal midline of the dien- and mesencephalon resulted in severe craniofacial malformation of mouse embryo. Interestingly, expression of cephalic NCC markers decreased significantly in the frontonasal process and branchial arches 1 and 2, which are target areas for the migratory cephalic NCCs originating in the dien- and mesencephalon. In addition, these craniofacial tissues were much smaller in mutant embryos expressing ephrinA5-Fc. Importantly, EphA7-positive cephalic NCCs were absent along the dorsal dien- and mesencephalon of mutant embryos expressing ephrinA5-Fc, suggesting that the generation of cephalic NCCs is disrupted due to ephrinA5-Fc expression. NCC explant experiments suggested that ephrinA5-Fc perturbed survival of cephalic NCC precursors in the dorsal midline tissue rather than affecting their migratory capacity, which was consistent with our previous report that expression of ephrinA5-Fc in the dorsal midline is responsible for severe neuroepithelial cell apoptotic death. Taken together, our findings strongly suggest that expression of ephrinA5-Fc decreases a population of cephalic NCC precursors in the dorsal midline of the dien- and mesencephalon, thereby disrupting craniofacial development in the mouse embryos.  相似文献   

6.
7.
Cardiac and cephalic neural crest cells (NCCs) are essential components of the craniofacial and aortic arch mesenchyme. Genetic disruption of the platelet-derived growth factor receptor alpha (PDGFRalpha) results in defects in multiple tissues in the mouse, including neural crest derivatives contributing to the frontonasal process and the aortic arch. Using chimeric analysis, we show that loss of the receptor in NCCs renders them inefficient at contributing to the cranial mesenchyme. Conditional gene ablation in NCCs results in neonatal lethality because of aortic arch defects and a severely cleft palate. The conotruncal defects are first observed at E11.5 and are consistent with aberrant NCC development in the third, fourth and sixth branchial arches, while the bone malformations present in the frontonasal process and skull coincide with defects of NCCs from the first to third branchial arches. Changes in cell proliferation, migration, or survival were not observed in PDGFRalpha NCC conditional embryos, suggesting that the PDGFRalpha may play a role in a later stage of NCC development. Our results demonstrate that the PDGFRalpha plays an essential, cell-autonomous role in the development of cardiac and cephalic NCCs and provides a model for the study of aberrant NCC development.  相似文献   

8.
Notch signaling is involved in neurogenesis, including that of the peripheral nervous system as derived from neural crest cells (NCCs). However, it remains unclear which step is regulated by this signaling. To address this question, we took advantage of the Cre-loxP system to specifically eliminate the protein O-fucosyltransferase 1 (Pofut1) gene, which is a core component of Notch signaling, in NCCs. NCC-specific Pofut1-knockout mice died within 1 day of birth, accompanied by a defect of enteric nervous system (ENS) development. These embryos showed a reduction in enteric neural crest cells (ENCCs) resulting from premature neurogenesis. We found that Sox10 expression, which is normally maintained in ENCC progenitors, was decreased in Pofut1-null ENCCs. By contrast, the number of ENCCs that expressed Mash1, a potent repressor of Sox10, was increased in the Pofut1-null mouse. Given that Mash1 is suppressed via the Notch signaling pathway, we propose a model in which ENCCs have a cell-autonomous differentiating program for neurons as reflected in the expression of Mash1, and in which Notch signaling is required for the maintenance of ENS progenitors by attenuating this cell-autonomous program via the suppression of Mash1.  相似文献   

9.
Lim1 is a homeobox gene expressed in the extraembryonic anterior visceral endoderm and in primitive streak-derived tissues of early mouse embryos. Mice homozygous for a targeted mutation of Lim1 lack head structures anterior to rhombomere 3 in the hindbrain. To determine in which tissues Lim1 is required for head formation and its mode of action, we have generated chimeric mouse embryos and performed tissue layer recombination explant assays. In chimeric embryos in which the visceral endoderm was composed of predominantly wild-type cells, we found that Lim1(-)(/)(-) cells were able to contribute to the anterior mesendoderm of embryonic day 7.5 chimeric embryos but that embryonic day 9.5 chimeric embryos displayed a range of head defects. In addition, early somite stage chimeras generated by injecting Lim1(-)(/)(-) embryonic stem cells into wild-type tetraploid blastocysts lacked forebrain and midbrain neural tissue. Furthermore, in explant recombination assays, anterior mesendoderm from Lim1(-)(/)(-) embryos was unable to maintain the expression of the anterior neural marker gene Otx2 in wild-type ectoderm. In complementary experiments, embryonic day 9.5 chimeric embryos in which the visceral endoderm was composed of predominantly Lim1(-)(/)(-) cells and the embryo proper of largely wild-type cells, also phenocopied the Lim1(-)(/)(-) headless phenotype. These results indicate that Lim1 is required in both primitive streak-derived tissues and visceral endoderm for head formation and that its inactivation in these tissues produces cell non-autonomous defects. We discuss a double assurance model in which Lim1 regulates sequential signaling events required for head formation in the mouse.  相似文献   

10.
The prosencephalon, or embryonic forebrain, grows within a mesenchymal matrix of local paraxial mesoderm and of neural crest cells (NCC) derived from the posterior diencephalon and mesencephalon. Part of this NCC population forms the outer wall of capillaries within the prosencephalic leptomeninges and neuroepithelium itself. The surgical removal of NCC from the anterior head of chick embryos leads to massive cell death within the forebrain neuroepithelium during an interval that precedes its vascularization by at least 36 hours. During this critical period, a mesenchymal layer made up of intermingled mesodermal cells and NCC surround the neuroepithelium. This layer is not formed after anterior cephalic NCC ablation. The neuroepithelium then undergoes massive apoptosis. Cyclopia ensues after forebrain deterioration and absence of intervening frontonasal bud derivatives. The deleterious effect of ablation of the anterior NC cannot be interpreted as a deficit in vascularization because it takes place well before the time when blood vessels start to invade the neuroepithelium. Thus the mesenchymal layer itself exerts a trophic effect on the prosencephalic neuroepithelium. In an assay to rescue the operated phenotype, we found that the rhombencephalic but not the truncal NC can successfully replace the diencephalic and mesencephalic NC. Moreover, any region of the paraxial cephalic mesoderm can replace NCC in their dual function: in their early trophic effect and in providing pericytes to the forebrain meningeal blood vessels. The assumption of these roles by the cephalic neural crest may have been instrumental in the rostral expansion of the vertebrate forebrain over the course of evolution.  相似文献   

11.
Loss of Twist function in the cranial mesenchyme of the mouse embryo causes failure of closure of the cephalic neural tube and malformation of the branchial arches. In the Twist(-/-) embryo, the expression of molecular markers that signify dorsal forebrain tissues is either absent or reduced, but those associated with ventral tissues display expanded domains of expression. Dorsoventral organization of the mid- and hindbrain and the anterior-posterior pattern of the neural tube are not affected. In the Twist(-/-) embryo, neural crest cells stray from the subectodermal migratory path and the late-migrating subpopulation invades the cell-free zone separating streams of cells going to the first and second branchial arches. Cell transplantation studies reveal that Twist activity is required in the cranial mesenchyme for directing the migration of the neural crest cells, as well as in the neural crest cells within the first branchial arch to achieve correct localization. Twist is also required for the proper differentiation of the first arch tissues into bone, muscle, and teeth.  相似文献   

12.
Proper craniofacial development begins during gastrulation and requires the coordinated integration of each germ layer tissue (ectoderm, mesoderm, and endoderm) and its derivatives in concert with the precise regulation of cell proliferation, migration, and differentiation. Neural crest cells, which are derived from ectoderm, are a migratory progenitor cell population that generates most of the cartilage, bone, and connective tissue of the head and face. Neural crest cell development is regulated by a combination of intrinsic cell autonomous signals acquired during their formation, balanced with extrinsic signals from tissues with which the neural crest cells interact during their migration and differentiation. Although craniofacial anomalies are typically attributed to defects in neural crest cell development, the cause may be intrinsic or extrinsic. Therefore, we performed a phenotype-driven ENU mutagenesis screen in mice with the aim of identifying novel alleles in an unbiased manner, that are critically required for early craniofacial development. Here we describe 10 new mutant lines, which exhibit phenotypes affecting frontonasal and pharyngeal arch patterning, neural and vascular development as well as sensory organ morphogenesis. Interestingly, our data imply that neural crest cells and endothelial cells may employ similar developmental programs and be interdependent during early embryogenesis, which collectively is critical for normal craniofacial morphogenesis. Furthermore our novel mutants that model human conditions such as exencephaly, craniorachischisis, DiGeorge, and Velocardiofacial sydnromes could be very useful in furthering our understanding of the complexities of specific human diseases.  相似文献   

13.
The ATP-binding cassette (ABC) transporter 2 (ABCG2) is expressed by stem cells in many organs and in stem cells of solid tumors. These cells are isolated based on the side population (SP) phenotype, a Hoechst 3342 dye efflux property believed to be conferred by ABCG2. Because of the limitations of this approach we generated transgenic mice that express Nuclear GFP (GFPn) coupled to the Puromycin-resistance gene, under the control of ABCG2 promoter/enhancer sequences. We show that ABCG2 is expressed in neural progenitors of the developing forebrain and spinal cord and in embryonic and adult endothelial cells of the brain. Using the neurosphere assay, we isolated tripotent ABCG2-expressing neural stem cells from embryonic mouse brain. This transgenic line is a powerful tool for studying the expression of ABCG2 in many tissues and for performing functional studies in different experimental settings.  相似文献   

14.
Neural crest cells that form the vertebrate head skeleton migrate and interact with surrounding tissues to shape the skull, and defects in these processes underlie many human craniofacial syndromes. Signals at the midline play a crucial role in the development of the anterior neurocranium, which forms the ventral braincase and palate, and here we explore the role of Hedgehog (Hh) signaling in this process. Using sox10:egfp transgenics to follow neural crest cell movements in the living embryo, and vital dye labeling to generate a fate map, we show that distinct populations of neural crest form the two main cartilage elements of the larval anterior neurocranium: the paired trabeculae and the midline ethmoid. By analyzing zebrafish mutants that disrupt sonic hedgehog (shh) expression, we demonstrate that shh is required to specify the movements of progenitors of these elements at the midline, and to induce them to form cartilage. Treatments with cyclopamine, to block Hh signaling at different stages, suggest that although requirements in morphogenesis occur during neural crest migration beneath the brain, requirements in chondrogenesis occur later, as cells form separate trabecular and ethmoid condensations. Cell transplantations indicate that these also reflect different sources of Shh, one from the ventral neural tube that controls trabecular morphogenesis and one from the oral ectoderm that promotes chondrogenesis. Our results suggest a novel role for Shh in the movements of neural crest cells at the midline, as well as in their differentiation into cartilage, and help to explain why both skeletal fusions and palatal clefting are associated with the loss of Hh signaling in holoprosencephalic humans.  相似文献   

15.
Neural progenitors self-renew and generate neurons throughout the central nervous system. Here, we uncover an unexpected regional specificity in the properties of neural progenitor cells, revealed by the function of a microRNA--miR-9. miR-9 is expressed in neural progenitors, and its knockdown results in an inhibition of neurogenesis along the anterior-posterior axis. However, the underlying mechanism differs--in the hindbrain, progenitors fail to exit the cell cycle, whereas in the forebrain they undergo apoptosis, counteracting the proliferative effect. Among several targets, we functionally identify hairy1 as a primary target of miR-9, regulated at the mRNA level. hairy1 mediates the effects of miR-9 on proliferation, through Fgf8 signaling in the forebrain and Wnt signaling in the hindbrain, but affects apoptosis only in the forebrain, via the p53 pathway. Our findings show a positional difference in the responsiveness of progenitors to miR-9 depletion, revealing an underlying divergence of their properties.  相似文献   

16.
Closure of the cranial neural tube depends on normal development of the head mesenchyme. Homozygous-mutant embryos for the ENU-induced open mind (opm) mutation exhibit exencephaly associated with defects in head mesenchyme development and dorsal-lateral hinge point formation. The head mesenchyme in opm mutant embryos is denser than in wildtype embryos and displays an abnormal cellular organization. Since cells that originate from both the cephalic paraxial mesoderm and the neural crest populate the head mesenchyme, we explored the origin of the abnormal head mesenchyme. opm mutant embryos show apparently normal development of neural crest-derived structures. Furthermore, the abnormal head mesenchyme in opm mutant embryos is not derived from the neural crest, but instead expresses molecular markers of cephalic mesoderm. We also report the identification of the opm mutation in the ubiquitously expressed Hectd1 E3 ubiquitin ligase. Two different Hectd1 alleles cause incompletely penetrant neural tube defects in heterozygous animals, indicating that Hectd1 function is required at a critical threshold for neural tube closure. This low penetrance of neural tube defects in embryos heterozygous for Hectd1 mutations suggests that Hectd1 should be considered as candidate susceptibility gene in human neural tube defects.  相似文献   

17.
In the mouse embryo the anterior ectoderm undergoes extensive growth and morphogenesis to form the forebrain and cephalic non-neural ectoderm. We traced descendants of single ectoderm cells to study cell fate choice and cell behaviour at late gastrulation. In addition, we provide a comprehensive spatiotemporal atlas of anterior gene expression at stages crucial for anterior ectoderm regionalisation and neural plate formation. Our results show that, at late gastrulation stage, expression patterns of anterior ectoderm genes overlap significantly and correlate with areas of distinct prospective fates but do not define lineages. The fate map delineates a rostral limit to forebrain contribution. However, no early subdivision of the presumptive forebrain territory can be detected. Lineage analysis at single-cell resolution revealed that precursors of the anterior neural ridge (ANR), a signalling centre involved in forebrain development and patterning, are clonally related to neural ectoderm. The prospective ANR and the forebrain neuroectoderm arise from cells scattered within the same broad area of anterior ectoderm. This study establishes that although the segregation between non-neural and neural precursors in the anterior midline ectoderm is not complete at late gastrulation stage, this tissue already harbours elements of regionalisation that prefigure the later organisation of the head.  相似文献   

18.
19.
I Nasrallah  J A Golden 《Teratology》2001,64(2):107-113
BACKGROUND: Normal development of the face, eyes, and brain requires the coordinated expression of many genes. One gene that has been implicated in the development of each of these structures encodes the secreted protein, Sonic hedgehog (Shh). During central nervous system development, Shh is required for ventral specification along the entire neural axis. To further explore the role of Shh in chick brain and craniofacial development, we overexpressed Shh in the developing rostral neural tube METHODS: In order to determine if Shh is sufficient to ventralize the forebrain, we localized ectopically recombinant Shh protein to the rostral neural tube of chick embryos. The resulting embryos were evaluated morphologically and by assaying gene expression. RESULTS: Disruption in normal gene expression patterns was observed with a reduction or loss in expression of genes normally expressed in the dorsal forebrain (wnt-3a, wnt-4, and Pax-6) and expansion of ventrally expressed genes dorsally (HNF-3beta, Ptc). In addition to the genetic alterations observed in the neural tube, a craniofacial phenotype characterized by a reduction in many cranial neural crest-derived structures was observed. The eyes of Shh-treated embryos were also malformed. They were small with expansion of the retinal pigmented epithelium, enlarged optic stalks, and a reduction of neural retina. DISCUSSION: The ectopic localization of recombinant Shh protein in the rostral neural tube resulted in severe craniofacial anomalies and alterations of gene expression predicted by other studies. The system employed appears to be a model for studying the embryogenesis of malformations that involve the brain, eyes, and face.  相似文献   

20.
Neural crest progenitor cells are the main contributors to craniofacial cartilage and connective tissue of the vertebrate head. These progenitor cells also give rise to the pigment, neuronal and glial cell lineages. To study the molecular basis of neural crest differentiation, we have cloned the gene disrupted in the mont blanc (mob(m610)) mutation, which affects all neural crest derivatives. Using a positional candidate cloning approach we identified an A to G transition within the 3' splice site of the sixth intron of the tfap2a gene that abolishes the last exon encoding the crucial protein dimerization and DNA-binding domains. Neural crest induction and specification are not hindered in mob(m610) mutant embryos, as revealed by normal expression of early neural crest specific genes such as snail2, foxd3 and sox10. In addition, the initial stages of cranial neural crest migration appear undisturbed, while at a later phase the craniofacial primordia in pharyngeal arches two to seven fail to express their typical set of genes (sox9a, wnt5a, dlx2, hoxa2/b2). In mob(m610) mutant embryos, the cell number of neuronal and glial derivatives of neural crest is greatly reduced, suggesting that tfap2a is required for their normal development. By tracing the fate of neural crest progenitors in live mont blanc (mob(m610)) embryos, we found that at 24 hpf neural crest cells migrate normally in the first pharyngeal arch while the preotic and postotic neural crest cells begin migration but fail to descend to the pharyngeal region of the head. TUNEL assay and Acridine Orange staining revealed that in the absence of tfap2a a subset of neural crest cells are unable to undergo terminal differentiation and die by apoptosis. Furthermore, surviving neural crest cells in tfap2a/mob(m610) mutant embryos proliferate normally and later differentiate to individual derivatives. Our results indicate that tfap2a is essential to turn on the normal developmental program in arches 2-7 and in trunk neural crest. Thus, tfap2a does not appear to be involved in early specification and cell proliferation of neural crest, but it is a key regulator of an early differentiation phase and is required for cell survival in neural crest derived cell lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号