首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four maize cultivars were each separately inoculated with 10 different isolates of Diplodia zeae, Fusarium moniliforme, F. graminearum and Macrophomina phaseolina. D. zeae consistently caused most stalk rot, followed in decreasing order by M. phaseolina, F. graminearum and F. moniliforme. Significant intraspecific differences in stalk rot were recorded. No significant stalk rot x cultivar interaction occurred. Stalk rot correlated non-significantly with yield loss but significantly with cellulase production in vitro.  相似文献   

2.
The demand for biofuels has created a market for feedstocks to meet future energy requirements. Temperate × tropical maize (Zea mays L.) hybrids, which combine high biomass and fermentable stalk sugars, have yet to be considered as a biomass feedstock. Our objective was to evaluate biological potential, genetic variability and impact of nitrogen (N) on biomass, stalk sugar, and biofuel potential of temperate × tropical maize (TTM) hybrids. Twelve TTM hybrids, two grain and silage hybrids were grown in 2008, followed in 2009 by seven earshoot‐bagged TTM hybrids. In both years, they were grown with and without supplemental N (202 kg ha?1) in Champaign, IL. Plants were sampled for total and partitioned biomass, and analyzed for concentration and content of sugar. The TTM hybrids were 40% taller, exhibited later reproductive maturity, greater flowering asynchrony, and remained green longer. All hybrids responded to supplemental N by producing more biomass and grain, a lower percent of biomass partitioned to stalk and leaf, whereas TTM also had a decreased concentration of sugar. Total average biomass yields were 24 Mg ha?1 for both the TTM and grain hybrids. However, TTM partitioned 50% more biomass to the stalk and produced 50% more sugar, and had less than half the grain of the commercial hybrids, indicating grain production and sugar accumulation are inversely related. When grain formation was prevented by earshoot bagging, TTM hybrids produced, without supplemental N fertilizer, an average of 4024 kg ha?1 of sugar, which was three‐ to four‐fold greater than the non earshoot‐bagged TTM and ear removed hybrid. Calculated estimates for ethanol production, considering the potential from sugar, stover and grain, indicate TTM can yield nearly the amount of ethanol per hectare as modern grain hybrids, but with a decreased requirement for supplemental fertilizer N.  相似文献   

3.
The 51 isolates, the causing agents of maize eyespot, were identified as Kabatiella zeae with morphological and molecular methods. The structure of the MAT locus in K. zeae JLMHK‐9 strain contains MAT1‐1 and MAT1‐2 genes which are transcribed in opposite directions, DNA lyase gene (APN2) which is adjacent to the 3′ flanking region of MAT1‐2‐1 gene and a pleckstrin homology domain (PH) which is adjacent to the 3′ flanking region of MAT1‐1‐1 gene. The specific primers are used to identify the mating types of K. zeae isolates collected from six provinces in China, and our findings speculate that K. zeae is a homothallic species.  相似文献   

4.
Fusarium moniliforme Sheldon (syn. F. verticillioides (Sacc.) Nirenberg) and F. subglutinans (Wollenweber & Reinking) Nelson Toussoun & Marasas comb. nov., two anamorphs of the so-called‘Gibberella fujikuroi species complex', are important maize pathogens. Together with F. proliferatum, F. culmorum, and F. graminearum (teleomorph: Gibberella zeae) they are involved in the stalk rot and ear rot disease of maize. All species produce secondary metabolites (mycotoxins) which are a potential health hazard for humans and animals that consume maize and maize products frequently. In this study the development of polymerase chain reaction (PCR) assays for an easy and sensitive identification of G. fujikuroi anamorphs in maize kernels are described. The primer pairs are based on sequences of randomly amplified polymorphic DNA (RAPD) fragments and are specific for F. moniliforme and F. subglutinans respectively. The PCR assays are independent of the high phenotypic variability of traits which may complicate classification by morphological characters. They detect approximately 100 to 200 fungal genomes in the presence of an excess of maize DNA. For the analysis of infected maize kernels a rapid and easy DNA extraction was used which does not introduce inhibitory substances into the PCR. Hence the assays enable an early identification and detection of the two pathogens in host tissue by plant breeders and plant health inspection services. The assays were successfully applied to identify field isolates from Poland and to detect the pathogens in maize ears of various hybrids in Germany.  相似文献   

5.
The anthracnose stalk rot of corn (ASR), caused by Colletotrichum graminicola, is a major disease of this crop and occurs in most Brazilian regions where corn is grown. Despite its widespread occurrence, there are no estimates of the effect of ASR on the yield of corn under the Brazilian conditions. In this study, we evaluated the effect of ASR on corn hybrids yield. Two experiments were conducted (first crop 2007/2008 and second crop, 2009) in areas with a history of occurrence of leaf anthracnose and ASR. Five hybrids were evaluated in the first and second crops: AG1051, BRS 1001, BRS 1010, BRS 1035, P30F80 and BRS 1010, 2B710, P30F80, DKB390, BRS 1035, respectively. At harvest, we evaluated the incidence of plants with anthracnose stalk rot (IPASR), and we selected pairs of healthy and diseased plants to quantify the effect of ASR in the ear weight (EW), grain weight (GW) and the weight of a sample containing 100 kernels (W100). The IPASR was higher in the hybrid BRS 1010 (21.87 and 45.28%, first and second crops, respectively). The EW, GW and W100 were lower in diseased plants in all hybrids. The mean weight loss in the first season was EW 29.03%, GW 27.83% and W100 17.08%, and the second season was EW 27.75%, GW 25.60% and W100 16.99%. The most affected hybrids with weight loss in the first crop were AG1051 (EW 34.31%, GW 33.05%, W100 19.96%) and BRS 1035 (EW 34.74%, GW 34.65%, W100 22.31%). In the second crop, were P30F80 (EW 30.72%, GW 30.92%, W100 19.24%), DKB390 (EW 30.61%, GW 29.81%) and 2B710 (W100 19.27%). Corn yield was strongly affected by ASR.  相似文献   

6.
Control of rape diseases II. Measures for disease reduction caused by Sclerotinia sclerotiorum with consideration to economical aspects The most widely distributed diseases of rape in the Federal Republic of Germany are Sclerotinia sclerotiorum (white stalk disease, formerly called rape canker) and Phoma lingam (root collar and stalk rot), and these can cause considerable yield losses. S. sclerotiorum occurs sporadically and is more prevalent in the marsh land of northwest Germany than in the hilly landscape of Schleswig-Holstein, where pockets of infection are found. Application of calcium cyanamid, formerly successfully used to control apothecia formation by S. sclerotiorum, has been replaced by fungicides (Vinclozolin) directed at preventing ascospore infection. Many experiments proved to be economically unsuccessful due to the low rate of infection and the high costs involved with such treatments. With an expected yield of 30 dt/ha, an 8 % increase in yield following spraying must be achieved in order to make the fungicide treatment profitable. In fields where only up to 12% of the plants were infected, 75 % of the experiments proved to be uneconomical. By a disease index of 13–25 %, 55 % of the trials were similarly uneconomical. Only where more than 25 % of the plants were infected did the fungicide application prove to have a considerable effect on the yield. A prophylactic treatment is not to be recommended. Only in those areas where severe disease occurs nearly every year should such treatment be practiced that is unless the Advisory Service advises otherwise due to extreme weather conditions (too wet or too dry) which may lead to only very slight infection.  相似文献   

7.
The basic prerequisite for an efficient breeding program to improve levels of resistance to pathogens in plants is the identification of genes controlling the resistance character. If the response to pathogens is under the control of a multilocus system, the utilization of molecular markers becomes essential. Stalk and ear rot caused by Gibberella zeae is a widespread disease of corn: resistance to G. zeae is quantitatively inherited. Our experimental approach to understanding the genetic basis of resistance to Gibberella is to estimate the genetic linkage between available molecular markers and the character, measured as the amount of diseased tissue 40 days after inoculation of a suspension of Fusarium graminearum, the conidial form of G. zeae, into the first stalk internode. Sensitive and resistant parental inbreds were crossed to obtain F1 and F2 populations: the analysis of the segregation of 95 RFLP (restriction fragment length polymorphism) clones and 10 RAPD (random amplified polymorphic DNA) markers was performed on a population of 150 F2 individuals. Analysis of resistance was performed on the F3 families obtained by selfing the F2 plants. Quantitative trait loci (QTL) detection was based either on analysis of regression coefficients between family mean value and allele values in the F2 population, or by means of interval mapping, using MAPMAKER-QTL. A linkage map of maize was obtained, in which four to five genomic regions are shown to carry factors involved in the resistance to G. zeae.  相似文献   

8.
Over 6 yr the effectiveness of imazalil, prochloraz and fenpiclonil, applied either alone or in a mixture, in controlling gangrene, dry rot, skin spot and silver scurf on potato tubers in store was compared with that of 2-aminobutane and thiabendazole. An assessment was also made of their efficiency in controlling the development of these diseases on the daughter tubers of seed tubers treated at harvest or before planting. Overall, 2-aminobutane was more effective in controlling gangrene (Phoma foveata) in store than the spray-applied fungicides. Deposits of imazalil, thiabendazole and fenpiclonil were greater when sprays were applied with an electrostatic sprayer than with a hydraulic sprayer. The opposite was found with the mixture of prochloraz Mn and tolclofos-methyl. More effective gangrene control was associated with the highest deposits. Fenpiclonil and the mixture of thiabendazole and imazalil were more effective in controlling dry rot (Fusarium solani var. coeruleum) than imazalil alone. The development of dry rot was, however, increased by 2-aminobutane treatment on eight out of 14 stocks. 2-aminobutane gave the greatest reduction (83%) in the severity of skin spot during storage whereas thiabendazole alone, and the mixture of thiabendazole and imazalil, gave mean reductions of 70% and 65% respectively. This mixture and fenpiclonil gave the greatest reduction in the severity of silver scurf although, in general, reductions in silver scurf with fungicide treatment were less than with skin spot. The type of sprayer used to apply a fungicide did not affect the effectiveness of the fungicides in controlling either skin spot or silver scurf on tubers in store, or on the daughter tubers. The incidence of gangrene and dry rot on daughter tubers was not reduced consistently by fungicide treatment of seed tubers of the six stocks tested. However, the severity of skin spot and silver scurf was reduced by fungicide treatments of all eight stocks but the reduction in disease was greater for skin spot than for silver scurf. All fungicides gave reductions in the severity of skin spot, and fenpiclonil and the mixture of thiabendazole and imazalil were the most effective for silver scurf. The effectiveness of the fungicides in controlling these diseases was similar for seed treated at harvest and that treated before planting.  相似文献   

9.
The fungicide imazalil has potential value for controlling post-harvest diseases caused by Alternaria alternata in pears, apples and persimmons. Imazalil was active in vitro on germination and hyphal growth (ED50) at 1.4 and 0.5 μg/ml, respectively. Protectant action of the fungicide lasted only 1 day after treatment. At 1000 μg/ml the fungicide inhibited development of Alternaria rot in inoculated apples at 0 °C and in naturally infected pears and persimmons at–1 °C.  相似文献   

10.
Joshi  A.K.  Pandya  J.N.  Buhecha  K.V.  Dave  H.R.  Pethani  K.V.  Dangaria  C.J. 《Photosynthetica》2003,41(1):157-159
Two pearl millet [Pennisetum glaucum (L.) R. Br. emend. Stuntz] hybrids GHB-30 and MH-179 were given defoliation treatments prior to anthesis comprising zero leaf to intact control. Keeping or removing even flag leaf only significantly altered the grain yield. With increasing leaf area (leaf numbers) the grain yield also significantly increased. Test mass showed more or less a similar trend. The leaves in the upper portion (nearer to sink) showed a greater contribution to the grain yield than the lower ones (away from sink). However, the highest leaf efficiency in terms of contribution per unit leaf area and the contribution by the whole leaf to the grain yield was recorded by 4th and 3rd leaf, respectively. The stem (covered with petioles) contributed to the extent of around 12 %. The existing leaves compensated to some extent for the defoliated ones.  相似文献   

11.
The polymerase chain reaction (PCR) was used to identify and quantify all fungal pathogens of wheat (Triticum aestivum) stem bases in nine field experiments at three locations in England. The main aim was to apply quantitative PCR to provide robust data on the efficacy of new fungicides against the individual components of the stem‐base disease complex. Cyprodinil most effectively controlled eyespot by decreasing both pathogens, Tapesia yallundae and T. acuformis (the most widespread species), and sometimes contributed to increased yields. Prochloraz controlled eyespot less consistently, its effectiveness dependent mainly on the presence of T. yallundae or on rainfall events soon after application. Azoxystrobin contributed to yield increases most consistently. Although it decreased sharp eyespot and its pathogen, Rhizoctonia cerealis, these effects were insufficient to account for much of the yield increases. The effects of fungicides on eyespot were sometimes greatest on the most susceptible cultivars. Amounts of Tapesia DNA were usually consistent with cultivar susceptibility ratings. The only pathogens of brown foot rot present in significant amounts were Microdochium nivale vars nivale and majus. They appeared not to affect yield or to respond greatly to fungicides. The susceptibility of cultivars to these pathogens was sometimes similar to their susceptibility to eyespot, suggesting that they may respond to the same host resistance genes or may in some cases be secondary colonisers of eyespot‐infected plants.  相似文献   

12.
A modified Gompertz model was derived to describe the fractional decline in green area of wheat flag leaves in field experiments where green leaf area at time t=100exp[‐exp(‐k(t‐m))]. Curves fitted over time to visual assessments of green leaf area (% of total leaf area) throughout flag leaf life accounted for more than 98% of variation in 45 of 48 wheat cultivar × fungicide treatment (+/?) comparisons. This data set spanned 17 yr and therefore included cultivars of contrasting parentage and age. In the absence of fungicide, green leaf area decline was associated with drought or infection with a number of foliar pathogens including Septoria tritici (sexual stage Mycospherella graminicola), Erysiphe graminis and Puccinia striiformis. Fungicides applied to the flag leaf included propiconazole, propiconazole plus tridemorph, flusilazole or azoxystrobin. Fungicide effects on m (i.e. time to 37% green area) were closely related to fungicide effects (% of untreated) on mean grain weight (variation accounted for (VAF) = 80%) and grain yield (VAF = 85%).  相似文献   

13.
Conventional tillage methods were compared with no tillage systems for the control of root and stalk rot disease of maize caused by Macrophomina phaseolina and Fusarium moniliforme in a field with a recent history of high stalk rot incidence in south-western Nigeria. The incidence of stalk rot was significantly less under no-tillage practices than in conventionally tilled plots during the twoseason trial. Application of paraquat or burning of crop residue had no apparent influence ond isease incidence. None of the treatments affected the severity of the diseases.  相似文献   

14.
Owing to its sugar-rich stalks and high biomass, sweet sorghum [Sorghum bicolor (L.) Moench] has potential as a source of biofuel feedstock for juice and lignocellulosic-based bioethanol production. However, stalk rot-mediated lodging is an important concern. The potential impacts of disease on sweet sorghum biofuel traits are currently unknown. The objectives of this study were to test the effects of Fusarium stalk rot and charcoal rot on sweet sorghum biofuel traits and to assess the combining ability of the parental genotypes for resistance to the two diseases. Nineteen genotypes including 7 parents and 12 hybrids were tested in the field in 2014 (Ashland, Kansas) and 2015 (Manhattan, Kansas) against Fusarium thapsinum (FT) and Macrophomina phaseolina (MP). Fourteen days after flowering, plants were inoculated with FT and MP. Plants were harvested at 35 days after inoculation and measured for disease severity using stalk lesion length. Grain weight, juice weight, Brix (°Bx), and dried bagasse weight were also determined. Total soluble sugars per plant (TSSP) were determined using juice weight and °Bx. On average, FT and MP resulted in reduced grain weight and dried bagasse weight by 17.4 and 17.6 %, respectively, across genotypes. Depending on the genotype, pathogens reduced juice weight, °Bx, and TSSP in the ranges of 11.3 to 25.9, 0.2 to 16.7, and 21.2 to 33.3 %, respectively. Parental line general and specific combining abilities were found to be statistically insignificant. This study revealed the adverse effects of stalk rot diseases on harvestable biofuel traits and the need to breed sweet sorghum for stalk rot resistance.  相似文献   

15.
Plots were fumigated with various amounts of D-D or 85% dazomet dust and sown with spring wheat given various amounts of nitrogenous fertilizer. Dazomet increased yield and decreased take-all disease in the first crop after application, but increased the disease in the second crop. Although D-D increased take-all slightly, it increased yield in 1966, but in 1967 it decreased yield and its use was associated with a severe ear deformity. Fumigation had little effect on eyespot, sharp eyespot, root browning (Fusarium spp.), or browning root rot (Pythium spp.), but decreased nematode damage where nematodes were numerous.  相似文献   

16.
Culturable microbial communities and diseases were compared in organic, integrated and conventional systems of winter wheat production and monoculture. Particular emphasis was placed on the density and diversity of cereal pathogens and their potential antagonists, and on the association of the active microbial populations with the health and productivity of wheat. In roots, rhizoplane and rhizosphere, fungi tended to be most abundant in the integrated system or monoculture, and bacteria in the organic system. The dominant fungal groups (with individual frequency >5%) included root pathogens (Fusarium, Gibberella, Haematonectria and Ilyonectria) and known pathogen antagonists (Acremonium strictum, Clonostachys, Chaetomium, Gliocladium and Trichoderma spp.). The 50 subdominant species (with individual frequency 1–5%) included the pathogens Alternaria, Cladosporium (leaf spot), Gaeumannomyces graminis (take‐all), Glomerella graminicola (anthracnose), Oculimacula yallundae (eyespot), Phoma spp. (leaf spots), and Pythium and Rhizoctonia (root rot). The 40 subrecedent species (with individual frequency <1%) included minor pathogens (Botrytis, Coniothyrium, Leptosphaeria). Antagonists in roots, rhizoplane and rhizosphere were most frequent in the organic system and least frequent in monoculture, suggesting that these systems had the most and least disease‐suppressive habitats, respectively. The other two systems were intermediate, with microbial communities suggesting that the conventional system produced a slightly more suppressive environment than the integrated system. The highest grain yield, in the integrated system, was associated with high abundance of fungi, including fungal pathogens, lowest abundance of Arthrobacter, Pseudomonas and Streptomyces in roots, rhizoplane and soil, and relatively high stem‐base and leaf disease severity. The lowest grain yields, in the organic system and monoculture, were associated with less abundant fungi and more abundant Pseudomonas. There is no clear indication that yields were affected by diseases.  相似文献   

17.
Crop growth and disease epidemics in sprayed and non-sprayed bean plots, artificially infected with rust (Uromyces appendiculatus) 3 weeks after emergence. were assessed weekly in two cultivars, at two locations for two seasons. Disease intensity was regulated by the application of a fungicide at 5 spray frequencies. Fungicide application influenced leaf area index (LAI) and reduced rust intensity. The fungicide had no significant effect on other diseases and dead leaf area. Fungicide application increased seed yield (SY) by increased numbers of pods per plant (PP). Rust severity was strongly correlated with pustule density but the overall relationships among rust assessment parameters depended on cultivar and location. Seed yield and pods per plant were highly correlated with LAI. The relationships between LAI and seeds per pod or seed weight depended on cultivar and location. Overall rust assessment parameters (rust severity and pustule density) showed close, negative relationships with seed yield. seed weight and pods per plant but not with seeds per pod. The relationships obtained in the partially resistant line 6-R-395 were less definite than those in the susceptible line Mexican 142. The yield parameters seed yield and pods per plant, showed strong positive relationships.  相似文献   

18.
Effect of organic soil amendments on the incidence of stalk rot of maize   总被引:3,自引:0,他引:3  
Five organic materials, Calopogonium sp. leaves, rice straw, mixed wood saw dust of Terminalia sp. Triplochyton sp. and Kaya sp., fresh guinea grass and poultry manure were added to soil with a recent history of high stalk rot of maize caused by Macrophomina phaseolina and Fusarium moniliforme. The two stalk rot organisms reacted differently to the organic amendments. All the amendments produced significantly less Fusarium stalk rot disease than the unamended control. Amendment of soil with fresh Calopogonium leaves was almost ineffective in controlling the incidence of Macrophomina phaseolina. Organic amendment with poultry manure increased the disease casued by M. phaseolina. The other amendments appeared to be equally effective in checking the disease. Increased microbial population due to amendment may play some role in disease suppression.  相似文献   

19.
Under field conditions, population density of the root lesion nematode, Pratylenchus zeae in soil and roots of maize cv. Single Hybrid 10 fluctuated throughout its growing season and reached the peak in September, harvest stage of maize. There were negative correlations (r) between the population densities of P. zeae in maize roots and grain yield of maize according to the data collected at all growing seasons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号