首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assessments of potential impacts of global climate change often focus exclusively on plants; however, as the base of most food webs, plants generally experience abiotic stresses concomitantly with biotic stresses. Longleaf plantain, Plantago lanceolata L., is a cosmopolitan temperate perennial weed that experiences a wide range of environmental conditions throughout its range. We examined the impacts of elevated levels of exposure to shortwave (UV-B) radiation on this plant, on two herbivores associated with this plant, and on the plant-herbivore interaction. Plantains were grown at 6 and 12 kJ m–2 d–1 BE300 UV-B radiation and concentrations of iridoid glycosides (aucubin and catalpol), verbascosides, and nitrogen were measured. In terms of plant impacts, we found that iridoid glycoside concentrations were unchanged by elevated UV-B radiation, whereas, in one experiment, the concentration of verbascosides in young leaves and levels of nitrogen in old leaves increased under elevated UV-B radiation. Variation in plant chemistry due to leaf age and maternal family was greater than variation due to UV-B exposure. When caterpillars were fed excised leaves from plants grown under elevated UV-B, growth and survivorship of the specialist herbivore, Precis coenia Hbn. (Lepidoptera: Nymphalidae), were unaltered and growth of the generalist herbivore, Trichoplusia ni (Hbn.) (Lepidoptera: Noctuidae), was accelerated. When the caterpillars were reared on potted plants at high and low levels of UV-B radiation, growth and survivorship of P. coenia were unchanged while growth of T. ni was significantly depressed by elevated UV-B. Elevated UV-B altered allocation patterns of above-ground biomass in these plants; masses of crowns and reproductive tissue were reduced. UV-B levels, however, did not affect distribution of damage to foliage inflicted by either species. In two additional experiments with artificial diet, designed to test the direct effect of UV-B radiation on caterpillars, growth and survivorship of P. coenia were unaltered while survivorship of T. ni was significantly depressed when caterpillars were exposed to elevated UV-B radiation. These studies collectively demonstrate that higher trophic level impacts of UV-B-induced changes in plants depend on the identity of the herbivore and its degree of adaptation not only to variation in hostplant quality but also variation in its light environment.  相似文献   

2.
The influence of near-ambient and reduced solar UV-B radiation on a peatland microfungal community was assessed by exposing experimental plots to UV-selective filtration. Replicate plots were covered with special plastic films to effect treatments of near-ambient and attenuated solar UV-B. The microfungal community from the top 1 cm of Sphagnum capitulum in a Tierra del Fuego peatland was censused throughout three growing seasons, between 1999 and 2002. Sphagnum capitula under near-ambient UV-B were more compressed and held more water than capitula under reduced UV-B. This water had a greater conductivity and was more acidic under near-ambient UV-B, as would be expected with increased leaching from the Sphagnum leaves. Nine regularly occurring hyphal fungi from the peatland were identified, at least to genus. Over three field seasons, no treatment effect on total fungal colony abundance was recorded, but individual species abundance was increased (Mortierella alpina), decreased (Penicillium frequentans), or was unaffected (P. thomii, Aureobasidium) by near-ambient UV-B. Species richness was also slightly lower under near-ambient UV-B. These treatment differences were smaller than seasonal or inter-annual fluctuations in abundance and species richness. In a growth chamber experiment, lamp UV-B treatments indicated that realistic fluxes of UV-B can inhibit fungal growth in some species. In addition to this direct UV-B effect, we suggest that changes in the peatland fungal community under near-ambient solar UV-B may also result from increased nutrient and moisture availability in the Sphagnum capitulum. The subtle nature of the responses of peatland fungi to solar UV-B suggests that most fungal species we encountered are well adapted to current solar UV-B fluxes in Tierra del Fuego.  相似文献   

3.
In field studies conducted at the Kongsfjord (Spitsbergen), the effect of filtered natural radiation conditions (solar without ulraviolet [UV]-A+UV-B, solar without UV-B, solar) on photosynthesis and the metabolism of UV-absorbing mycosporine-like amino acids (MAAs) in the marine red alga Devaleraea ramentacea have been studied. While solar treatment without UV-A+UV-B did not affect photosynthesis during the course of a day, solar without UV-B and the full solar spectrum led to a strong inhibition. However, after offset of the various radiation conditions, all algae fully recovered. Isolates collected from different depths were exposed in the laboratory to artificial fluence rates of photosynthetic active radiation (PAR), PAR+UV-A, and PAR+UV-A+UV-B. The photosynthetic capacity was affected in accordance with the original sampling depth, i.e. shallow-water isolates were more resistant than algae from deeper waters, indicating that D. ramentacea is able to acclimate to changes in irradiance. Seven different UV-absorbing MAAs were detected in this alga, namely mycosporine-glycine, shinorine, porphyra-334, palythine, asterina-330, palythinol, and palythene. The total amount of MAAs continuously decreased with increasing collecting depth when sampled in mid June, and algae taken in late August from the same depths contained on average 30–45% higher MAA concentrations, indicating a seasonal effect as well. The presence of increasing MAA contents with decreasing depth correlated with a more insensitive photosynthetic capacity under both UV-A and UV-B treatments. Populations of D. ramentacea collected from 1 m depth, with one fully exposed to solar radiation and the other growing protected as understorey vegetation underneath the kelp Laminaria saccharina, exhibited quantitatively different MAA compositions in the apices. The exposed seaweeds contained 2.5-fold higher MAA values compared with the more shaded algae. Moreover, the exposed isolates showed a strong tissue gradient in MAAs, pigments, and proteins. The green apices contained 5-fold higher MAA contents than the red bases. Transplantation of D. ramentacea from 2 m depth to the surface induced the formation and accumulation of MAAs after 1 week exposure to the full solar spectrum. Control samples which were treated with the solar spectrum without UV-A+B or with solar without UV-B showed unchanged MAA contents, indicating a strong UV-B effect on MAA metabolism. All data well supported the suggested physiological function of MAAs as natural UV sunscreens in macroalgae.  相似文献   

4.
The response of tundra plants to enhanced UV-B radiation simulating 15 and 30% ozone depletion was studied at two high arctic sites (Isdammen and Adventdalen, 78° N, Svalbard).The set-up of the UV-B supplementation systems is described, consisting of large and small UV lamp arrays, installed in 1996 and 2002. After 7 years of exposure to enhanced UV-B radiation, plant cover, density, morphological (leaf fresh and dry weight, leaf thickness, leaf area, reproductive and ecophysiological parameters leaf UV-B absorbance, leaf phenolic content, leaf water content) were not affected by enhanced UV-B radiation. DNA damage in the leaves was not increased with enhanced UV-B in Salix polaris and Cassiope tetragona. DNA damage in Salix polaris leaves was higher than in leaves of C. tetragona. The length of male gametophyte moss plants of Polytrichum hyperboreum was reduced with elevated UV-B as well as the number of Pedicularis hirsuta plants per plot, but the inflorescence length of Bistorta vivipara was not significantly affected. We discuss the possible causes of tolerance of tundra plants to UV-B (absence of response to enhanced UV-B) in terms of methodology (supplementation versus exclusion), ecophysiological adaptations to UV-B and the biogeographical history of polar plants  相似文献   

5.
Exclusion of UV (280–380 nm) radiation from the solar spectrum can be an important tool to assess the impact of ambient UV radiation on plant growth and performance of crop plants. The effect of exclusion of UV-B and UV-A from solar radiation on the growth and photosynthetic components in soybean (Glycine max) leaves were investigated. Exclusion of solar UV-B and UV-B/A radiation, enhanced the fresh weight, dry weight, leaf area as well as induced a dramatic increase in plant height, which reflected a net increase in biomass. Dry weight increase per unit leaf area was quite significant upon both UV-B and UV-B/A exclusion from the solar spectrum. However, no changes in chlorophyll a and b contents were observed by exclusion of solar UV radiation but the content of carotenoids was significantly (34–46%) lowered. Analysis of chlorophyll (Chl) fluorescence transient parameters of leaf segments suggested no change in the F v/F m value due to UV-B or UV-B/A exclusion. Only a small reduction in photo-oxidized signal I (P700+)/unit Chl was noted. Interestingly the total soluble protein content per unit leaf area increased by 18% in UV-B/A and 40% in UV-B excluded samples, suggesting a unique upregulation of biosynthesis and accumulation of biomass. Solar UV radiation thus seems to primarily affect the photomorphogenic regulatory system that leads to an enhanced growth of leaves and an enhanced rate of net photosynthesis in soybean, a crop plant of economic importance. The presence of ultra-violet components in sunlight seems to arrest carbon sequestration in plants. An erratum to this article can be found at  相似文献   

6.
Gaberščik  Alenka  Novak  Mateja  Trošt  Tadeja  Mazej  Zdenka  Germ  Mateja  Björn  Lars-Olof 《Plant Ecology》2001,154(1-2):49-56
Pulmonaria officinalis is an understorey spring geophyte, which starts its vegetative period before full foliation of the tree storey. During its early growth phase it is exposed to full solar radiation, therefore the enhanced UV-B radiation could present a threat to this species. An outdoor experiment in which potted plants were exposed to below ambient, ambient, and above ambient (corresponding to 17% ozone reduction) UV-B radiation, was conducted in order to evaluate the radiation effects. The amount of photosynthetic pigments and photochemical efficiency of PSII were not affected, but the amount of UV-B absorbing compounds was lower in plants grown under reduced UV-B. This change was measurable after only fourteen days in reproductive shoots, while in the vegetative shoots, it was not detectable until after three months. The leaves of P. officinalis are variegated and the light green spots became less transparent to PAR under enhanced UV-B. The results reveal that under simulated 17% ozone depletion the harmful effects of UV-B on the measured parameters were negligible.  相似文献   

7.
UV-B (290 nm) tolerance of Daphnia pulex, conditioned to four different food levels (Chlorophyta), was tested under standardized conditions with an artificial radiation source. Parameters measured were survival, percentage of egg bearing Daphnia and the number of juveniles produced after irradiation. UV-B tolerance of Daphnia pulex was found to be significantly improved with increasing food concentrations at all three parameters. The impact of the four different food concentrations on the photoreactivation system was tested with simultanous UV-B and white-light irradiation of Daphnia. Survival rate improved significantly with increasing food levels compared to solely UV-B irradiation. Photoreactivation had no effect on the reproductive parameters.  相似文献   

8.
Recent global climate models predict a further significant loss of ozone in the next decades, with up to 50% depletion of the ozone layer over large parts of the Arctic resulting in an increase in ultraviolet-B radiation (UV-B) (280–315 nm) reaching the surface of the Earth. The percentage of total annual ecosystem N input due to biological nitrogen fixation by cyanobacteria might be as high as 80% and the contribution to total annual N uptake by plants up to 20%. A possible reduction of nitrogen fixation raises serious concerns about already nutrient impoverished plant communities. This review shows that nitrogen fixation by moss-associated cyanobacteria in arctic vegetation was dramatically reduced after six years of exposure to enhanced UV-B radiation. In subarctic vegetation, nitrogen fixation activity of moss-associated cyanobacteria was not affected by 6 years of enhanced UV-B radiation. However, a 50% increase of summer precipitation resulted in a 5- to 6-fold increase in activity. Long-term effects of UV-B radiation on nitrogen fixation activity have been examined only in two lichens, giving contrasting results. Peltigera aphthosa (L.) Willd., having external cephalodia, experienced a significant reduction, whereas Peltigera didactyla (With.) J.R. Laudon, having cyanobacteria in the photobiont layer below the upper cortex, did not experience any changes due to radiation regimes. The difference is probably related to the location of the cyanobacteria. While the Nostoc cells are protected by the fungal, melanized upper cortex in P. didactyla, they are exposed and unprotected in P. aphthosa, and their own synthesis of UV-B absorbing compounds appears to be low. Under certain environmental conditions, an increasing UV-B radiation will dramatically affect nitrogen fixation in arctic tundra vegetation, which in turn may have severe influence on the nitrogen budget in these environments. Further long-term studies are necessary to conclude if these effects are temporal and how concurrent climatic changes will influence the nitrogen balance of the ecosystem.  相似文献   

9.
Borgeraas  Jan  Hessen  Dag O. 《Hydrobiologia》2002,477(1-3):15-30
To assess their role in photoprotection in the crustacean zooplankton Daphnia spp., activities of the antioxidants catalase (CAT), superoxide dismutase (SOD), glutathione transferase (GST) and content of carotenoids (CAR) were studied in 4 Daphniaspecies from a total of 50 populations. Included in the survey were alpine and lowland populations of both pigmented and non-pigmented D. longispina, rock-pool and laboratory clones of D. magna and Arctic populations of the D. pulex/D. middendorffianacomplex. Most of the surveyed populations inhabit shallow ponds, and are thus highly exposed to UV-radiation during the summer. The results are primarily discussed in relation to antioxidants as possible protection against UV-radiation. D. pulex, D. middendorffianaand D. longispinaoccurred both as hyaline and pigmented (carapace melanization) morphs. The most notable inter-species differences were the high activity of CAT in the D. magnalab-clone, the low activity of GST in melanic animals from the D. pulexgroup and the high activity of SOD in D. longispinafrom a lowland humic pond. Contrary to expectations, we found no differences in antioxidant capacity between melanic and non-pigmented alpine D. longispina. Intraspecies variation in antioxidant activities was studied in relation to pond characteristics. Among the alpine populations of D. longispina there was a significant positive correlation between absorbance (300 nm) of the pond water and CAT activity, which could be related to ambient levels of photoinduced hydrogen peroxide production in these small water bodies. The data from this comparative study provide insight in photo-protective mechanisms in cladocera, and constitute a valuable basis for future research on pro-oxidant and antioxidant processes in alpine and arctic freshwater zooplankton.  相似文献   

10.
Solar ultraviolet-B radiation (UV-B) can have large impacts on the interactions between plants and herbivorous insects. Several studies have documented effects of UV-B-induced changes in plant tissue quality on the feeding performance of insect larvae. In contrast, the effects of UV-B-induced plant responses on the behavior of adult insects have received little attention. We carried out a series of field and glasshouse experiments using the model plant Arabidopsis thaliana L. and the crucifer-specialist insect Plutella xylostella L. (diamondback moth) to investigate the effects of UV-B on natural herbivory and plant–insect interactions. Natural herbivory under field conditions was less severe on plants exposed to ambient UV-B than on plants grown under filters that attenuated the UV-B component of solar radiation. This reduced herbivory could not be accounted for by effects of UV-B on larval feeding preference and performance, as P. xylostella caterpillars did not respond to changes in plant quality induced by UV-B. In contrast, at the adult stage, the insects presented clear behavioral responses: P. xylostella moths deposited significantly more eggs on plants grown under attenuated UV-B levels than on plants exposed to ambient UV-B. The deterring effect of UV-B exposure on insect oviposition was absent in jar1-1, a mutant with impaired jasmonic acid (JA) sensitivity, but it was conserved in mutants with altered ethylene signaling. The jar1-1 mutant also presented reduced levels of UV-absorbing phenolic compounds than the other genotypes that we tested. Our results suggest that variations in UV-B exposure under natural conditions can have significant effects on insect herbivory by altering plant traits that female adults use as sources of information during the process of host selection for oviposition. These effects of natural UV-B on plant quality appear to be mediated by activation of signaling circuits in which the defense-related hormone JA plays a functional role.  相似文献   

11.
Effects of increased UV-B radiation on activities of primary photosynthetic carboxylating enzymes and on contents of soluble proteins were studied in soybean (Glycine max [L.] Merr. cv. Bragg), pea (Pisum sativum L. cv. Little Marvel), tomato (Lycopersicon esculentum L. cv. Rutgers), and sweet corn (Zea mays L. cv. Golden Cross Bantam). The purpose was to evaluate the responses of agronomic crops to increases in solar UV-B radiation. Plants were grown and exposed under greenhouse conditions for 6 h daily to supplemental UV-B radiation which was provided by Westinghouse FS-40 fluorescent sun lamps filtered with 0.127-mm film of cellulose acetate (UV-B treated) or Mylar S (Mylar control). Three UV-B levels were tested: 1.09 (treatment T1), 1.36 (treatment T2), and 1.83 (treatment T3) UV-Bseu where 1 UV-Bseu equals 16.0 mW-m2 weighted by EXP-[(λ-265)/21]2. These UV-B levels corresponded to 6%,21%, and 36%, respectively, of decrease in stratospheric ozone content, based on the interpolations of UV-B irradiances at a solar elevation angle of 60°. Leaves of plants of soybean, pea, and tomato exposed to UV-B radiation were generally low in RuBP carboxylase activity. On a fresh weight basis, all three UV-B radiation levels significantly reduced the enzyme activity in soybean and pea, whereas tomato plants showed significant reduction in RuBP carboxylase activity only when exposed to 1.83 and 1.36 UV-Bseu. An apparent decrease in soluble proteins was observed in leaf extracts of soybean and pea plants exposed to 1.36 and 1.83 UV-Bseu whereas higher amounts of proteins were detected in leaves of tomato plants grown under UV-B radiation. Leaves of sweet corn plants grown under Mylar control were low in PEP carboxylase activity and proteins as compared with those of control plants receiving no supplemental UV and UV-B treatment. Activities of PEP carboxylase in crode extracts from leaves of sweet corn were significantly suppressed under 1.36 and 1.83 UV-Bseu as compared with the no UV control. Some stimulation of PEP carboxylase activity was observed in corn plants exposed to 1.09 UV-Bseu.  相似文献   

12.
A survivorship model was developed for UV-B irradiated Catla catla (17 days) larvae with the help of Kaplan and Meier Product-Limit (PL) method. Larvae were exposed to UV-B radiation (145 μW cm−2) for three different exposure times: 5, 10 and 15 min on every other day. The mean survival time of fish was calculated for each treatment using uncensored and censored survival data during 74 days study period. The mean uncensored and censored survival data for the 5-min exposed fish were 7 and 43, respectively. In 10-min exposure period, the uncensored and censored survival data were 19 and 31, respectively. During maximum exposure of 15 min, the uncensored survival data was 20 and censored data was 30. The mean survival time of fish calculated using PL estimate in 5, 10 and 15-min exposure treatments were 69.61 ± 0.50, 65.25 ± 0.96 and 60.60 ± 1.55 days, respectively. The mean survival time showed a decreasing trend with the increase of exposure period. The survival time was significantly (P < 0.001) higher in 5-min exposure treatment than others. This is clear from the present study that the exposure of UV-B radiation affects the survival rate of surface feeder catla larvae.  相似文献   

13.
Organisms living in arctic and alpine environments are increasingly impacted by human activities. To evaluate the potential impacts of global change, a better understanding of the demography of organisms in extreme environments is needed. In this study, we compare the age-specific demography of willow ptarmigan (Lagopus lagopus) breeding at arctic and subalpine sites, and white-tailed ptarmigan (L. leucurus) breeding at an alpine site. Rates of egg production improved with age at the alpine and subalpine sites, but the stochastic effects of nest and brood predation led to similar rates of annual fecundity among 1-, 2-, and 3+-year-old females. All populations had short generation times (T<2.7 years) and low net reproductive rates (R 0<1.2). Stable age distributions were weighted towards 1-year-old females in willow ptarmigan (>59%), and to 3+-year-old females in white-tailed ptarmigan (>47%). High damping ratios (ρ>3.2) indicated that asymptotic estimates were likely to match natural age distributions. Sensitivity and elasticity values indicated that changes in juvenile survival would have the greatest impact on the finite rate of population change (λ) in willow ptarmigan, whereas changes to the survival of 3+-year-old females would have a greater effect in white-tailed ptarmigan. High survivorship buffers white-tailed ptarmigan in alpine environments against the potential effects of climate change on annual fecundity, but may make the species more sensitive to the effects of pollutants or harvesting on adult survival. Conversely, processes that reduce annual fecundity would have a greater impact on the population viability of willow ptarmigan in arctic and subalpine environments. If these same demographic patterns prove to be widespread among organisms in extreme environments, it may be possible to develop general recommendations for conservation of the biological resources of arctic and alpine ecosystems.  相似文献   

14.
Rozema  Jelte  Broekman  Rob  Lud  Daniela  Huiskes  Ad H.J.  Moerdijk  Tanja  de Bakker  Nancy  Meijkamp  Barbara  van Beem  Adri 《Plant Ecology》2001,154(1-2):101-115
Mini UV lamps were installed over antarctic plants at Léonie Island, Antarctic peninsula, and shoot length measurements of Deschampsia antarctica were performed during the austral summer January–February 1999.We studied the response of the antarctic hairgrass, Deschampsia antarctica to enhanced UV-B. In a climate room experiment we exposed tillers of Deschampsia antarctica, collected at Léonie Island, Antarctic peninsula, to ambient and enhanced levels of UV-B radiation. In this climate room experiment with 0, 2.5 and 5 kJ m–2 day–1 UV-BBE treatments we observed that length growth of shoots at 2.5 and 5 kJ m–2 day–1 UV-BBE was markedly reduced compared to 0 kJ m–2 day–1 UV-BBE. In addition, there was an increased number of shoots and increased leaf thickness with enhanced UV-B. The Relative Growth Rate (RGR) was not affected by UV-B, possibly because reduced shoot length growth by enhanced UV-B was compensated by increased tillering. Light response curves of net leaf photosynthesis of plants exposed to 5 kJ m–2 day–1 UV-BBE did not differ from those exposed to 0 kJ m–2 day–1 UV-BBE. The content of UV-B absorbing compounds of plants exposed to increasing UV-B did not significantly change.Mini UV-B lamp systems were installed in the field, to expose the terrestrial antarctic vegetation at Léonie Island to enhanced solar UV-B. In that study, the increment of shoot length of tagged plants of Deschampsia antarctica during the January-February 1999 at Léonie Island, was recorded and compared to shoot length growth under controlled conditions.The consequences of enhanced UV-B radiation as a result of ozone depletion for the terrestrial antarctic ecosytems are discussed.  相似文献   

15.
Eggs of dab (Limanda limanda) and plaice (Pleuronectes platessa) were experimentally exposed to ultraviolet-B (UV-B) radiation in a solar radiation simulator. The experimental design tried to simulate present and future conditions with reference to increased UV-B exposure due to northern hemisphere ozone loss, employing mainly two scenarios, a reduction to 270 (S1) and to 180 (S2) Dobson units (DU) in single or repetitive exposures of 2, 4 or 6 h. Depending on the total dose of UV-B irradiation and the developmental stage, exposed eggs displayed loss of buoyancy as a sublethal effect, as well as increased embryo mortality and reduced viable hatch. In the single exposure experiments only under conditions of 180 DU for 6 h were effects apparent. Double exposure under conditions of 270 DU did not lead to lasting effects. At the sublethal effect level, i.e. loss of buoyancy, considerable photorepair was observed. It was concluded, that under the present general weather conditions in spring and at the present levels of environmental ozone, allowing for a reduction to 180 DU, the embryonic development of North Sea spring spawning fish is not endangered by UV-B radiation. Received in revised form: 19 June 2000 Electronic Publication  相似文献   

16.
Hessen  Dag O.  Færøvig  Per J. 《Plant Ecology》2001,154(1-2):261-273
Cell numbers and fluorescence of the green algae Selenastrum capricornutuum and survival of Daphnia magna exposed to simulated sun-light was assessed along a gradient of DOC (0, 1, 5 10 and 50 mg C l–1). When exposed to UV-doses and spectral distribution (295–750 nm) closely resembling surface solar radiation during mid summer, Selenastrum showed major losses of cell fluorescence. In the absence of DOC, fluorescence was severely depressed, with successively decreasing effects with increased DOC. Surviving cells also required an extensive recovery period (10–12 d) for regrowth after exposure, while an almost immediate recovery was observed at concentrations above 1 mg DOC l–1. For Daphnia, survival was reduced to less than 10% after 4 h exposure, and almost zero after 8 h exposure in the absence of humus DOC, while no effects were observed in treatments with 10 and 50 mg C l–1. Selenastrum and Daphnia that were not directly irradiated, but exposed to UV-irradiated water with the same concentrations of DOC did not reveal negative effects. This indicates negligible indirect effects mediated by long-lived free radicals or other toxic compounds. Irradiation of Daphnia under increased oxygen concentration (200% saturation) did not indicate acute effects, suggesting that effects of ambient radicals and oxidants would be of minor importance relative to intracellular photoproducts.  相似文献   

17.
The effects of sub-ambient levels of UV-B radiation on the shrub Rosmarinus officinalis L. were investigated in a field filtration experiment in which the ambient UV-B was manipulated by a combination of UV-B transmitting and UV-B absorbing filters. As a result, the plants were receiving near-ambient or drastically reduced UV-B radiation doses. Drastic reduction of UV-B radiation had no effect on mean, total and maximum stem length, number of stems per plant, dry mass of leaves, stems and roots and leaf nitrogen and phenolic contents. However, flowering was more pronounced under reduced UV-B radiation during the winter period which coincides with ascending ambient UV-B radiation. In contrast, during autumn and early winter, a period which coincides with descending ambient UV-B radiation, flowering was unaffected by reduced UV-B radiation. We can conclude that natural UV-B radiation does not affect growth of Rosmarinus officinalis, but its reduction could influence the flowering pattern of the species.  相似文献   

18.
Floating and nodularin-producing strains of Nodularia spumigena from the Baltic Sea are regarded as belonging to one species. However, intraspecific variation in the response of N. spumigena to environmental factors has been commonly overlooked. As blooms of N. spumigena occur in late summer, a period with strong light and stable water-column stratification, the cells can be expected to also be exposed to ultraviolet-B radiation (UV-B, 280–320 nm). The UV-B tolerance of four different strains of N. spumigena, isolated from the Baltic Sea, was investigated in the laboratory for 8 days, by measuring photosynthesis, growth and pigment composition. Variables included maximum quantum yield of photosynthesis (Fv/Fm, PAM fluorometry), growth rate (cell counts) and photosynthetic pigments, as well as mycosporine-like amino acids (HPLC). Intraspecific differences regardless of treatment were found for cell dimension, growth rate, Fv/Fm and pigment concentrations. UV-B related effects differed between strains. By Day 8 one of the four strains showed a lower Fv/Fm when treated with UV-B; in another strain the growth rate and cell numbers were lower. In three strains, UV-B exposure resulted in higher cell concentrations of carotenoids and chlorophyll a. In all strains, the concentrations of total mycosporine-like amino acids were 60–130% higher in the UV-B treated samples compared with samples shielded from UV-B. Although strain-specific differences in UV-B tolerance were observed, it is concluded that N. spumigena is a species that is not generally negatively affected by moderate levels of UV-B radiation.  相似文献   

19.
Alpine lakes may be particularly useful as sentinels of climate change because they are highly sensitive to environmental conditions. To explore the potential biotic consequences of climate change in these systems, we conducted paleo- and neoecological observational studies, as well as a short-term experiment to examine Daphnia responses to changing environmental conditions in Rocky Mountain alpine lakes. Our analysis of a sediment core from Emerald Lake representing two periods from the Holocene revealed a significant positive relationship between the abundance of Daphnia remains and fossil Aulacoseira lirata, a diatom associated with deeper mixing depths. In addition, we detected a significant increase in mean Daphnia density in the long-term record (1991–2005) from Pipit Lake, a trend that correlated well with increases in mean surface temperature. In our survey of Daphnia in 10 lakes in the Canadian Rocky Mountains, Daphnia abundance was positively correlated with both dissolved organic carbon concentration and temperature. Finally, our short-term incubation experiment demonstrated significant effects of physical conditions (i.e., temperature and/or UV radiation) and water chemistry on the juvenile growth rate of Daphnia. Overall, our findings highlight the sensitivity of Daphnia to changes in mixing depth, water temperature, and dissolved organic matter, three limnological variables that are highly sensitive to changes not only in air temperature, but also to precipitation and location of the treeline in alpine catchments. Thus, we conclude that Daphnia abundance could serve as a powerful sentinel response to climate change in alpine lakes of the Rocky Mountains.  相似文献   

20.

The photosymbiosis of tropical giant clams (subfamily Tridacninae) with unicellular algae (Symbiodiniaceae) restricts their distribution to the sunlit, shallow waters of the euphotic zone where organisms are additionally exposed to potentially damaging levels of solar UV radiation. Metabolic and physiological responses of Red Sea Tridacna maxima clams, including net calcification and primary production, as well as valvometry (i.e., shell gaping behavior) were assessed when exposed to simulated high radiation levels received at 3 and 5 m underwater. The two levels of radiation included exposure treatments to photosynthetically active radiation (PAR; 400–700 nm) alone and to both, PAR and ultraviolet-B radiation (UV-B; 280–315 nm). The valvometry data obtained using flexible magnetic sensors indicated that specimens under PAR + UV-B exposure significantly reduced the proportion of their exposed mantle area, a potential photo-protective mechanism which, however, reduces the overall amount of PAR received by the algal symbionts. Consequently, specimens under PAR + UV-B displayed a slight, although non-significant, reduction in primary production rates but no signs of additional oxidative stress, changes in symbiont densities, chlorophyll content, or levels of mycosporine-like amino acids. Net calcification rates of T. maxima were not affected by exposure to UV-B; however, calcification was positively correlated with incident PAR levels. UV-B exposure changes the valvometry, reducing the exposed mantle area which consequently diminishes the available PAR for the photosymbionts. Still, T. maxima maintains high rates of primary production and net calcification, even under high levels of UV-B. This provides experimental support for a recently described, effective UV-defensive mechanism in Tridacninae, in which the photonic cooperation of the associated algal symbionts and giant clam iridocytes is assumed to establish optimal conditions for the photosynthetic performance of the clams’ symbionts.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号