首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pomin VH  Mourão PA 《Glycobiology》2008,18(12):1016-1027
Sulfated fucans and galactans are strongly anionic polysaccharides found in marine organisms. Their structures vary among species, but their major features are conserved among phyla. Sulfated fucans are found in marine brown algae and echinoderms, whereas sulfated galactans occur in red and green algae, marine angiosperms, tunicates (ascidians), and sea urchins. Polysaccharides with 3-linked, beta-galactose units are highly conserved in some taxonomic groups of marine organisms and show a strong tendency toward 4-sulfation in algae and marine angiosperms, and 2-sulfation in invertebrates. Marine algae mainly express sulfated polysaccharides with complex, heterogeneous structures, whereas marine invertebrates synthesize sulfated fucans and sulfated galactans with regular repetitive structures. These polysaccharides are structural components of the extracellular matrix. Sulfated fucans and galactans are involved in sea urchin fertilization acting as species-specific inducers of the sperm acrosome reaction. Because of this function the structural evolution of sulfated fucans could be a component in the speciation process. The algal and invertebrate polysaccharides are also potent anticoagulant agents of mammalian blood and represent a potential source of compounds for antithrombotic therapies.  相似文献   

2.
We report for the first time that marine angiosperms (seagrasses) possess sulfated polysaccharides, which are absent in terrestrial and freshwater plants. The structure of the sulfated polysaccharide from the seagrass Ruppia maritima was determined. It is a sulfated D-galactan composed of the following regular tetrasaccharide repeating unit: [3-beta-D-Gal-2(OSO3)-1-->4-alpha-D-Gal-1-->4-alpha-D-Gal-1-->3-beta-D-Gal-4(OSO3)-1-->]. Sulfated galactans have been described previously in red algae and in marine invertebrates (ascidians and sea urchins). The sulfated galactan from the marine angiosperm has an intermediate structure when compared with the polysaccharides from these two other groups of organisms. Like marine invertebrate galactan, it expresses a regular repeating unit with a homogenous sulfation pattern. However, seagrass galactan contains the D-enantiomer of galactose instead of the L-isomer found in marine invertebrates. Like red algae, the marine angiosperm polysaccharide contains both alpha and beta units of D-galactose; however, these units are not distributed in an alternating order, as in algal galactan. Sulfated galactan is localized in the plant cell walls, mostly in rhizomes and roots, indicative of a relationship with the absorption of nutrients and of a possible structural function. The occurrence of sulfated galactans in marine organisms may be the result of physiological adaptations, which are not correlated with phylogenetic proximity. We suggest that convergent adaptation, due to environment pressure, may explain the occurrence of sulfated galactans in many marine organisms.  相似文献   

3.
Salinity stress is a major abiotic stress that limits agriculture productivity worldwide. Rice is a model plant of monocotyledons, including cereal crops. Studies have suggested a critical role of protein phosphorylation in salt stress response in plants. However, the phosphoproteome in rice, particularly under salinity stress, has not been well studied. Here, we use Pro-Q Diamond Phosphoprotein Stain to study rice phosphoproteome differential expression under salt stress. Seventeen differentially upregulated and 11 differentially downregulated putative phosphoproteins have been identified. Further analyses indicate that 10 of the 17 upregulated proteins are probably upregulated at post-translational level instead of the protein concentration. Meanwhile, we have identified 31 salt stress differentially regulated proteins using SYPRO Ruby stain. While eight of them are known salt stress response proteins, the majority has not been reported in the literature. Our studies have provided valuable new insight into plant response to salinity stress.  相似文献   

4.
There is evidence that the plasma membrane (PM) permeability alterations might be involved in plant salt tolerance. This review presents several lines of evidence demonstrating that PM permeability is correlated with salt tolerance in plants. PM injury and hence changes in permeability in salt sensitive plants is brought about by ionic effects as well as oxidative stress induced by salt imposition. It is documented that salinity enhances lipid peroxidation as well as protein oxidative damage, which in turn induces permeability impairment. PM protection, and thus retained permeability, in tolerant plants under salt imposition could be achieved through increasing antioxidative systems and thereby reducing lipid peroxidation and protein oxidative damage of PM. It appears that specific membrane proteins and/or lipids are constitutive or induced under salinity, which may contribute to maintenance of membrane structure and function in salt tolerant plant species. Furthermore, protecting agents (e.g., glycinebetaine, proline, polyamines, trehalose, sorbitol, mannitol) accumulated in salt tolerant species/cultivars may also contribute to PM stabilization and protection under salinity. Based on the presented evidence that PM permeability correlates with plant salt tolerance, we suggest that PM permeability is an easy and useful parameter for selection of genotypes of agriculture crops adapted to salt stress.  相似文献   

5.
The plant hormones abscisic acid (ABA) and auxin (IAA, IBA) play important roles in plant responses to environmental stresses such as salinity. Recent breeding improvements in terms of salt resistance of maize have lead to a genotype with improved growth under saline conditions. By comparing this salt-resistant hybrid with a sensitive hybrid, it was possible to show differences in hormone concentrations in expanding leaves and roots. In response to salinity, the salt-resistant maize significantly increased IBA concentrations in growing leaves and maintained IAA concentration in roots. These hormonal adaptations may help to establish favorable conditions for growth-promoting agents such as β-expansins and maintain growth of resistant maize hybrids under salt stress. Moreover, ABA concentrations significantly increased in resistant maize leaves under salt stress, which may contribute to acidifying the apoplast, which in turn is a prerequisite for growth.  相似文献   

6.
Plant salt-tolerance mechanism: A review   总被引:4,自引:0,他引:4  
Almost all crops that are important to humans are sensitive to high salt concentration in the soil. The presence of salt in soil is one of the most significant abiotic stresses in farming. Therefore, improving plant salt tolerance and increasing the yield and quality of crops in salty land is vital. Transgenic technology is a fast and effective method to obtain salt-tolerant varieties. At present, many scholars have studied salt damage to plant and plant salt-tolerance mechanism. These scholars have cloned a number of salt-related genes and achieved high salt tolerance for transgenic plants, thereby showing attractive prospects.In this paper, the salt-tolerance mechanism of plants is described from four aspects: plant osmotic stress, ion toxicity, oxidative stress, and salt tolerance genes. This review may help in studies to reveal the mechanism of plant salt tolerance, screen high efficiency and quality salt tolerance crops.  相似文献   

7.
Salinity resistance and plant growth revisited   总被引:20,自引:1,他引:19  
This article reconsiders a recent hypothesis concerning the physiology of growth inhibition by salinity and its relevance to the breeding of salt-resistant crops (Munns 1993, Plant, Cell and Environment 16, pp. 15–24). The hypothesis states that the osmotic effects of salinity on water availability will strongly and equally inhibit the growth of related species and varieties. The genotypic diversity needed for breeding increased resistance to growth inhibition by salinity is only expected to appear after weeks or months. Higher rates of salt accumulation in more sensitive varieties then lead to accelerated leaf senescence. This further inhibits new growth, as compared with more resistant varieties. Accordingly, breeders aiming to increase crop growth under salinity should focus efforts on manipulating genes which can decrease rates of salt accumulation. However, the osmotic inhibition of growth by salinity appears to involve regulatory physiogical changes. Thus, some genotypic diversity might be expected. Clear evidence is presented for genotypic diversity in early growth responses to salt or PEG-induced osmotic stress, in several species and varieties. The conclusion is that development of plants with increased resistance to inhibition of growth by the osmotic effects of external salinity (in addition to increased resistance to salt accumulation) is both feasible and desirable.  相似文献   

8.
Salinity in agricultural land is a major problem worldwide, placing a severe constraint on crop growth and productivity in many regions, and increased salinization of arable land is expected to have devastating global effects. Though plants vary in their sensitivity to salt stress, high salinity causes water deficit and ion toxicity in many plant species. Considerable efforts have therefore been made to investigate how genes respond to salt stress in various plants by using several approaches, including proteomics. Proteomic approaches for identifying proteins that are regulated in response to salt stress are becoming common in the post-genomics era of crop research. In this review, we describe the physiological and biological changes in the proteomes of several important food crops under salt stress. We also provide a viewpoint into how proteomics-based research is likely to develop in this field.  相似文献   

9.
Microalgal exopolysaccharides represent a potential sustainable alternative for the enhancement and protection of agricultural crops including management of both biotic and abiotic stress. In the present study, we investigated the potential of Dunaliella salina exopolysaccharides (PS) to attenuate the effect of salt stress on growth of Solanum lycopersicum, which was grown under different salinity levels (3 and 6 g L?1 NaCl). The effects of PS treatment on plant growth, osmoprotectant molecules, protein content, and antioxidant enzymes activities of tomato plants under salt stress were analyzed. A metabolomics study showed that the exopolysaccharides released by D. salina contained sulfated moiety along with carbohydrates and uronic acids. The application of sulfated exopolysaccharides on tomato plants alleviated the salt stress and mitigated the decrease in length and dry weight of the plant’s shoot and root systems, as well as that of potassium (K+), and K+/Na+ ratio. Furthermore, the increase in proline, phenolic compounds, Na+, and antioxidant enzymes (CAT, POD, SOD) activities caused by salt stress were attenuated after the exopolysaccharide treatment. GC-MS metabolomics analysis showed that PS treatment allowed the activation and/or inhibition of various metabolic pathways involved in the plant’s tolerance to stress such as jasmonic acid-dependent pathways. This study shows the potential of microalgal exopolysaccharides for enhancing tomato tolerance to salt stress and highlights the possibility of their use as plant growth biostimulants under harsh environmental conditions.  相似文献   

10.

Soil salinity is one among the common environmental threats to agriculture. It adversely affects the physio-biochemical processes of plants that eventually lead to the reduction in growth, development and crop productivity. To cope with such adverse conditions, plants develop certain internal mechanisms, but under severe conditions these mechanisms fail to tolerate the salt stress. To overcome this problem, various strategies have been employed that help plants to mitigate salinity effects. Among the various strategies, the application of plant growth regulators (PGRs) has gained significant attention to induce salt tolerance in plants. A number of PGRs have been used so far. Among these, triacontanol (TRIA), a new PGR is gaining a lot of importance to enhance the plant growth, productivity and salinity tolerance in different crops. The utility of TRIA is dependent on its applied concentration. Its lower concentrations generally alleviate the salinity effects. However, the knowledge of its biosynthesis, signalling and its role particularly to mitigate salinity effect remains scanty. In the present article, the focus has been given on the role of exogenous applications of TRIA in the regulation of physio-biochemical characteristics especially plant growth, photosynthesis, nutrient acquisition, oxidative stress, antioxidant systems, compatible solutes, yield attributes and its mode of action in plants under salinity conditions. The salient features of the review may provide new insights on the role of TRIA in countering the ill effect of salinity in different crop plants.

  相似文献   

11.
Durum wheat (Triticum turgidum ssp. durum) is one of the main species of cultivated wheat. In arid and semi-arid areas, salinity stress reduces durum wheat productivity. This study used 26 durum wheat accessions from semi-arid regions in Tunisia to analyze plant tolerance to salt stress. Salt stress was experimentally applied by regularly submerging pots in NaCl solution. The salt tolerance trait index (STTI) and salt tolerance index (STI) of various growth parameters were used as criteria to select for salt tolerance. Analysis of genetic relationships was carried out to determine the genetic distance between durum wheat accessions. Based on simple sequence repeats analysis, a molecular marker for salt stress resistance in durum wheat was developed. Salt-treated plants had reduced morphological traits compared to control plants. Most STTIs in all genotypes were below 100 %. Based on STI, 8 accessions were found to be salt-resistant, 16 were salt-moderate, two were salt-susceptible. Analysis of the genetic relationships among 28 Tunisian durum wheat accessions revealed that landraces of the same nominal type are closely related. Of the 94 SSR primers investigated, three were selected and used to design sequence characterized amplified region (SCAR) primers. One SCAR primer pair, KUCMB_Xgwm403_2, produced a 207 bp band that was present in salt-resistant durum wheat lines but absent in salt-susceptible lines. The results suggest that KUCMB_Xgwm403_2 could be a potential genetic tag for salt-tolerant durum wheats.  相似文献   

12.
In different ecosystems herbivores highly prefer particular plant species. This is often explained in a stoichiometric framework of nutrient‐based plant adaptations to herbivory. We hypothesize that such super‐palatability can also arise as an evolutionary by‐product of osmoregulatory adaptations of plants to stressful environmental conditions, as salinity, drought and cold. Here, we investigate in a coastal salt marsh why some plant species are highly preferred by migratory brent geese Branta bernicla bernicla in spring while others are avoided. This salt marsh is an important spring staging site for the geese. Sufficient energy storage in a short period is critical to enable their northward migration to Siberia and subsequent reproduction. We test if geese prefer plants that balance their internal osmotic potential with the saline environment through energy‐rich soluble sugars over plant species that use (compartmentalized) salts for this. We find that plant nitrogen and acid detergent fiber content, classic predictors of herbivore preferences, poorly explain which plants the geese prefer. Instead, plant species that are highly preferred by the geese adapt to salinity by high soluble sugar concentrations while avoided species do this by high plant salt concentrations. Thus, the type of osmoregulatory adaptation to stress displayed by different plant species is a good predictor for the food preference of geese on this salt marsh. We suggest that variation in other types of osmoregulation‐based stress adaptations, as plant cold adaptations in tundras and plant drought adaptations in savannas, have similar important consequences for trophic interactions.  相似文献   

13.
As the salt-affected areas are expected to increase substantially in subsequent years, the impact of salinity on plant growth and yield is likely to increase. One of the first consequences of plant exposure to high saline concentrations is the formation of reactive oxygen species (ROS). In order to allow adjustment of the cellular redox state, plant antioxidative system has to be activated. This system involves several enzymes and compounds, as the sulphur-containing metabolite glutathione (GSH). Therefore, our aim was to determine whether adequate sulphur nutrition might alleviate the adverse effects of salt stress on barley plants grown in the presence of different sulphate application rate and exposed to 100 mM NaCl, by studying differences in growth parameters, lipid peroxidation, sulphate and thiol accumulation and sulphur assimilation pathway. In salt-treated plants, an adequate sulphur supply allows adequate GSH synthesis (high-thiol concentration) thus avoiding the effects of ROS on photosynthetic functions (no effect on both chlorophyll and protein content), whereas in S-deficient plants, salt stress leads to excess ROS production that induces stress and plants showed reduction of photosynthetic efficiency (loss of chlorophyll and protein contents). As thiol levels are more abundant in S-sufficient plants than in those S-deficient, one might expect that S-sufficient plants are more able to remove the harmful effects of high salinity. The comparison of malondialdehyde levels between +S and ?S salt-treated plants strongly supports this idea. In conclusion, we found that plant sulphur nutritional status plays a key role in the metabolic modifications necessary to cope with salt stress.  相似文献   

14.
Sulfated fucans are among the most widely studied of all the sulfated polysaccharides of non-mammalian origin that exhibit biological activities in mammalian systems. Examples of these polysaccharides extracted from echinoderms have simple structures, composed of oligosaccharide repeating units within which the residues differ by specific patterns of sulfation among different species. In contrast the algal fucans may have some regular repeating structure but are clearly more heterogeneous when compared with the echinoderm fucans. The structures of the sulfated fucans from brown algae also vary from species to species. We compared the anticoagulant activity of the regular and repetitive fucans from echinoderms with that of the more heterogeneous fucans from three species of brown algae. Our results indicate that different structural features determine not only the anticoagulant potency of the sulfated fucans but also the mechanism by which they exert this activity. Thus, the branched fucans from brown algae are direct inhibitors of thrombin, whereas the linear fucans from echinoderms require the presence of antithrombin or heparin cofactor II for inhibition of thrombin, as reported for mammalian glycosaminoglycans. The linear sulfated fucans from echinoderms have an anticoagulant action resembling that of mammalian dermatan sulfate and a modest action through antithrombin. A single difference of one sulfate ester per tetrasaccharide repeating unit modifies the anticoagulant activity of the polysaccharide markedly. Possibly the spatial arrangements of sulfate esters in the repeating tetrasaccharide unit of the echinoderm fucan mimics the site in dermatan sulfate with high affinity for heparin cofactor II.  相似文献   

15.
植物抗盐分子机制及作物遗传改良耐盐性的研究进展   总被引:2,自引:0,他引:2  
盐胁迫是全球农业生产上的一个主要逆境因子。解析耐盐分子机制有助于培育耐盐能力提高的作物新品种。我们综述了植物对盐胁迫的感应及信号传导、主要Na^+运输体、盐胁迫下的解毒途径以及耐盐途径中涉及到的表观遗传研究。此外,我们还讨论了利用遗传改良手段提高作物耐盐性的研究进展。  相似文献   

16.
Dimethylsulphoniopropionate (DMSP) is produced in high concentrations in many marine algae, but in higher plants only in a few salt marsh grasses of the genus Spartina, in sugar canes (Saccharum spp.), and in the Pacific strand plant Wollastonia biflora (L.) DC. The high concentrations found in higher plants (up to 250 micromol g(-1) dry weight) suggest an important role, but though many functions have been suggested (including methylating agent, detoxification of excess sulphur, salt tolerance, and herbivore deterrent), its actual functions remain unclear. The fact that the ability to produce DMSP in high concentrations is found in species that have no taxonomic or ecological relationship suggests that the compound evolved independently and serves different functions in different plants. This is supported by observations that DMSP in W. biflora behaves differently from that in Spartina species. While DMSP concentrations in W. biflora have been found to increase with increasing salinity, suggesting a role in osmotic control, such a relationship has not been found for DMSP in Spartina species. Recent observations on tissue culture showed that, while undifferentiated tissue of W. biflora produced DMSP, such material of Spartina alterniflora Loisel. did not. Ongoing studies with tissue culture of both species have opened up new avenues of research on DMSP in higher plants, ultimately to elucidate the functions of this enigmatic compound.  相似文献   

17.
Aims Osmolytes, used for maintaining osmotic balance and as 'osmoprotectants', are synthesized in plants as a general, conserved response to abiotic stress, although their contribution to stress-tolerance mechanisms remains unclear. Proline, the most common osmolyte, accumulates in many plant species in parallel with increased external salinity and is considered a reliable biochemical marker of salt stress. We have measured proline levels in two halophytic, closely related Juncus species under laboratory and field conditions to assess the possible relevance of proline biosynthesis for salt tolerance and therefore for the ecology of these two taxa.Methods Proline was quantified in plants treated with increasing NaCl concentrations and in plants sampled in two salt marshes located in the provinces of Valencia and Alicante, respectively, in southeast Spain. Electrical conductivity, pH, Na + and Cl ? concentrations were measured in soil samples collected in parallel with the plant material.Important findings Treatment with NaCl inhibited growth of J. acutus plants in a concentration-dependent manner, but only under high salt conditions for J. maritimus. Salt treatments led to proline accumulation in both species, especially in the more salt-tolerant J. maritimus. The results, obtained under laboratory conditions, were confirmed in plants sampled in the field. In all the samplings, proline contents were significantly lower in J. acutus than in the more tolerant J. maritimus growing in the same area. No direct correlation between soil salinity and proline levels could be established, but seasonal variations were detected, with increased proline contents under accentuated water deficit conditions. Our results suggest that proline biosynthesis is not only an induced, general response to salt stress but also an important contributing factor in the physiological mechanisms of salt tolerance in Juncus, and that it therefore correlates with the ecology of both species.  相似文献   

18.

In this recent era, several approaches have been developed to alleviate the adverse effects of salinity stress in different plants. However, some of them are not eco-friendly. In this context, evolving sustainable approaches which enhance the productivity of saline soil without harming the environment are necessary. Many recent studies showed that plant growth-promoting rhizobacteria (PGPR) are known to confer salinity tolerance to plants. Salt-stressed plants inoculated with PGPR enhance the growth and productivity of crops by reducing oxidative damage, maintaining ionic homeostasis, enhancing antioxidant machinery, and regulating gene expressions. The PGPR also regulates the photosynthetic attributes such as net photosynthetic rate, chlorophyll, and carotenoid contents and enhances the salinity tolerance to plants. Moreover, PGPR has a great role in the enhancement of phytohormones and secondary metabolites synthesis in plants under salt stress. This review summarizes the current reports of the application of PGPR in plants under salt stress and discusses the PGPR-mediated mechanisms in plants of salt tolerance. This review also discusses the potential role of PGPR in cross-talk with phytohormones and secondary metabolites to alleviate salt stress and highlights the research gaps where further research is needed.

  相似文献   

19.
Soil salinity is one of the major abiotic stress limiting crop productivity and the geographical distribution of many important crops worldwide. To gain a better understanding of the salinity stress responses at physiological and molecular level in cultivated tomato (Solanum lycopersicum. cv. Supermarmande), we carried out a comparative physiological and proteomic analysis. The tomato seedlings were cultivated using a hydroponic system in the controlled environment growth chamber. The salt stress (NaCl) was applied (0, 50, 100, 150 and 200?mM), and maintained for 14 days. Salt treatment induced a plant growth reduction estimated as fresh-dry weight. Photosynthetic pigments (chlorophyll a, b) content of NaCl-treated tomato plants was significantly decreased as the salinity level increased. Proline accumulation levels in leaf and root tissues increased significantly with increasing NaCl concentration. Relative electrolyte leakage known as an indicator of membrane damage caused by salt stress was increased proportionally according to the NaCl concentrations. Roots of control and salt-stressed plants were also sampled for phenol protein extraction. Proteins were separated by two-dimensional gel electrophoresis (2-DGE). Several proteins showed up- and downregulation during salt stress. MALDI-TOF/MS analysis and database searching of some of the identified proteins indicated that the proteins are known to be in a wide range of physiological processes, that is, energy metabolism, ROS (reactive oxygen species) scavenging and detoxification, protein translation, processing and degradation, signal transduction, hormone and amino acid metabolism, and cell wall modifications. All proteins might work cooperatively to reestablish cellular homeostasis under salt stress, water deficiency, and ionic toxicity.  相似文献   

20.
The membrane lipids of six higher plants that differ in salt tolerance were analyzed and compared. The root lipids increased in a ratio of glycolipid/phospholipid with increasing salt- tolerance. A similar increase in the ratio was observed with increasing external salinity when halophytic orach and salt-sensitive cucumber were exposed to varying salinity, although the latter plant was limited to only a little increase. Measurements of ion-transport rates with artificial lipid membranes revealed that the root lipids from a salt-resistant plant formed a more permeable membrane than those from a salt-sensitive species. It was found that the membrane permeability was related to the glycolipid/phospholipid ratio in the membrane lipids, where the glycolipids were stimulative and the phospholipids were repressive for ion-flow. These different effects of the two lipid classes may be attributed to their molecular species and head groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号