首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Body composition estimates from dual-energy X-ray absorptiometry and stable isotope dilution ((2)H and (18)O) were compared in 61 rhesus monkeys (Macaca mulatta) from the ongoing long-term energy restriction study at the University of Wisconsin. Their average age was 18.9 +/- 2.5 y/o. Of the animals, 51% were in the energy restricted group and 38% were females. Although the correlation between methods was highly significant for fat mass (R(2) = 0.97, SEE = 0.25 kg or 7.5%, P < 0.0001) and fat-free mass (R(2) = 0.98, SEE = 0.29 kg or 3.6%, P < 0.0001), we observed that dual-energy X-ray absorptiometry underestimated fat mass by 0.67 +/- 0.26 kg (7.5%, P < 0.0001) and overestimated fat-free mass by 0.57 +/- 0.29 kg (20%, P < 0.0001) when compared with isotope dilution. Taken together with data from the literature, the present results emphasize the usefulness of dual-energy X-ray absorptiometry to derive body composition and thus nutritional status in monkeys, but demonstrate the importance of validation experiments for a given DXA model and software.  相似文献   

2.
The present study was aimed at evaluating the feasibility and reliability of lower limb skeletal muscle (SM) mass estimates obtained by bioimpedance analysis (BIA). BIA estimates were compared with the estimates obtained by dual-energy X-ray absorptiometry (DXA). Ten normal weight and 10 obese women had BIA and DXA evaluations. Lower limb SM mass was then derived from DXA appendicular lean soft tissue estimates. Lower limb SM mass and SM distribution were also estimated from BIA modeling that fits measured resistance values along the leg. SM mass (mean +/- SD) was 5.8 +/- 1.0 kg by BIA vs. 5.8 +/- 1.1 kg by DXA in normal weight subjects and 7.2 +/- 1.4 kg by BIA vs. 7.2 +/- 1.2 kg by DXA in obese subjects. Mean +/- SD of the absolute value of the relative error was 7.0 +/- 3.4 and 5.9 +/- 3.4% in the two groups, respectively. Similar results were obtained by using five resistance values for the analysis. In conclusion, the proposed BIA model provides an adequate means of evaluating appendicular SM mass.  相似文献   

3.
COLMAN, RICKI J., JOHN C. HUDSON, HOWARD S. BARDEN, AND JOSEPH W. KEMNITZ. A comparison of dual-energy X-ray absorptiometry and somatometrics for determining body fat in rhesus macaques. Obes Res. 1999; 7:90–96. Objective : Various approaches have been used to assess fat and fat distribution in nonhuman primates, including measurements of body weight, body dimensions, and estimates derived from these, such as body mass index. Methods such as tritiated water dilution and dual-energy X-ray absorptiometry (DXA) have also been used. The aim of the present study was to evaluate and compare DXA measurements and somatometrics. Research Methods and Procedures : Body composition of 15 adult male rhesus macaques was measured by DXA and somatometrics at four time-points over a 4-year period. Additionally, DXA precision and somatometric variability were analyzed by repeated measurements of the same subjects. Results : DXA estimates of body fat were positively correlated with body weight, body mass index, body circumferences, and abdominal skinfold thicknesses. DXA assessments of soft tissue composition were precise, with coefficients of variation below 3.3% for all compartments analyzed. The majority of the observed variability in somatometrics was explained by subject variance, rather than by inter- or intraobserver variability, or by observer experience level. Discussion : We conclude that noninvasive DXA technology provides precise estimates of nonhuman primate body composition that correlate well with the traditional somatometric measures used in primate studies.  相似文献   

4.
Although magnetic resonance imaging (MRI) can accurately measure lower limb skeletal muscle (SM) mass, this method is complex and costly. A potential practical alternative is to estimate lower limb SM with dual-energy X-ray absorptiometry (DXA). The aim of the present study was to develop and validate DXA-SM prediction equations. Identical landmarks (i.e., inferior border of the ischial tuberosity) were selected for separating lower limb from trunk. Lower limb SM was measured by MRI, and lower limb fat-free soft tissue was measured by DXA. A total of 207 adults (104 men and 103 women) were evaluated [age 43 +/- 16 (SD) yr, body mass index (BMI) 24.6 +/- 3.7 kg/m(2)]. Strong correlations were observed between lower limb SM and lower limb fat-free soft tissue (R(2) = 0.89, P < 0.001); age and BMI were small but significant SM predictor variables. In the cross-validation sample, the differences between MRI-measured and DXA-predicted SM mass were small (-0.006 +/- 1.07 and -0.016 +/- 1.05 kg) for two different proposed prediction equations, one with fat-free soft tissue and the other with added age and BMI as predictor variables. DXA-measured lower limb fat-free soft tissue, along with other easily acquired measures, can be used to reliably predict lower limb skeletal muscle mass.  相似文献   

5.
The objective of the present study was to investigate the accuracy of percent body fat (%fat) estimates from dual-energy X-ray absorptiometry, air-displacement plethysmography (ADP), and total body water (TBW) against a criterion four-compartment (4C) model in overweight and obese children. A volunteer sample of 30 children (18 male and 12 female), age of (mean +/- SD) 14.10 +/- 1.83 yr, body mass index of 31.6 +/- 5.5 kg/m, and %fat (4C model) of 41.2 +/- 8.2%, was assessed. Body density measurements were converted to %fat estimates by using the general equation of Siri (ADPSiri) (Siri WE. Techniques for Measuring Body Composition. 1961) and the age- and gender-specific constants of Lohman (ADPLoh) (Lohman TG. Exercise and Sport Sciences Reviews. 1986). TBW measurements were converted to %fat estimates by assuming that water accounts for 73% of fat-free mass (TBW73) and by utilizing the age- and gender-specific water contents of Lohman (TBWLoh). All estimates of %fat were highly correlated with those of the 4C model (r > or = 0.95, P < 0.001; SE < or = 2.14). For %fat, the total error and mean difference +/- 95% limits of agreement compared with the 4C model were 2.50, 1.8 +/- 3.5 (ADPSiri); 1.82, -0.04 +/- 3.6 (ADPLoh); 2.86, -2.0 +/- 4.1 (TBW73); 1.90, -0.3 +/- 3.8 (TBWLoh); and 2.74, 1.9 +/- 4.0 DXA (dual-energy X-ray absorptiometry), respectively. In conclusion, in overweight and obese children, ADPLoh and TBWLoh were the most accurate methods of measuring %fat compared with a 4C model. However, all methods under consideration produced similar limits of agreement.  相似文献   

6.
BACKGROUND/AIMS: Turner's syndrome (TS) is associated with increased insulin resistance and adiposity, which might be associated with type 2 diabetes in later life. We aimed to determine whether the defect in insulin sensitivity is a primary intrinsic defect in TS or dependent on variation in body composition. METHODS: Sixteen women with TS not on growth hormone replacement but receiving oestrogen replacement therapy [age (mean +/- SD): 30.2 +/- 8.5 years; height-corrected fat-free mass: 26.1 +/- 3.1 kg/height] and a control group of 16 normal healthy women (age: 30.1 +/- 8.2 years; height-corrected fat-free mass: 25.9 +/- 2.4 kg/height) were studied. Fasting blood samples were obtained for measurement of glucose, insulin, IGF-I, IGFBP-1, IGFBP-3 and lipid levels. The hyperinsulinaemic euglycaemic clamp was performed to assess peripheral insulin sensitivity (M value), and the Homeostasis Model Assessment (HOMA-S) was used to estimate fasting insulin sensitivity. Body composition was assessed using a dual-energy X-ray absorptiometry scan. RESULTS: Fasting insulin sensitivity (HOMA-S 103.2 +/- 78.6 vs. 193.9 +/- 93.5, p = 0.006) was lower in TS subjects compared to controls as was whole-body insulin sensitivity (M value 2.9 +/- 1.9 vs. 5.5 +/- 2.6 mg/kg/min, p = 0.003). In a multiple regression analysis the Turner karyotype was significantly related to insulin sensitivity (p = 0.008) independent of any differences in fat-free mass and percent whole-body fat mass. CONCLUSION: The increased insulin resistance in women with TS is independent of measures of body composition and may represent an intrinsic defect related to their chromosomal abnormality.  相似文献   

7.
Discrepancies in body fluid estimates between segmental bioimpedance spectroscopy (SBIS) and gold-standard methods may be due to the use of a uniform value of tissue resistivity to compute extracellular fluid volume (ECV) and intracellular fluid volume (ICV). Discrepancies may also arise from the exclusion of fluid volumes of hands, feet, neck, and head from measurements due to electrode positions. The aim of this study was to define the specific resistivity of various body segments and to use those values for computation of ECV and ICV along with a correction for unmeasured fluid volumes. Twenty-nine maintenance hemodialysis patients (16 men) underwent body composition analysis including whole body MRI, whole body potassium (40K) content, deuterium, and sodium bromide dilution, and segmental and wrist-to-ankle bioimpedance spectroscopy, all performed on the same day before a hemodialysis. Segment-specific resistivity was determined from segmental fat-free mass (FFM; by MRI), hydration status of FFM (by deuterium and sodium bromide), tissue resistance (by SBIS), and segment length. Segmental FFM was higher and extracellular hydration of FFM was lower in men compared with women. Segment-specific resistivity values for arm, trunk, and leg all differed from the uniform resistivity used in traditional SBIS algorithms. Estimates for whole body ECV, ICV, and total body water from SBIS using segmental instead of uniform resistivity values and after adjustment for unmeasured fluid volumes of the body did not differ significantly from gold-standard measures. The uniform tissue resistivity values used in traditional SBIS algorithms result in underestimation of ECV, ICV, and total body water. Use of segmental resistivity values combined with adjustment for body volumes that are neglected by traditional SBIS technique significantly improves estimations of body fluid volume in hemodialysis patients.  相似文献   

8.
Fat mass deposition during pregnancy using a four-component model.   总被引:1,自引:0,他引:1  
Estimates of body fat mass gained during human pregnancy are necessary to assess the composition of gestational weight gained and in studying energy requirements of reproduction. However, commonly used methods of measuring body composition are not valid during pregnancy. We used measurements of total body water (TBW), body density, and bone mineral content (BMC) to apply a four-component model to measure body fat gained in nine pregnant women. Measurements were made longitudinally from before conception; at 8-10, 24-26, and 34-36 wk gestation; and at 4-6 wk postpartum. TBW was measured by deuterium dilution, body density by hydrodensitometry, and BMC by dual-energy X-ray absorptiometry. Body protein was estimated by subtracting TBW and BMC from fat-free mass. By 36 wk of gestation, body weight increased 11.2 +/- 4.4 kg, TBW increased 5.6 +/- 3.3 kg, fat-free mass increased 6.5 +/- 3.4 kg, and fat mass increased 4.1 +/- 3.5 kg. The estimated energy cost of fat mass gained averaged 44,608 kcal (95% confidence interval, -31, 552-120,768 kcal). The large variability in the composition of gestational weight gained among the women was not explained by prepregnancy body composition or by energy intake. This variability makes it impossible to derive a single value for the energy cost of fat deposition to use in estimating the energy requirement of pregnancy.  相似文献   

9.
Objective : Changes in body composition during a weight loss program have not been described in children. We wanted to test the hypothesis that weight loss can be achieved while maintaining total body fat-free mass. Research Methods and Procedures : We determined body composition changes by using dual-energy X-ray absorptiometry measured at baseline and after the first 10 weeks of a multidisciphnary weight loss program. The program consisted of 10 weekly group sessions where the children were provided instruction in lifestyle modification, including diet and exercise. Program leaders included a pediatrician, psychologist, registered dietitian, and exercise instructor. Results : We studied 59 obese children, mean (± SD) age 12.8 ± 2.6 years, 29% boys and 71% girls, 49% Caucasian, and 51% African American. At enrollment, the children's mean height and body mass index were 157 cm and 38.9 kg/m2, respectively. The children's dual-energy X-ray absorptiometry-derived mean at baseline and at 10 weeks and corresponding p values were: weight (94.6 kg vs. 92.3 kg, p<0.0001), total body fat mass (46.9 kg vs. 44.3 kg, p<0.0001), percentage total body fat (49.2% vs. 47.5%, p<0.0001), total trunk mass (43.0 kg vs. 41.5 kg,p<0.0001), total trunk fat (21.2 kg vs. 20.0 kg, p<0.0001), total body fat-free mass (47.6 kg vs. 47.9 kg, p = 0.33), total body bone mass (2.7 kg vs. 2.7 kg, p = 0.99), and total body bone mineral density (1.14 g/cm2 vs. 1.15 g/cm2, p = 0.0119). The children's race, gender, or Tanner stage did not affect these changes. Discussion : Decreases in total body fat mass was achieved, and total body fat-free mass was maintained among boy and girl Caucasian and African American children participating in this lifestyle modification weight loss program.  相似文献   

10.
The object of our study was to document the changes in bone mineral density (BMD) at the (1/3) distal radius in patients undergoing maintenance hemodialysis (HD). Forty nine male and 24 female patients were enrolled in this study. The mean age was 55.9-/+13.1 (mean -/+ SD) years, and the duration of HD was 89.2 -/+ 81.0 months at the beginning of the investigation. BMD was measured by dual-energy X-ray absorptiometry at 1-year intervals for a period in excess of 3 years. No significant relationship was observed between BMD and age in both sexes. In male patients, BMD was positively correlated with body mass index (BMI) (r=0.47, p<0.01) and negatively with the duration of HD (r=0.61, p<0.01). In contrast, BMD was not correlated with either BMI or with the duration of HD in female patients. Eleven of the 14 patients on HD for more than 15 years showed marked bone loss (male; 0.460, female; 0.394g/cm(2)), although they were relatively young (mean age: 43.4 years). Prolonged HD could be one of the risk factors responsible for bone loss.  相似文献   

11.
The purpose of this study was to determine whether the proportion of skeletal muscle in the fat-free soft tissue mass (FFST) is the same in men with spinal cord injury (SCI) and able-bodied controls. Skeletal muscle mass and FFST of the midthigh were determined by using magnetic resonance imaging and dual-energy X-ray absorptiometry, respectively, in men with long-term (>2 yr) complete SCI (n = 8) and able-bodied controls of similar age, height, and weight (n = 8). Muscle mass (1.36 +/- 0.77 vs. 2.44 +/- 0.47 kg) and FFST (1.70 +/- 0.94 vs. 2.73 +/- 0.80 kg) were lower in the SCI group than in the controls (P < 0.05), but the lower ratio of muscle to FFST in the SCI group (0.80 +/- 0.09 vs. 0.91 +/- 0.10, P < 0.05) suggested that they had a lower proportion of muscle in the FFST than in controls. This notion was supported by analysis of covariance, in that the mean muscle adjusted to the mean FFST of the groups combined was lower in the SCI group. Despite the lower proportion of muscle in the FFST of the SCI group, the relation between muscle and FFST was strong in the SCI group (r = 0.99) and controls (r = 0.96). The findings suggest a disproportionate loss of muscle in the paralyzed thighs after SCI relative to other nonfat constituents, which may be accurately estimated in men with long-term SCI by dual-energy X-ray absorptiometry if the lower proportion of muscle in the FFST (approximately 15%) is taken into account.  相似文献   

12.
Critical illness affects body composition profoundly, especially body cell mass (BCM). BCM loss reflects lean tissue wasting and could be a nutritional marker in critically ill patients. However, BCM assessment with usual isotopic or tracer methods is impractical in intensive care units (ICUs). We aimed to modelize the BCM of critically ill patients using variables available at bedside. Fat-free mass (FFM), bone mineral (Mo), and extracellular water (ECW) of 49 critically ill patients were measured prospectively by dual-energy X-ray absorptiometry and multifrequency bioimpedance. BCM was estimated according to the four-compartment cellular level: BCM = FFM - (ECW/0.98) - (0.73 × Mo). Variables that might influence the BCM were assessed, and multivariable analysis using fractional polynomials was conducted to determine the relations between BCM and these data. Bootstrap resampling was then used to estimate the most stable model predicting BCM. BCM was 22.7 ± 5.4 kg. The most frequent model included height (cm), leg circumference (cm), weight shift (Δ) between ICU admission and body composition assessment (kg), and trunk length (cm) as a linear function: BCM (kg) = 0.266 × height + 0.287 × leg circumference + 0.305 × Δweight - 0.406 × trunk length - 13.52. The fraction of variance explained by this model (adjusted r(2)) was 46%. Including bioelectrical impedance analysis variables in the model did not improve BCM prediction. In summary, our results suggest that BCM can be estimated at bedside, with an error lower than ±20% in 90% subjects, on the basis of static (height, trunk length), less stable (leg circumference), and dynamic biometric variables (Δweight) for critically ill patients.  相似文献   

13.
This study evaluated the arm, trunk, and leg for fat mass, lean soft tissue mass, and bone mineral content (BMC) assessed via dual-energy X-ray absorptiometry in a group of age-matched (approximately 29 yr) men (n = 57) and women (n = 63) and determined their relationship to insulin-like growth factor I (IGF-I) and leptin. After analysis of covariance adjustment to control for differences in body mass between genders, the differences that persisted (P < or = 0.05) were for lean soft tissue mass of the arm (men: 7.1 kg vs. women: 6.4 kg) and fat mass of the leg (men: 5.3 kg vs. women: 6.8 kg). Men and women had similar (P > or = 0.05) values for fat mass of the arms and trunk and lean soft tissue mass of the legs and trunk. Serum IGF-I and insulin-like growth factor binding protein-3 correlated (P < or = 0.05) with all measures of BMC (r values ranged from 0.31 to 0.39) and some measures of lean soft tissue mass for women (r = 0.30) but not men. Leptin correlated (P < or = 0.05) similarly for measures of fat mass for both genders (r values ranging from 0.74 to 0.85) and for lean soft tissue mass of the trunk (r = 0.40) and total body (r = 0.32) for men and for the arms in women (r = 0.56). These data demonstrate that 1) the main phenotypic gender differences in body composition are that men have more of their muscle mass in their arms and women have more of their fat mass in their legs and 2) gender differences exist in the relationship between somatotrophic hormones and lean soft tissue mass.  相似文献   

14.
The aim of the study was to examine the accuracy of fan-beam dual-energy X-ray absorptiometry (DEXA) for measuring total body fat-free mass (FFM) and leg muscle mass (MM) in elderly persons. Participants were 60 men and women aged 70-79 yr and with a body mass index of 17.5-39.8 kg/m(2). FFM and MM at four leg regions were measured by using DEXA (Hologic 4500A, v8.21). A four-compartment body composition model (4C) and multislice computed tomography (CT) of the legs were used as the criterion methods for FFM and MM, respectively. FFM by DEXA was positively associated with FFM by 4C (R(2) = 0.98, SE of estimate = 1.6 kg). FFM by DEXA was higher [53.5 +/- 12.0 (SD) kg] than FFM by 4C (51.6 +/- 11.9 kg; P < 0.001). No association was observed between the difference and the mean of the two methods. MM by DEXA was positively associated with CT at all four leg regions (R(2) = 0.86-0.96). MM by DEXA was higher than by CT in three regions. The results of this study suggest that fan-beam DEXA offers considerable promise for the measurement of total body FFM and leg MM in elderly persons.  相似文献   

15.
Body fat distribution and abdominal fatness are indicators of risks for coronary heart disease. However, the relationships between resting energy expenditure (REE) and the body fat distribution or the abdominal fatness are unclear. We examined the relationships of REE with whole-body fat distribution (waist, hip and waist-to-hip ratio: WHR) and abdominal fatness (intra-abdominal fat: IF and subcutaneous fat: SF) after adjustment for body composition. 451 men and 471 women were subdivided into two groups, 40-59 years: middle-aged group and 60-79 years: elderly group. REE was measured by an indirect calorimetry system. Percentage of fat mass (%FM), fat mass (FM) and fat-free mass (FFM) were assessed by a dual-energy x-ray absorptiometry method. The IF area (IFA) and SF area (SFA) at the level of the umbilicus were measured using computed tomography. Circumference of waist and hip were measured in a standing position. The WHR, waist circumference and SFA did not significantly (p>0.05) associate with the REE after adjusting for FM, FFM and age in any of the groups. The adjusted REE was significantly and inversely correlated with hip (r=-0.159, p<0.05) and IFA (r=-0.131, p<0.05) in the elderly men. These results suggest that lower REE may contribute to greater hip and IFA rather than WHR and waist in elderly men.  相似文献   

16.
This study aimed to determine the effect of supplementation with conjugated linoleic acids (CLAs) plus n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) on body composition, adiposity, and hormone levels in young and older, lean and obese men. Young (31.4+/-3.9 years) lean (BMI, 23.6+/-1.5 kg/m2; n=13) and obese (BMI, 32.4+/-1.9 kg/m2; n=12) and older (56.5+/-4.6 years) lean (BMI, 23.6+/-1.5 kg/m2; n=20) and obese (BMI, 32.0+/-1.6 kg/m2; n=14) men participated in a double-blind placebo-controlled, randomized crossover study. Subjects received either 6 g/day control fat or 3 g/day CLA (50:50 cis-9, trans-11:trans-10, cis-12) and 3 g/day n-3 LC-PUFA for 12 weeks with a 12-week wash-out period between crossovers. Body composition was assessed by dual-energy X-ray absorptiometry. Fasting adiponectin, leptin, glucose, and insulin concentrations were measured and insulin resistance estimated by homeostasis model assessment for insulin resistance (HOMA-IR). In the younger obese subjects, CLA plus n-3 LC-PUFA supplementation compared with control fat did not result in increased abdominal fat and raised both fat-free mass (2.4%) and adiponectin levels (12%). CLA plus n-3 LC-PUFA showed no significant effects on HOMA-IR in any group but did increase fasting glucose in older obese subjects. In summary, supplementation with CLA plus n-3 LC-PUFA prevents increased abdominal fat mass and raises fat-free mass and adiponectin levels in younger obese individuals without deleteriously affecting insulin sensitivity, whereas these parameters in young and older lean and older obese individuals were unaffected, apart from increased fasting glucose in older obese men.  相似文献   

17.
This study was conducted to validate the relationship between bioelectrical conductance (ht2/R) and densitometrically determined fat-free mass, and to compare the prediction errors of body fatness derived from the tetrapolar impedance method and skinfold thicknesses, relative to hydrodensitometry. One-hundred and fourteen male and female subjects, aged 18-50 yr, with a wide range of fat-free mass (34-96 kg) and percent body fat (4-41%), participated. For males, densitometrically determined fat-free mass was correlated highly (r = 0.979), with fat-free mass predicted from tetrapolar conductance measures using an equation developed for males in a previous study. For females, the correlation between measured fat-free mass and values predicted from the combined (previous and present male data) equation for men also was strong (r = 0.954). The regression coefficients in the male and female regression equations were not significantly different. Relative to hydrodensitometry, the impedance method had a lower predictive error or standard error of the estimates of estimating body fatness than did a standard anthropometric technique (2.7 vs. 3.9%). Therefore this study establishes the validity and reliability of the tetrapolar impedance method for use in assessment of body composition in healthy humans.  相似文献   

18.
Non-invasive techniques to measure body composition are critical for longitudinal studies of energetics and life histories and for investigating the link between body condition and physiology. Previous attempts to determine, non-invasively, the body composition of snakes have proven problematic. Therefore, we explored whether dual-energy X-ray absorptiometry (DXA) could be used to determine the body composition of snakes. We analyzed 20 adult diamondback water snakes (Nerodia rhombifer) with a DXA instrument and subsequently quantified their body composition by gravimetric and chemical extraction methods. Body composition components scaled with body mass with mass exponents between 0.88 and 1.53. DXA values for lean tissue mass, fat mass and total-body bone mineral mass were significantly correlated with observed masses of lean tissue, fat and ash from chemical analysis. Using regression models incorporating DXA values we predicted the fat-free tissue mass, lean tissue mass, fat mass, ash mass and total body water content for this sample of water snakes. A cross-validation procedure demonstrated that these models estimated fat-free tissue mass, lean tissue mass, fat mass, ash mass and total-body water content with respective errors of 2.2%, 2.3%, 16.0%, 6.6% and 3.5%. Compared to other non-invasive techniques, include body condition indices, total body electrical conductivity (TOBEC) and cyclopropane absorption, DXA can more easily and accurately be used to determine the body composition of snakes.  相似文献   

19.
The independent and combined effects of exercise training and hormone replacement therapy (HRT) on body composition, fat distribution, glucose tolerance, and insulin action were studied in postmenopausal women, aged 68 +/- 5 yr, assigned to control (n = 19), exercise (n = 18), HRT (n = 15), and exercise + HRT (n = 16) groups. The exercise consisted of 2 mo of flexibility exercises followed by 9 mo of endurance exercise. HRT was conjugated estrogens 0.625 mg/day and trimonthly medroxyprogesterone acetate 5 mg/day for 13 days. Total and regional body composition were measured by dual-energy X-ray absorptiometry. Serum glucose and insulin responses were measured during a 2-h oral glucose tolerance test. There were significant main effects of exercise on reductions in total and regional (trunk, arms, legs) fat mass, increase in leg fat-free mass, and improvements in glucose tolerance and insulin action. There were significant main effects of HRT on the reduction of total fat mass (HRT, -3.0 +/- 4.0 kg; no HRT, -1.3 +/- 2.6 kg), with a strong trend for reductions in trunk and leg fat mass (both P = 0.07). There was also a significant improvement in insulin action in response to HRT. These results suggest that there are independent and additive effects of exercise training and HRT on the reduction in fat mass and improvement in insulin action in postmenopausal women; the effect of HRT on insulin action may be mediated, in part, through changes in central adiposity.  相似文献   

20.
Although there is growing interest in studying muscle distribution, regional skeletal muscle (SM) mass measurement methods remain limited. The aim of the present study was to develop a new dual-energy X-ray absorptiometry (DEXA) model for estimating regional adipose tissue-free skeletal muscle mass (AT-free SM). Relationships were derived from Reference Man data between tissue-system- level components (i.e., AT-free SM, AT, skeleton, and skin) and molecular-level components including fat-free soft tissue, fat, and bone mineral. The proposed DEXA-SM model was evaluated by multiscan computerized axial tomography (CT). Twenty-seven male subjects [age, 36 +/- 12 (SD) yr; body mass, 73.2 +/- 12.4 kg; 20 were healthy, and 7 had acquired immunodeficiency syndrome] completed DEXA and CT studies. Identical landmarks for DEXA and CT measurements were selected in three regions, including calves, thighs, and forearms. There was a strong correlation for AT-free SM estimates between the new DEXA and CT methods (e.g., sum of three regions, r = 0.86, P < 0.001). Regional AT-free SM measured in the 27 subjects by DEXA and CT, respectively, were 3.44 +/- 0.60 and 3. 47 +/- 0.55 kg (difference 0.9%, P > 0.05) for calves, 10.49 +/- 1. 77 and 10.05 +/- 1.79 kg (difference 4.4%, P < 0.05) for thighs, 1. 36 +/- 0.49 and 1.20 +/- 0.41 kg (difference 13.3%, P < 0.01) for forearms, and 15.29 +/- 2.33 and 14.72 +/- 2.33 kg (difference 3.9%, P < 0.05) for the sum all three regions. Although the suggested DEXA-SM model needs minor refinements, this is a promising in vivo approach for measurement of regional SM, because DEXA is widely available, relatively inexpensive, and radiation exposure is low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号