首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Dilated cardiomyopathy (DCM) is a structural heart disease with strong genetic background. Monogenic forms of DCM are observed in families with mutations located mostly in genes encoding structural and sarcomeric proteins. However, strong evidence suggests that genetic factors also affect the susceptibility to idiopathic DCM. To identify risk alleles for non-familial forms of DCM, we carried out a case-control association study, genotyping 664 DCM cases and 1,874 population-based healthy controls from Germany using a 50K human cardiovascular disease bead chip covering more than 2,000 genes pre-selected for cardiovascular relevance. After quality control, 30,920 single nucleotide polymorphisms (SNP) were tested for association with the disease by logistic regression adjusted for gender, and results were genomic-control corrected. The analysis revealed a significant association between a SNP in HSPB7 gene (rs1739843, minor allele frequency 39%) and idiopathic DCM (p = 1.06×10−6, OR = 0.67 [95% CI 0.57–0.79] for the minor allele T). Three more SNPs showed p < 2.21×10−5. De novo genotyping of these four SNPs was done in three independent case-control studies of idiopathic DCM. Association between SNP rs1739843 and DCM was significant in all replication samples: Germany (n = 564, n = 981 controls, p = 2.07×10−3, OR = 0.79 [95% CI 0.67–0.92]), France 1 (n = 433 cases, n = 395 controls, p = 3.73×10−3, OR = 0.74 [95% CI 0.60–0.91]), and France 2 (n = 249 cases, n = 380 controls, p = 2.26×10−4, OR = 0.63 [95% CI 0.50–0.81]). The combined analysis of all four studies including a total of n = 1,910 cases and n = 3,630 controls showed highly significant evidence for association between rs1739843 and idiopathic DCM (p = 5.28×10−13, OR = 0.72 [95% CI 0.65–0.78]). None of the other three SNPs showed significant results in the replication stage.This finding of the HSPB7 gene from a genetic search for idiopathic DCM using a large SNP panel underscores the influence of common polymorphisms on DCM susceptibility.  相似文献   

3.
Previous genome-wide association (GWA) studies have identified SNPs associated with areal bone mineral density (aBMD). However, this measure is influenced by several different skeletal parameters, such as periosteal expansion, cortical bone mineral density (BMDC) cortical thickness, trabecular number, and trabecular thickness, which may be under distinct biological and genetic control. We have carried out a GWA and replication study of BMDC, as measured by peripheral quantitative computed tomography (pQCT), a more homogenous and valid measure of actual volumetric bone density. After initial GWA meta-analysis of two cohorts (ALSPAC n = 999, aged ∼15 years and GOOD n = 935, aged ∼19 years), we attempted to replicate the BMDC associations that had p<1×10−5 in an independent sample of ALSPAC children (n = 2803) and in a cohort of elderly men (MrOS Sweden, n = 1052). The rs1021188 SNP (near RANKL) was associated with BMDC in all cohorts (overall p = 2×10−14, n = 5739). Each minor allele was associated with a decrease in BMDC of ∼0.14SD. There was also evidence for an interaction between this variant and sex (p = 0.01), with a stronger effect in males than females (at age 15, males −6.77mg/cm3 per C allele, p = 2×10−6; females −2.79 mg/cm3 per C allele, p = 0.004). Furthermore, in a preliminary analysis, the rs1021188 minor C allele was associated with higher circulating levels of sRANKL (p<0.005). We show this variant to be independent from the previously aBMD associated SNP (rs9594738) and possibly from a third variant in the same RANKL region, which demonstrates important allelic heterogeneity at this locus. Associations with skeletal parameters reflecting bone dimensions were either not found or were much less pronounced. This finding implicates RANKL as a locus containing variation associated with volumetric bone density and provides further insight into the mechanism by which the RANK/RANKL/OPG pathway may be involved in skeletal development.  相似文献   

4.

Background

Disruption of endogenous circadian rhythms has been shown to increase the risk of developing type 2 diabetes, suggesting that circadian genes might play a role in determining disease susceptibility. We present the results of a pilot study investigating the association between type 2 diabetes and selected single nucleotide polymorphisms (SNPs) in/near nine circadian genes. The variants were chosen based on their previously reported association with prostate cancer, a disease that has been suggested to have a genetic link with type 2 diabetes through a number of shared inherited risk determinants.

Methodology/Principal Findings

The pilot study was performed using two genetically homogeneous Punjabi cohorts, one resident in the United Kingdom and one indigenous to Pakistan. Subjects with (N = 1732) and without (N = 1780) type 2 diabetes were genotyped for thirteen circadian variants using a competitive allele-specific polymerase chain reaction method. Associations between the SNPs and type 2 diabetes were investigated using logistic regression. The results were also combined with in silico data from other South Asian datasets (SAT2D consortium) and white European cohorts (DIAGRAM+) using meta-analysis. The rs7602358G allele near PER2 was negatively associated with type 2 diabetes in our Punjabi cohorts (combined odds ratio [OR] = 0.75 [0.66–0.86], p = 3.18×10−5), while the BMAL1 rs11022775T allele was associated with an increased risk of the disease (combined OR = 1.22 [1.07–1.39], p = 0.003). Neither of these associations was replicated in the SAT2D or DIAGRAM+ datasets, however. Meta-analysis of all the cohorts identified disease associations with two variants, rs2292912 in CRY2 and rs12315175 near CRY1, although statistical significance was nominal (combined OR = 1.05 [1.01–1.08], p = 0.008 and OR = 0.95 [0.91–0.99], p = 0.015 respectively).

Conclusions/significance

None of the selected circadian gene variants was associated with type 2 diabetes with study-wide significance after meta-analysis. The nominal association observed with the CRY2 SNP, however, complements previous findings and confirms a role for this locus in disease susceptibility.  相似文献   

5.
Intraocular pressure (IOP) is a highly heritable risk factor for primary open-angle glaucoma and is the only target for current glaucoma therapy. The genetic factors which determine IOP are largely unknown. We performed a genome-wide association study for IOP in 11,972 participants from 4 independent population-based studies in The Netherlands. We replicated our findings in 7,482 participants from 4 additional cohorts from the UK, Australia, Canada, and the Wellcome Trust Case-Control Consortium 2/Blue Mountains Eye Study. IOP was significantly associated with rs11656696, located in GAS7 at 17p13.1 (p = 1.4×10−8), and with rs7555523, located in TMCO1 at 1q24.1 (p = 1.6×10−8). In a meta-analysis of 4 case-control studies (total N = 1,432 glaucoma cases), both variants also showed evidence for association with glaucoma (p = 2.4×10−2 for rs11656696 and p = 9.1×10−4 for rs7555523). GAS7 and TMCO1 are highly expressed in the ciliary body and trabecular meshwork as well as in the lamina cribrosa, optic nerve, and retina. Both genes functionally interact with known glaucoma disease genes. These data suggest that we have identified two clinically relevant genes involved in IOP regulation.  相似文献   

6.
Late-onset Alzheimer''s disease (LOAD) is the most common form of dementia in the elderly. The National Institute of Aging-Late Onset Alzheimer''s Disease Family Study and the National Cell Repository for Alzheimer''s Disease conducted a joint genome-wide association study (GWAS) of multiplex LOAD families (3,839 affected and unaffected individuals from 992 families plus additional unrelated neurologically evaluated normal subjects) using the 610 IlluminaQuad panel. This cohort represents the largest family-based GWAS of LOAD to date, with analyses limited here to the European-American subjects. SNPs near APOE gave highly significant results (e.g., rs2075650, p = 3.2×10−81), but no other genome-wide significant evidence for association was obtained in the full sample. Analyses that stratified on APOE genotypes identified SNPs on chromosome 10p14 in CUGBP2 with genome-wide significant evidence for association within APOE ε4 homozygotes (e.g., rs201119, p = 1.5×10−8). Association in this gene was replicated in an independent sample consisting of three cohorts. There was evidence of association for recently-reported LOAD risk loci, including BIN1 (rs7561528, p = 0.009 with, and p = 0.03 without, APOE adjustment) and CLU (rs11136000, p = 0.023 with, and p = 0.008 without, APOE adjustment), with weaker support for CR1. However, our results provide strong evidence that association with PICALM (rs3851179, p = 0.69 with, and p = 0.039 without, APOE adjustment) and EXOC3L2 is affected by correlation with APOE, and thus may represent spurious association. Our results indicate that genetic structure coupled with ascertainment bias resulting from the strong APOE association affect genome-wide results and interpretation of some recently reported associations. We show that a locus such as APOE, with large effects and strong association with disease, can lead to samples that require appropriate adjustment for this locus to avoid both false positive and false negative evidence of association. We suggest that similar adjustments may also be needed for many other large multi-site studies.  相似文献   

7.
The PR interval on the electrocardiogram reflects atrial and atrioventricular nodal conduction time. The PR interval is heritable, provides important information about arrhythmia risk, and has been suggested to differ among human races. Genome-wide association (GWA) studies have identified common genetic determinants of the PR interval in individuals of European and Asian ancestry, but there is a general paucity of GWA studies in individuals of African ancestry. We performed GWA studies in African American individuals from four cohorts (n = 6,247) to identify genetic variants associated with PR interval duration. Genotyping was performed using the Affymetrix 6.0 microarray. Imputation was performed for 2.8 million single nucleotide polymorphisms (SNPs) using combined YRI and CEU HapMap phase II panels. We observed a strong signal (rs3922844) within the gene encoding the cardiac sodium channel (SCN5A) with genome-wide significant association (p<2.5×10−8) in two of the four cohorts and in the meta-analysis. The signal explained 2% of PR interval variability in African Americans (beta  = 5.1 msec per minor allele, 95% CI  = 4.1–6.1, p = 3×10−23). This SNP was also associated with PR interval (beta = 2.4 msec per minor allele, 95% CI = 1.8–3.0, p = 3×10−16) in individuals of European ancestry (n = 14,042), but with a smaller effect size (p for heterogeneity <0.001) and variability explained (0.5%). Further meta-analysis of the four cohorts identified genome-wide significant associations with SNPs in SCN10A (rs6798015), MEIS1 (rs10865355), and TBX5 (rs7312625) that were highly correlated with SNPs identified in European and Asian GWA studies. African ancestry was associated with increased PR duration (13.3 msec, p = 0.009) in one but not the other three cohorts. Our findings demonstrate the relevance of common variants to African Americans at four loci previously associated with PR interval in European and Asian samples and identify an association signal at one of these loci that is more strongly associated with PR interval in African Americans than in Europeans.  相似文献   

8.
Genome-wide association studies and meta-analysis indicate that several genes/loci are consistently associated with rheumatoid arthritis (RA) in European and Asian populations. To evaluate the transferability status of these findings to an ethnically diverse north Indian population, we performed a replication analysis. We investigated the association of 47 single-nucleotide polymorphisms (SNPs) at 43 of these genes/loci with RA in a north Indian cohort comprising 983 RA cases and 1007 age and gender matched controls. Genotyping was done using Infinium human 660w-quad. Association analysis by chi-square test implemented in plink was carried out in two steps. Firstly, association of the index or surrogate SNP (r2>0.8, calculated from reference GIH Hap-Map population) was tested. In the second step, evidence for allelic/locus heterogeneity at aforementioned genes/loci was assessed for by testing additional flanking SNPs in linkage equilibrium with index/surrogate marker.Of the 44 European specific index SNPs, neither index nor surrogate SNPs were present for nine SNPs in the genotyping array. Of the remaining 35, associations were replicated at seven genes namely PTPN22 (rs1217407, p = 3×10−3); IL2–21 (rs13119723, p = 0.008); HLA-DRB1 (rs660895, p = 2.56×10−5; rs6457617, p = 1.6×10−09; rs13192471, p = 6.7×10−16); TNFA1P3 (rs9321637, p = 0.03); CCL21 (rs13293020, p = 0.01); IL2RA (rs2104286, p = 1.9×10−4) and ZEB1 (rs2793108, p = 0.006). Of the three Asian specific loci tested, rs2977227 in PADI4 showed modest association (p<0.02). Further, of the 140 SNPs (in LE with index/surrogate variant) tested, association was observed at 11 additional genes: PTPRC, AFF3, CD28, CTLA4, PXK, ANKRD55, TAGAP, CCR6, BLK, CD40 and IL2RB. This study indicates limited replication of European and Asian index SNPs and apparent allelic heterogeneity in RA etiology among north Indians warranting independent GWAS in this population. However, replicated associations of HLA-DRB1, PTPN22 (which confer ∼50% of the heritable risk to RA) and IL2RA suggest that cross-ethnicity fine mapping of such loci is apposite for identification of causal variants.  相似文献   

9.

Background and Objectives

Epidemiological evidence for the role of polyunsaturated fatty-acids (PUFA) in Crohn''s disease (CD) is unclear, although the key metabolite leucotriene B4 (LTB4) is closely linked to the inflammatory process. We hypothesized that inherited variation in key PUFA metabolic enzymes may modify susceptibility for CD.

Methods and Principal Results

A case-control design was implemented at three pediatric gastroenterology clinics in Canada. Children ≤20 yrs diagnosed with CD and controls were recruited. 19 single nucleotide polymorphisms (SNPs) across the ALOX5 (4) CYP4F3 (5) and CYP4F2 (10) genes, were genotyped. Associations between SNPs/haplotypes and CD were examined. A total of 431 cases and 507 controls were studied. The mean (±SD) age of the cases was 12.4 (±3.3) years. Most cases were male (56.4%), had ileo-colonic disease (L3±L4, 52.7%) and inflammatory behavior (B1±p, 87%) at diagnosis. One genotyped CYP4F3 SNP (rs2683037) not in Hardy-Weinberg Equilibrium was excluded. No associations with the remaining 4 CYP4F3 SNPs with CD were evident. However haplotype analysis revealed associations with a two-marker haplotype (TG) (rs3794987 & rs1290617) (p = 0.02; permuted p = 0.08). CYP4F2 SNPs, rs3093158 (OR (recessive) = 0.56, 95% CI = 0.35–0.89; p = 0.01), rs2074902 (OR (trend) = 1.26, 95% CI = 1.00–1.60; p = 0.05), and rs2108622 (OR (recessive) = 1.6, 95% CI = 1.00–2.57; p = 0.05) were significantly associated whereas rs1272 (OR (recessive) = 0.58, 95% CI = 0.30–1.13; p = 0.10) showed suggestions for associations with CD. A haplotype comprising these 4 SNPs was significantly associated (p = 0.007, permuted p = 0.02) with CD. Associations with SNP rs3780901 in the ALOX5 gene were borderline non-significant (OR (dominant) = 1.29, 95% CI = 0.99–1.67; p = 0.056). A haplotype comprising the 4 ALOX5 SNPs (TCAA, p = 0.036) was associated with CD, but did not withstand corrections for multiple comparisons (permuted p = 0.14).

Conclusions

Inherited variation in enzymes involved in the synthesis/metabolism of LTB4 may be associated with CD. These findings implicate PUFA metabolism as a important pathway in the CD pathogenesis.  相似文献   

10.
The 6q25.1 locus was first identified via a genome-wide association study (GWAS) in Chinese women and marked by single nucleotide polymorphism (SNP) rs2046210, approximately 180 Kb upstream of ESR1. There have been conflicting reports about the association of this locus with breast cancer in Europeans, and a GWAS in Europeans identified a different SNP, tagged here by rs12662670. We examined the associations of both SNPs in up to 61,689 cases and 58,822 controls from forty-four studies collaborating in the Breast Cancer Association Consortium, of which four studies were of Asian and 39 of European descent. Logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI). Case-only analyses were used to compare SNP effects in Estrogen Receptor positive (ER+) versus negative (ER−) tumours. Models including both SNPs were fitted to investigate whether the SNP effects were independent. Both SNPs are significantly associated with breast cancer risk in both ethnic groups. Per-allele ORs are higher in Asian than in European studies [rs2046210: OR (A/G) = 1.36 (95% CI 1.26–1.48), p = 7.6×10−14 in Asians and 1.09 (95% CI 1.07–1.11), p = 6.8×10−18 in Europeans. rs12662670: OR (G/T) = 1.29 (95% CI 1.19–1.41), p = 1.2×10−9 in Asians and 1.12 (95% CI 1.08–1.17), p = 3.8×10−9 in Europeans]. SNP rs2046210 is associated with a significantly greater risk of ER− than ER+ tumours in Europeans [OR (ER−) = 1.20 (95% CI 1.15–1.25), p = 1.8×10−17 versus OR (ER+) = 1.07 (95% CI 1.04–1.1), p = 1.3×10−7, pheterogeneity = 5.1×10−6]. In these Asian studies, by contrast, there is no clear evidence of a differential association by tumour receptor status. Each SNP is associated with risk after adjustment for the other SNP. These results suggest the presence of two variants at 6q25.1 each independently associated with breast cancer risk in Asians and in Europeans. Of these two, the one tagged by rs2046210 is associated with a greater risk of ER− tumours.  相似文献   

11.

Background

Biomarkers of disease progression in amyotrophic lateral sclerosis (ALS) could support the identification of beneficial drugs in clinical trials. We aimed to test whether soluble fragments of beta-amyloid precursor protein (sAPPα and sAPPß) correlated with clinical subtypes of ALS and were of prognostic value.

Methodology/Principal Findings

In a cross-sectional study including patients with ALS (N = 68) with clinical follow-up data over 6 months, Parkinson''s disease (PD, N = 20), and age-matched controls (N = 40), cerebrospinal fluid (CSF) levels of sAPPα a, sAPPß and neurofilaments (NfHSMI35) were measured by multiplex assay, Progranulin by ELISA. CSF sAPPα and sAPPß levels were lower in ALS with a rapidly-progressive disease course (p = 0.03, and p = 0.02) and with longer disease duration (p = 0.01 and p = 0.01, respectively). CSF NfHSMI35 was elevated in ALS compared to PD and controls, with highest concentrations found in patients with rapid disease progression (p<0.01). High CSF NfHSMI3 was linked to low CSF sAPPα and sAPPß (p = 0.001, and p = 0.007, respectively). The ratios CSF NfHSMI35/CSF sAPPα,-ß were elevated in patients with fast progression of disease (p = 0.002 each). CSF Progranulin decreased with ongoing disease (p = 0.04).

Conclusions

This study provides new CSF candidate markers associated with progression of disease in ALS. The data suggest that a deficiency of cellular neuroprotective mechanisms (decrease of sAPP) is linked to progressive neuro-axonal damage (increase of NfHSMI35) and to progression of disease.  相似文献   

12.

Objective

Sirtuins (SIRTs) and mitochondrial uncoupling proteins (UCPs) have been implicated in cardiovascular diseases through the control of reactive oxygen species production. This study sought to investigate the association between genetic variants in the SIRT and UCP genes and carotid plaque.

Methods

In a group of 1018 stroke-free subjects from the Northern Manhattan Study with high-definition carotid ultrasonography and genotyping, we investigated the associations of 85 single nucleotide polymorphisms (SNPs) in the 11 SIRT and UCP genes with the presence and number of carotid plaques, and evaluated interactions of SNPs with sex, smoking, diabetes and hypertension as well as interactions between SNPs significantly associated with carotid plaque.

Results

Overall, 60% of subjects had carotid plaques. After adjustment for demographic and vascular risk factors, T-carriers of the SIRT6 SNP rs107251 had an increased risk for carotid plaque (odds ratio, OR = 1.71, 95% CI = 1.23–2.37, Bonferroni-corrected p = 0.03) and for a number of plaques (rate ratio, RR = 1.31, 1.18–1.45, Bonferroni-corrected p = 1.4×10−5), whereas T-carriers of the UCP5 SNP rs5977238 had an decreased risk for carotid plaque (OR = 0.49, 95% CI = 0.32–0.74, Bonferroni-corrected p = 0.02) and plaque number (RR = 0.64, 95% CI = 0.52–0.78, Bonferroni-corrected p = 4.9×10−4). Some interactions with a nominal p≤0.01 were found between sex and SNPs in the UCP1 and UCP3 gene; between smoking, diabetes, hypertension and SNPs in UCP5 and SIRT5; and between SNPs in the UCP5 gene and the UCP1, SIRT1, SIRT3, SIRT5, and SIRT6 genes in association with plaque phenotypes.

Conclusion

We observed significant associations between genetic variants in the SIRT6 and UCP5 genes and atherosclerotic plaque. We also found potential effect modifications by sex, smoking and vascular risk factors of the SIRT/UCP genes in the associations with atherosclerotic plaque. Further studies are needed to validate our observations.  相似文献   

13.
14.
Crohn''s disease (CD) is a complex disorder resulting from the interaction of intestinal microbiota with the host immune system in genetically susceptible individuals. The largest meta-analysis of genome-wide association to date identified 71 CD–susceptibility loci in individuals of European ancestry. An important epidemiological feature of CD is that it is 2–4 times more prevalent among individuals of Ashkenazi Jewish (AJ) descent compared to non-Jewish Europeans (NJ). To explore genetic variation associated with CD in AJs, we conducted a genome-wide association study (GWAS) by combining raw genotype data across 10 AJ cohorts consisting of 907 cases and 2,345 controls in the discovery stage, followed up by a replication study in 971 cases and 2,124 controls. We confirmed genome-wide significant associations of 9 known CD loci in AJs and replicated 3 additional loci with strong signal (p<5×10−6). Novel signals detected among AJs were mapped to chromosomes 5q21.1 (rs7705924, combined p = 2×10−8; combined odds ratio OR = 1.48), 2p15 (rs6545946, p = 7×10−9; OR = 1.16), 8q21.11 (rs12677663, p = 2×10−8; OR = 1.15), 10q26.3 (rs10734105, p = 3×10−8; OR = 1.27), and 11q12.1 (rs11229030, p = 8×10−9; OR = 1.15), implicating biologically plausible candidate genes, including RPL7, CPAMD8, PRG2, and PRG3. In all, the 16 replicated and newly discovered loci, in addition to the three coding NOD2 variants, accounted for 11.2% of the total genetic variance for CD risk in the AJ population. This study demonstrates the complementary value of genetic studies in the Ashkenazim.  相似文献   

15.

Background

Thymic stromal lymphopoietin (TSLP), an IL7-like cytokine produced by bronchial epithelial cells is upregulated in asthma and induces dendritic cell maturation supporting a Th2 response. Environmental pollutants, including tobacco smoke and diesel exhaust particles upregulate TSLP suggesting that TSLP may be an interface between environmental pollution and immune responses in asthma. Since asthma is prevalent in urban communities, variants in the TSLP gene may be important in asthma susceptibility in these populations.

Objectives

To determine whether genetic variants in TSLP are associated with asthma in an urban admixed population.

Methodology and Main Results

Ten tag-SNPs in the TSLP gene were analyzed for association with asthma using 387 clinically diagnosed asthmatic cases and 212 healthy controls from an urban admixed population. One SNP (rs1898671) showed nominally significant association with asthma (odds ratio (OR) = 1.50; 95% confidence interval (95% CI): 1.09–2.05, p = 0.01) after adjusting for age, BMI, income, education and population stratification. Association results were consistent using two different approaches to adjust for population stratification. When stratified by smoking status, the same SNP showed a significantly increased risk associated with asthma in ex-smokers (OR = 2.00, 95% CI: 1.04–3.83, p = 0.04) but not significant in never-smokers (OR = 1.34; 95% CI: 0.93–1.94, p = 0.11). Haplotype-specific score test indicated that an elevated risk for asthma was associated with a specific haplotype of TSLP involving SNP rs1898671 (OR = 1.58, 95% CI: 1.10–2.27, p = 0.01). Association of this SNP with asthma was confirmed in an independent large population-based cohort consortium study (OR = 1.15, 95% CI: 1.07–1.23, p = 0.0003) and the results stratified by smoking status were also validated (ex-smokers: OR = 1.21, 95% CI: 1.08–1.34, p = 0.003; never-smokers: OR = 1.06, 95% CI: 0.94–1.17, p = 0.33).

Conclusions

Genetic variants in TSLP may contribute to asthma susceptibility in admixed urban populations with a gene and environment interaction.  相似文献   

16.
17.
We examined whether polymorphisms in interleukin-12B (IL12B) associate with susceptibility to pulmonary tuberculosis (PTB) in two West African populations (from The Gambia and Guinea-Bissau) and in two independent populations from North and South America. Nine polymorphisms (seven SNPs, one insertion/deletion, one microsatellite) were analyzed in 321 PTB cases and 346 controls from Guinea-Bissau and 280 PTB cases and 286 controls from The Gambia. For replication we studied 281 case and 179 control African-American samples and 221 cases and 144 controls of European ancestry from the US and Argentina. First-stage single locus analyses revealed signals of association at IL12B 3′ UTR SNP rs3212227 (unadjusted allelic p = 0.04; additive genotypic p = 0.05, OR = 0.78, 95% CI [0.61–0.99]) in Guinea-Bissau and rs11574790 (unadjusted allelic p = 0.05; additive genotypic p = 0.05, OR = 0.76, 95% CI [0.58–1.00]) in The Gambia. Association of rs3212227 was then replicated in African-Americans (rs3212227 allelic p = 0.002; additive genotypic p = 0.05, OR = 0.78, 95% CI [0.61–1.00]); most importantly, in the African-American cohort, multiple significant signals of association (seven of the nine polymorphisms tested) were detected throughout the gene. These data suggest that genetic variation in IL12B, a highly relevant candidate gene, is a risk factor for PTB in populations of African ancestry, although further studies will be required to confirm this association and identify the precise mechanism underlying it.  相似文献   

18.

Background

Asthma is a chronic inflammatory disease with a strong genetic predisposition. A major challenge for candidate gene association studies in asthma is the selection of biologically relevant genes.

Methodology/Principal Findings

Using epithelial RNA expression arrays, HapMap allele frequency variation, and the literature, we identified six possible candidate susceptibility genes for childhood asthma including ADCY2, DNAH5, KIF3A, PDE4B, PLAU, SPRR2B. To evaluate these genes, we compared the genotypes of 194 predominantly tagging SNPs in 790 asthmatic, allergic and non-allergic children. We found that SNPs in all six genes were nominally associated with asthma (p<0.05) in our discovery cohort and in three independent cohorts at either the SNP or gene level (p<0.05). Further, we determined that our selection approach was superior to random selection of genes either differentially expressed in asthmatics compared to controls (p = 0.0049) or selected based on the literature alone (p = 0.0049), substantiating the validity of our gene selection approach. Importantly, we observed that 7 of 9 SNPs in the KIF3A gene more than doubled the odds of asthma (OR = 2.3, p<0.0001) and increased the odds of allergic disease (OR = 1.8, p<0.008). Our data indicate that KIF3A rs7737031 (T-allele) has an asthma population attributable risk of 18.5%. The association between KIF3A rs7737031 and asthma was validated in 3 independent populations, further substantiating the validity of our gene selection approach.

Conclusions/Significance

Our study demonstrates that KIF3A, a member of the kinesin superfamily of microtubule associated motors that are important in the transport of protein complexes within cilia, is a novel candidate gene for childhood asthma. Polymorphisms in KIF3A may in part be responsible for poor mucus and/or allergen clearance from the airways. Furthermore, our study provides a promising framework for the identification and evaluation of novel candidate susceptibility genes.  相似文献   

19.
We have previously shown that genetic variability in CNR1 is associated with low HDL dyslipidemia in a multigenerational obesity study cohort of Northern European descent (209 families, median  = 10 individuals per pedigree). In order to assess the impact of CNR1 variability on the development of dyslipidemia in the community, we genotyped this locus in all subjects with class III obesity (body mass index >40 kg/m2) participating in a population-based biobank of similar ancestry. Twenty-two haplotype tagging SNPs, capturing the entire CNR1 gene locus plus 15 kb upstream and 5 kb downstream, were genotyped and tested for association with clinical lipid data. This biobank contains data from 645 morbidly obese study subjects. In these subjects, a common CNR1 haplotype (H3, frequency 21.1%) is associated with fasting TG and HDL cholesterol levels (p = 0.031 for logTG; p = 0.038 for HDL-C; p = 0.00376 for log[TG/HDL-C]). The strength of this relationship increases when the data are adjusted for age, gender, body mass index, diet and physical activity. Mean TG levels were 160±70, 155±70, and 120±60 mg/dL for subjects with 0, 1, and 2 copies of the H3 haplotype. Mean HDL-C levels were 45±10, 47±10, and 48±9 mg/dL, respectively. The H3 CNR1 haplotype appears to exert a protective effect against development of obesity-related dyslipidemia.  相似文献   

20.

Background

Telomeres shorten as cells divide. This shortening is compensated by the enzyme telomerase. We evaluated the effect of common variants in the telomerase RNA component (TERC) gene on telomere length (TL) in the population-based Health Aging and Body Composition (Health ABC) Study and in two replication samples (the TwinsUK Study and the Amish Family Osteoporosis Study, AFOS).

Methodology

Five variants were identified in the TERC region by sequence analysis and only one SNP was common (rs2293607, G/A). The frequency of the G allele was 0.26 and 0.07 in white and black, respectively. Testing for association between TL and rs2293607 was performed using linear regression models or variance component analysis conditioning on relatedness among subjects.

Results

The adjusted mean TL was significantly shorter in 665 white carriers of the G allele compared to 887 non-carriers from the Health ABC Study (4.69±0.05 kbp vs. 4.86±0.04 kbp, measured by quantitative PCR, p = 0.005). This association was replicated in another white sample from the TwinsUK Study (6.90±0.03 kbp in 301 carriers compared to 7.06±0.03 kbp in 395 non-carriers, measured by Southern blots, p = 0.009). A similar pattern of association was observed in whites from the family-based AFOS and blacks from the Health ABC cohort, although not statistically significant, possibly due to the lower allele frequency in these populations. Combined analysis using 2,953 white subjects from 3 studies showed a significant association between TL and rs2293607 (β = −0.19±0.04 kbp, p = 0.001).

Conclusion

Our study shows a significant association between a common variant in TERC and TL in humans, suggesting that TERC may play a role in telomere homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号