首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both computational finite element and experimental models of the human torso have been developed for ballistic impact testing. The human torso finite element model (HTFEM), including the thoracic skeletal structure and organs, was created in the finite element code LS-DYNA. The skeletal structure was assumed to be linear-elastic while all internal organs were modeled as viscoelastic. A physical human surrogate torso model (HSTM) was developed using biosimulant materials and the same anthropometry as the HTFEM. The HSTM response to impact was recorded with piezoresistive pressure sensors molded into the heart, liver and stomach and an accelerometer attached to the sternum. For experimentation, the HSTM was outfitted with National Institute of Justice (NIJ) Level I, IIa, II and IIIa soft armor vests. Twenty-six ballistic tests targeting the HSTM heart and liver were conducted with 22 caliber ammunition at a velocity of 329 m/s and 9 mm ammunition at velocities of 332, 358 and 430 m/s. The HSTM pressure response repeatability was found to vary by less than 10% for similar impact conditions. A comparison of the HSTM and HTFEM response showed similar pressure profiles and less than 35% peak pressure difference for organs near the ballistic impact point. Furthermore, the peak sternum accelerations of the HSTM and HTFEM varied by less than 10% for impacts over the sternum. These models provide comparative tools for determining the thoracic response to ballistic impact and could be used to evaluate soft body armor design and efficacy, determine thoracic injury mechanisms and assist with injury prevention.  相似文献   

2.
In the last few decades, various researches focus on the transient pressure in the behind armor blunt trauma. This paper presented a investigation on the transient pressure in the ballistic gelatin behind a soft body armor subjected to the impacting from three ammunitions. Experimental results show that three peaks appear on the pressure–time curves without taking into account the ammunition type and the impact velocity. Furthermore, numerical models of the test were created to compare modelling results to the pressure from the pressure gauges buried in the gelatin block. The main features on the pressure–time cure were discussed to analyze the wave formation and propagation. With the verified model, the effect of the boundary was also investigated to explain the wave reflection which appeared after two peaks.  相似文献   

3.

Background

Lead-free hunting bullets are an alternative to lead-containing bullets which cause health risks for humans and endangered scavenging raptors through lead ingestion. However, doubts concerning the effectiveness of lead-free hunting bullets hinder the wide-spread acceptance in the hunting and wildlife management community.

Methods

We performed terminal ballistic experiments under standardized conditions with ballistic soap as surrogate for game animal tissue to characterize dimensionally stable, partially fragmenting, and deforming lead-free bullets and one commonly used lead-containing bullet. The permanent cavities created in soap blocks are used as a measure for the potential wound damage. The soap blocks were imaged using computed tomography to assess the volume and shape of the cavity and the number of fragments. Shots were performed at different impact speeds, covering a realistic shooting range. Using 3D image segmentation, cavity volume, metal fragment count, deflection angle, and depth of maximum damage were determined. Shots were repeated to investigate the reproducibility of ballistic soap experiments.

Results

All bullets showed an increasing cavity volume with increasing deposited energy. The dimensionally stable and fragmenting lead-free bullets achieved a constant conversion ratio while the deforming copper and lead-containing bullets showed a ratio, which increases linearly with the total deposited energy. The lead-containing bullet created hundreds of fragments and significantly more fragments than the lead-free bullets. The deflection angle was significantly higher for the dimensionally stable bullet due to its tumbling behavior and was similarly low for the other bullets. The deforming bullets achieved higher reproducibility than the fragmenting and dimensionally stable bullets.

Conclusion

The deforming lead-free bullet closely resembled the deforming lead-containing bullet in terms of energy conversion, deflection angle, cavity shape, and reproducibility, showing that similar terminal ballistic behavior can be achieved. Furthermore, the volumetric image processing allowed superior analysis compared to methods that involve cutting of the soap blocks.  相似文献   

4.
The impact and penetration of high speed particles with the human skin is of interest for targeted drug delivery by transdermal powder injection. However, it is often difficult to perform penetration experiments on dermal tissue using micron scale particles. To address this, a finite element model of the impact and penetration of a 2 μm gold particle into the human dermis was developed and calibrated using experiments found in the literature. Using dimensional analysis, the model was linked to a larger scale steel ball-gelatin system in order to extract key material parameters for both systems and perform impact studies. In this manner, an elastic modulus of 2.25 MPa was found for skin, in good agreement with reported values from the literature. Further gelatin experiments were performed with steel, polymethyl methacrylate, titanium, and tungsten carbide balls in order to determine the effects of particle size and density on penetration depth. Both the finite element model and the steel-gelatin experiments were able to predict the penetration behavior that was found by other investigators in the study of the impact of typical particles used for vaccine delivery into the human dermis. It can therefore be concluded that scaled up systems utilizing ballistic gelatins can be used to investigate the performance of transdermal powder injection technology.  相似文献   

5.
To study wound ballistics of the mandibular angle, a combined hexahedral-tetrahedral finite element (FE) model of the pig mandible was developed to simulate ballistic impact. An experimental study was carried out by measuring impact load parameters from 14 fresh pig mandibles that were shot at the mandibular angle by a standard 7.62 mm M43 bullet. FE analysis was executed through the LS-DYNA code under impact loads similar to those obtained from the experimental study. The resulting residual velocity, the transferred energy from the bullet to the mandible, and the surface area of the entrance wound had no statistical differences between the FE simulation and the experimental study. However, the mean surface area of the exit wounds in the experimental study was significantly larger than that in the simulation. According to the FE analysis, the stress concentrated zones were mainly located at the region of impact, condylar neck, coronoid process and mandibular body. The simulation results also indicated that trabecular bone had less stress concentration and a lower speed of stress propagation compared with cortical bone. The FE model is appropriate and conforms to the basic principles of wound ballistics. This modeling system will be helpful for further investigations of the biomechanical mechanisms of wound ballistics.  相似文献   

6.
It was reported by others that hands-free accessories increase the absorption of RF energy in a human head compared to a handset alone. The results of this study show that the opposite is observed when proper dosimetric methods are employed. It is pointed out that for correct estimation of the exposure level it is necessary to use appropriate physical and experimental models and measurement instrumentation, following internationally recommended standards. The human phantoms used for measurements involving the hands-free accessories should include the torso; i.e., measurements should not be performed on the head phantom alone. This has a significant impact on the results because the RF energy coupled into the leads of hands-free accessories is strongly attenuated by the body. Numerical simulations using the Finite-Difference Time-Domain (FDTD) method and experimental measurements with a miniature electric-field probe are in good agreement and show a decrease, not an increase, in RF energy exposure in the human head from hands-free accessories.  相似文献   

7.
A high-frequency lung injury mechanism in blunt thoracic impact   总被引:1,自引:0,他引:1  
When a mechanical load is applied very rapidly to the thoracic wall, part of the internal damage is suspected to be due to a "high-frequency" injury mechanism, that is, a phenomenon in which waves are involved. This paper addresses a specific high-frequency mechanism for lung injury in which a stress wave is generated through rapid acceleration of the body wall. Displacement-related injuries, which are rather "low-frequency" phenomena, are not considered. The present work was done in the context of assessing behind armor blunt trauma (injury to thoracic organs occurring when a bullet is stopped by a body armor) through mathematical modeling. One aspect of the thorax response to high-speed blunt impact and an associated injury mechanism are investigated based on an idealized model of thorax and a set of computations presented in previous papers. The injury mechanism considered elucidates a possible mathematical relationship between the acceleration at the surface of the thoracic wall and the occurrence of lung injury.  相似文献   

8.
Analytical and finite element models (FEMs) were used to quantify poroelastic material properties for a human intervertebral disk. An axisymmetric FEM based on a poroelastic view of disk constituents was developed for a representative human spinal motion segment (SMS). Creep and steady-state response predicted by FEMs agreed with experimental observations, i.e., long-time creep occurs with flow in the SMS, whereas for rapid steady-state loading an "undrained," nearly incompressible response is evident. A relatively low value was determined for discal permeability. Transient and long-term creep FE analyses included the study of deformation, pore fluid flow, stress, and pore fluid pressure. Relative fluid motion associated with transient creep is related to nuclear nutrition and the overall mechanical response in the normal disk. Degeneration of the disk may be associated with an increase in permeability.  相似文献   

9.
Many vertebrates are armored over all or part of their body. The armor may serve several functional roles including defense, offense, visual display, and signal of experience/capability. Different roles imply different tradeoffs; for example, defensive armor usually trades resistance to attack for maneuverability. The poachers (Agonidae), 47 species of scorpaeniform fishes, are a useful system for understanding the evolution and function of armor due to their variety and extent of armoring. Using publically available CT-scan data from 27 species in 16 of 21 genera of poachers we compared the armor to axial skeletal in the mid body region. The ratio of average armor density to average skeleton density ranged from 0.77 to 1.17. From a defensive point of view, the total investment in mineralization (volume * average density) is more interesting. There was 10 times the material invested in the armor as in the endoskeleton in some small, smooth plated species, like Aspidophoroides olrikii. At the low end, some visually arresting species like Percis japonica, had ratios as low as 2:1. We categorized the extent and type (impact vs. abrasion) in 34 Agonopsis vulsa across all 35+ plates in the eight rows along the body. The ventral rows show abrasive damage along the entire length of the fish that gets worse with age. Impact damage to head and tail plates gets more severe and occurs at higher rates with age. The observed damage rates and the large investment in mineralization of the armor suggest that it is not just for show, but is a functional defensive structure. We cannot say what the armor is defense against, but the abrasive damage on the ventrum implies their benthic lifestyle involves rubbing on the substrate. The impact damage could result from predatory attacks or from intraspecific combat.  相似文献   

10.
A considerable majority of side impact sled tests using different types of human surrogates has used a load-wall design not specific to subject anthropometry. The use of one load-wall configuration cannot accurately isolate and evaluate regional responses for the same load-wall geometry. As the anatomy and biomechanical responses of the human torso depends on the region, and anthropomorphic test devices continue to advance and accommodate regional differences, it is important to obtain specific data from sled tests. To achieve this goal, the present study designed a scalable modular load-wall consisting of the shoulder, thorax, abdomen, and superior and inferior pelvis, and lower limb plates. The first five plates were connected to a vertical fixture and the limb plate was connected to another fixture. The width, height, and thickness, and the gap between plates were modular. Independent adjustments in the coronal and sagittal planes allowed region-specific positioning depending on surrogate anthropometry, example pelvis width and seated height. Two tri-axial load cells were fixed on the contralateral face of each plate of the load-wall to record impact force-time histories. The load-wall and vertical fixture design can be used to conduct side impact tests with varying vectors, pure-lateral to anterior and posterior oblique, by appropriately orienting the load-wall with respect to the surrogate. The feasibility of the design to extract region-specific biomechanical data was demonstrated by conducting pure-lateral and anterior oblique sled tests using two different surrogates at a velocity of 6.7m/s. Uses of this design are discussed for different applications.  相似文献   

11.
The interaction of body‐worn antennas with the human body causes a significant decrease in antenna efficiency and a shift in resonant frequency. A resonant slot in a small conductive box placed on the body has been shown to reduce these effects. The specific absorption rate is less than international health standards for most wearable antennas due to small transmitter power. This paper reports the linear relationship between power absorbed by biological tissues at different locations on the body and radiation efficiency based on numerical modeling (r = 0.99). While the ?10 dB bandwidth of the antenna remained constant and equal to 12.5%, the maximum frequency shift occurred when the antenna was close to the elbow (6.61%) and on the thigh (5.86%). The smallest change was found on the torso (4.21%). Participants with body‐mass index (BMI) between 17 and 29 kg/m2 took part in experimental measurements, where the maximum frequency shift was 2.51%. Measurements showed better agreement with simulations on the upper arm. These experimental results demonstrate that the BMI for each individual had little effect on the performance of the antenna. Bioelectromagnetics. 39:25–34, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

12.
Chen Y  Huang W  Constantini S 《PloS one》2012,7(6):e39353
A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel.  相似文献   

13.
This study developed a parametric methodology to robustly predict occupant injuries sustained in real-world crashes using a finite element (FE) human body model (HBM). One hundred and twenty near-side impact motor vehicle crashes were simulated over a range of parameters using a Toyota RAV4 (bullet vehicle), Ford Taurus (struck vehicle) FE models and a validated human body model (HBM) Total HUman Model for Safety (THUMS). Three bullet vehicle crash parameters (speed, location and angle) and two occupant parameters (seat position and age) were varied using a Latin hypercube design of Experiments. Four injury metrics (head injury criterion, half deflection, thoracic trauma index and pelvic force) were used to calculate injury risk. Rib fracture prediction and lung strain metrics were also analysed. As hypothesized, bullet speed had the greatest effect on each injury measure. Injury risk was reduced when bullet location was further from the B-pillar or when the bullet angle was more oblique. Age had strong correlation to rib fractures frequency and lung strain severity. The injuries from a real-world crash were predicted using two different methods by (1) subsampling the injury predictors from the 12 best crush profile matching simulations and (2) using regression models. Both injury prediction methods successfully predicted the case occupant's low risk for pelvic injury, high risk for thoracic injury, rib fractures and high lung strains with tight confidence intervals. This parametric methodology was successfully used to explore crash parameter interactions and to robustly predict real-world injuries.  相似文献   

14.
Human responses are critical to understanding injury biomechanics in blunt ballistic impacts, which are defined as 20-200 g projectiles impacting at 20-250 m/s. 13 human cadavers were exposed to three distinct ballistic impacts of the chest to determine force-time, deflection-time and force-deflection responses. Comparisons were made between biomechanical responses for ballistic impacts and those previously reported for lower speed, higher mass impacts. Impact condition B (140 g at 40 m/s) gave the largest peak force 10,602+/-2226 N and deflection 54.7+/-14.6 mm. Impact condition A (140 g at 20 m/s) involved lower impact energy and produced lower peak force 3383+/-761 N and deflection 25.9+/-3.1 mm, as did impact condition C (40 g at 60 m/s), which gave 3158+/-309 N and 20.1+/-7.8 mm. The results indicate each impact condition gives distinctive responses, which differ from those previously reported in the automotive literature for lower speed impacts. This information provides the foundation for future biomechanical research in the area of blunt ballistic impacts, specifically the development of test surrogates and evaluation of protective equipment.  相似文献   

15.
Structure and function of basement membranes   总被引:2,自引:0,他引:2  
Basement membranes (BMs) are present in every tissue of the human body. All epithelium and endothelium is in direct association with BMs. BMs are a composite of several large glycoproteins and form an organized scaffold to provide structural support to the tissue and also offer functional input to modulate cellular function. While collagen I is the most abundant protein in the human body, type IV collagen is the most abundant protein in BMs. Matrigel is commonly used as surrogate for BMs in many experiments, but this is a tumor-derived BM-like material and does not contain all of the components that natural BMs possess. The structure of BMs and their functional role in tissues are unique and unlike any other class of proteins in the human body. Increasing evidence suggests that BMs are unique signal input devices that likely fine tune cellular function. Additionally, the resulting endothelial and epithelial heterogeneity in human body is a direct contribution of cell-matrix interaction facilitated by the diverse compositions of BMs.  相似文献   

16.
Abdominal trauma accounts for nearly 20% of all severe traffic injuries and can often result from intentional physical violence, from which blunt liver injury is regarded as the most common result and is associated with a high mortality rate. Liver injury may be caused by a direct impact with a certain velocity and energy on the abdomen, which may result in a lacerated liver by penetration of fractured ribs. However, liver ruptures without rib cage fractures were found in autopsies in a series of cases. All the victims sustained punches on the abdomen by fist. Many studies have been dedicated to determining the mechanism underlying hepatic injury following abdominal trauma, but most have been empirical. The actual process and biomechanism of liver injury induced by blunt impact on the abdomen, especially with intact ribs remained, are still inexhaustive. In order to investigate this, finite element methods and numerical simulation technology were used. A finite element human torso model was developed from high resolution CT data. The model consists of geometrically-detailed liver and rib cage models and simplified models of soft tissues, thoracic and abdominal organs. Then, the torso model was used in simulations in which the right hypochondrium was punched by a fist from the frontal, lateral, and rear directions, and in each direction with several impact velocities. Overall, the results showed that liver rupture was primarily caused by a direct strike of the ribs induced by blunt impact to the abdomen. Among three impact directions, a lateral impact was most likely to cause liver injury with a minimum punch speed of 5 m/s (the momentum was about 2.447 kg.m/s). Liver injuries could occur in isolation and were not accompanied by rib fractures due to different material characteristics and injury tolerance.  相似文献   

17.
Continuum mechanical tools are used to describe the deformation, energy density, and material symmetry of a lipid bilayer with spontaneous curvature. In contrast to conventional approaches in which lipid bilayers are modeled by material surfaces, here we rely on a three-dimensional approach in which a lipid bilayer is modeling by a shell-like body with finite thickness. In this setting, the interface between the leaflets of a lipid bilayer is assumed to coincide with the mid-surface of the corresponding shell-like body. The three-dimensional deformation gradient is found to involve the curvature tensors of the mid-surface in the spontaneous and the deformed states, the deformation gradient of the mid-surface, and the transverse deformation. Attention is also given to the coherency of the leaflets and to the area compatibility of the closed lipid bilayers (i.e., vesicles). A hyperelastic constitutive theory for lipid bilayers in the liquid phase is developed. In combination, the requirements of frame indifference and material symmetry yield a representation for the energy density of a lipid bilayer. This representation shows that three scalar invariants suffice to describe the constitutive response of a lipid bilayer exhibiting in-plane fluidity and transverse isotropy. In addition to exploring the geometrical and physical properties of these invariants, fundamental constitutively associated kinematical quantities are emphasized. On this basis, the effect on the energy density of assuming that the lipid bilayer is incompressible is considered. Lastly, a dimension reduction argument is used to extract an areal energy density per unit area from the three-dimensional energy density. This step explains the origin of spontaneous curvature in the areal energy density. Importantly, along with a standard contribution associated with the natural curvature of the lipid bilayer, our analysis indicates that constitutive asymmetry between the leaflets of the lipid bilayer gives rise to a secondary contribution to the spontaneous curvature.  相似文献   

18.
Human Locomotion     
Verne T. Inman 《CMAJ》1966,94(20):1047-1054
The development of bipedal plantigrade progression is a purely human, and apparently learned, accomplishment. Experimental findings confirm the hypothesis that the human body will integrate the motion of various segments of the body and control the activity of muscles to minimize energy expenditure.Movements which are integrated for this purpose include vertical displacement of the body, horizontal rotation of the pelvis, mediolateral pelvic tilt, flexion of the knee, plantar flexion of the ankle and foot, lateral displacement of the torso and rotation of the shoulder girdle.Raising and lowering the body results in gains and losses of potential energy, and acceleration and deceleration result in gains and losses of kinetic energy. The motions are so co-ordinated that a transfer of energy back and forth from kinetic to potential occurs during walking, which tends to minimize total energy expenditure as well as muscle work.  相似文献   

19.
Biomechanical quantification of projectile penetration using experimental head models can enhance the understanding of civilian ballistic brain injury and advance treatment. Two of the most commonly used handgun projectiles (25-cal, 275 m/s and 9 mm, 395 m/s) were discharged to spherical head models with gelatin and Sylgard simulants. Four ballistic pressure transducers recorded temporal pressure distributions at 308kHz, and temporal cavity dynamics were captured at 20,000 frames/second (fps) using high-speed digital video images. Pressures ranged from 644.6 to -92.8 kPa. Entry pressures in gelatin models were higher than exit pressures, whereas in Sylgard models entry pressures were lower or equivalent to exit pressures. Gelatin responded with brittle-type failure, while Sylgard demonstrated a ductile pattern through formation of micro-bubbles along projectile path. Temporary cavities in Sylgard models were 1.5-2x larger than gelatin models. Pressures in Sylgard models were more sensitive to projectile velocity and diameter increase, indicating Sylgard was more rate sensitive than gelatin. Based on failure patterns and brain tissue rate-sensitive characteristics, Sylgard was found to be an appropriate simulant. Compared with spherical projectile data, full-metal jacket (FMJ) projectiles produced different temporary cavity and pressures, demonstrating shape effects. Models using Sylgard gel and FMJ projectiles are appropriate to enhance understanding and mechanisms of ballistic brain injury.  相似文献   

20.
本文通过对63452例18~97岁的中国人体部12项指数值的统计分析,得出目前该年龄段中国人的体部形态特征。研究发现,中国人总体体型为长躯干型、中肩型、中骨盆型、中腿型。男性为中胸型,女性为宽胸型。随着年龄增长,上半身会显得更短一些,上半身与下半身比例更小一些,胸部更显宽厚一些,躯干下部显得更宽一些,腿显得更长一些。与南方族群相比,蒙古语族群、突厥语族群身体更壮实一些,胸部更显得宽厚一些,上身更高一些,上肢显得短一些,躯干的上部(肩部)相对窄一些,躯干的下部(骨盆)相对更宽一些,上肢长和下肢长度比例更小一些。研究还发现,同等身高的男性和女性相比,男性的上肢长度、下肢长度一般都小于女性,而女性比男性有一个更大的坐高值。从躯干长度来比较,女性确实比男性腿短一些。下身长相等的中国男性、女性之间相比,女性的坐高大于男性。同等身高情况下,中国人的坐高比欧亚人种、非洲人种的坐高要大,即有较高的上半身高度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号