首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nucleolar organizing regions (NORs), as demonstrated by the silver-colloid staining technique, have been counted in 75 renal cell carcinomas (20 grade 1, 22 grade 2, 17 grade 3 and 16 sarcomatoid), eight renal oncocytomas and nine renal adenomas. Mean NOR counts were 3.27, 6.28, 9.24 and 8.12, respectively, for grades 1, 2, 3 and sarcomatoid tumours, 3.09 for renal oncocytomas and 2.63 for renal adenomas. Analysis of data using the unpaired Student's t-test showed significant difference between NOR counts of grade 1, 2 and 3/sarcomatoid renal cell carcinoma, and grades 2, 3 and sarcomatoid renal cell carcinomas when compared to renal oncocytomas and adenomas. The association between type and grade of tumour, NOR value and tumour proliferation is discussed.  相似文献   

2.
3.
4.
Progressive decline in renal function coexists with myocardial infarction (MI); however, little is known about its pathophysiology. This study aimed to systematically identify post-MI renal changes (functional, histological, and molecular) over time in a rat MI model and examine potential mechanisms that may underlie these changes. Rats were randomized into three groups: nonoperated, sham, and MI. Cardiac and renal function was assessed before death at 1, 4, 8, 12, and 16 wk with tissues collected for histological, protein, and gene studies. Tail-cuff blood pressure was lower in MI than sham and nonoperated animals only at 1 wk (P < 0.05). Systolic function was reduced (P < 0.0001) while heart/body weight and left ventricle/body weight were significantly greater in MI animals at all time points. Glomerular filtration rate decreased following MI at 1 and 4 wk (P < 0.05) but not at 8 and 12 wk and then deteriorated further at 16 wk (P = 0.052). Increased IL-6 gene and transforming growth factor (TGF)-β protein expression as well as macrophage infiltration in kidney cortex was detected at 1 wk (P < 0.05). Renal cortical interstitial fibrosis was significantly greater in MI animals from 4 wk, while TGF-β bioactivity (phospho-Smad2) was upregulated at all time points. The degree of fibrosis increased and was maximal at 16 wk. In addition, kidney injury molecule-1-positive staining in the tubules was more prominent in MI animals, maximal at 1 wk. In conclusion, renal impairment occurs early post-MI and is associated with hemodynamic and structural changes in the kidney possibly via activation of the Smad2 signaling pathway.  相似文献   

5.
6.
7.
8.
9.
10.
Glutamate had no significant effect on the uptake of 0.025 mM cystine by isolated rat renal cortical tubules and brushborder membrane vesicles in contrast to lysine which significantly inhibits cystine transport. Glutamate, however, markedly inhibited cystine uptake by rat renal tubule cells grown in a serum-free, hormonally defined media for 5 days. Lysine also inhibited cystine transport in these cultured renal tubule cells.  相似文献   

11.
Translocator protein (TSPO), formerly known as peripheral-type benzodiazepine receptor (PBR), has been described in several tissues and characterized as one of the main elements of steroidogenesis. However, TSPO is also involved in other pathways and cell functions, such as apoptosis regulation, protein import, membrane biogenesis, cell cycle regulation, oxygen homeostasis and mitochondrial membrane fluidity regulation. In the kidney, TSPO is normally located in the distal parts of the nephron from the thick ascending limb of the loop of Henle to the medullary collecting ducts. However when the kidney is submitted to a stress such as ischemia reperfusion injury there is a defined change in TSPO expression towards more proximal areas of the nephron, and the protein can be detected as high as proximal tubular cells and the Bowman Capsule. As the injury persists, TSPO is also located in invading mononucleated cells, in a pattern reproducing invasion by CD4+ helper T cells, and in the damaged vessels where TSPO is expressed both in endothelial and smooth muscle cells. Herein we review the potential use of TSPO-directed treatment for ischemia reperfusion injury, particularly regarding pre-conditioning of the organ. We also detail the relationship of proximal TSPO staining with the intensity of the injury, particularly the implication of monomeric (18 kDa) TSPO and its role in hypoxia-reoxygenation and apoptosis prevention. The potential implications of the protein with regeneration processes activated in response to injury and their relation with embryogenesis pathways are discussed.  相似文献   

12.
13.
14.
Fifty-four patients on haemodialysis for chronic renal failure underwent renal transplantation. Basal and maximum acid output and the incidence of peptic ulcer before transplantation were not significantly different from those of controls. But after renal transplantation the incidence of symptoms of peptic ulcer was high (22%) and four out of six patients who developed gastrointestinal bleeding died from this complication. In men peak acid output was significantly increased after renal transplantation and was associated with a 30% incidence of symptoms of peptic ulcer compared with 10% in women, who showed no significant change in mean basal or peak acid output. Peptic ulceration after transplantation was not associated with steroid dosage, hyperparathyroidism, or the height of blood urea concentrations. Given criteria of a history of dyspepsia, abnormal barium meal findings, or gastric hypersecretion, it was not possible to identify patients at risk from peptic ulceration or life-threatening complications after renal transplantation. Thus the routine screening of these patients for peptic ulcer has no practical value, and the incidence of fatal complications is not high enough to justify routine prophylactic anti-ulcer surgery aimed at reducing acid secretion before renal transplantation.  相似文献   

15.
The distribution of theanine-degrading activity in Wistar rats was examined and this activity was detected only in the kidney. Judging from polyacrylamide gel electrophoresis, theanine-degrading enzyme from rat kidney was purified almost to homogeneity. Theanine-degrading activity was co-purified with glutaminase activity, and the relative activity for theanine was about 85% of that for L-glutamine throughout purification. Substrate specificity of purified enzyme preparation coincided well with the data of phosphate-independent glutaminase [EC 3.5.1.2], which had been previously reported. It was very curious that gamma-glutamyl methyl and ethyl esters were more effectively hydrolyzed than theanine and L-glutamine, in view of relative activity and K(m) value. It was suggested that gamma-glutamyl moiety in theanine molecule was transferred to form gamma-glutamylglycylglycine with relative ease in the presence of glycylglycine. On the other hand, purified phosphate-dependent glutaminase did not show theanine-degrading activity at all. Thus, it was concluded that theanine was hydrolyzed by phosphate-independent glutaminase in kidney and suggested that, as for the metabolic fate of theanine, its glutamyl moiety might be transferred by means of gamma-glutamyl transpeptidase reaction to other peptides in vivo.  相似文献   

16.
There is an emerging concept in clinical nephrology that acute kidney injury (AKI) can initiate chronic kidney disease (CKD). However, potential mechanisms by which this may occur remain elusive. Hence, this study tested the hypotheses that 1) AKI triggers progressive activation of selected proinflammatory genes, 2) there is a relative failure of compensatory anti-inflammatory gene expression, 3) proinflammatory lipid accumulation occurs, 4) these changes correspond with "gene-activating" histone acetylation, and 5) in concert, progressive renal disease results. CD-1 mice were subjected to 30 min of unilateral renal ischemia. Assessments were made 1 day, 1 wk, or 3 wk later. Results were contrasted to those observed in uninjured contralateral kidneys or in kidneys from normal mice. Progressive renal injury occurred throughout the 3-wk postischemic period, as denoted by stepwise increases in neutrophil gelatinase-associated lipocalin gene induction and ongoing histologic damage. By 3 wk postischemia, progressive renal disease was observed (massive tubular dropout; 2/3rds reduction in renal weight). These changes corresponded with progressive increases in proinflammatory cytokine/chemokine gene expression (MCP-1, TNF-α, TGF-β1), a relative failure of anti-inflammatory enzyme/cytokine (heme oxygenase-1; IL-10) upregulation, and progressive renal lipid (cholesterol/triglyceride) loading. Stepwise increases in collagen III mRNA and collagen deposition (Sirius red staining) indicated a progressive profibrotic response. Postischemic dexamethasone treatment significantly preserved renal mass, indicating functional significance of the observed proinflammatory state. Progressive gene-activating H3 acetylation was observed by ELISA, rising from 5% at baseline to 75% at 3 wk. This was confirmed by chromatin immunoprecipitation assay of target genes. In sum, these results provide experimental support for the clinical concept that AKI can trigger CKD, this is partially mediated by progressive postischemic inflammation, ongoing lipid accumulation results (potentially evoking "lipotoxicity"), and increasing histone acetylation at proinflammatory/profibrotic genes may contribute to this self-sustaining injury-promoting state.  相似文献   

17.
18.
We report a 2 months old girl affected by renal hypoplasia, genital abnormalities, syndactyly and a pattern of minor anomalies. Although the pattern of malformations overlaps the Townwes-Brock syndrome and that reported by Green et al in 1996, differential diagnosis was made with other several syndromes including acral and renal anomalies.  相似文献   

19.
The evolution of specialized excretory cells is a cornerstone of the metazoan radiation, and the basic tasks performed by Drosophila and human renal systems are similar. The development of the Drosophila renal (Malpighian) tubule is a classic example of branched tubular morphogenesis, allowing study of mesenchymal-to-epithelial transitions, stem cell-mediated regeneration, and the evolution of a glomerular kidney. Tubule function employs conserved transport proteins, such as the Na(+), K(+)-ATPase and V-ATPase, aquaporins, inward rectifier K(+) channels, and organic solute transporters, regulated by cAMP, cGMP, nitric oxide, and calcium. In addition to generation and selective reabsorption of primary urine, the tubule plays roles in metabolism and excretion of xenobiotics, and in innate immunity. The gene expression resource FlyAtlas.org shows that the tubule is an ideal tissue for the modeling of renal diseases, such as nephrolithiasis and Bartter syndrome, or for inborn errors of metabolism. Studies are assisted by uniquely powerful genetic and transgenic resources, the widespread availability of mutant stocks, and low-cost, rapid deployment of new transgenics to allow manipulation of renal function in an organotypic context.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号