首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
More precise information on the degree of polymerization (DP) of polysialic acid (polySia) chains expressed on neural cell adhesion molecule (NCAM) and its developmental stage-dependent variation are considered important in understanding the mechanism of regulated polysialylation and fine-tuning of NCAM-mediated cell adhesion by polySia. In this paper, first we performed a kinetic study of acid-catalyzed hydrolysis of polySia and report our findings that (a) in (-->8Neu5Ac alpha 2-->)(n)-->8Neu5Ac alpha 2-->3Gal beta 1-->R, the proximal Neu5Ac residue alpha 2-->3 linked to Gal is cleaved about 2.5-4 times faster than the alpha 2-->8 linkages and (b) in contrary to general belief that alpha 2-->8 linkages in polySia are extremely labile, the kinetic consideration showed that they are not so unstable, and every ketosidic bond is hydrolyzed at the same rate. These findings are the basis of our strategy for DP analysis of polySia on NCAM. Second, using the recently developed method that provides base-line resolution of oligo/polySia from DP 2 to >80 with detection thresholds of 1.4 fmol per resolved peak, we have determined the DP of polySia chains expressed in embryonic chicken brains at different developmental stages. Our results support the presence of numerous NCAM glycoforms differing in DPs of oligo/polySia chains and a delicate change in their distribution during development.  相似文献   

2.
Alpha2,8-linked polysialic acid (polySia) is a structurally unique antiadhesive glycotope that covalently modifies N-linked glycans on neural cell adhesion molecules (N-CAMs). These sugar chains play a key role in modulating cell-cell interactions, principally during embryonic development, neural plasticity, and tumor metastasis. The degree of polymerization (DP) of polySia chains on N-CAM is postulated to be of critical importance in regulating N-CAM function. There are limitations, however, in the conventional methods to accurately determine the DP of polySia on N-CAM, the most serious being partial acid hydrolysis of internal alpha2,8-ketosidic linkages that occur during fluorescent derivatization, a step necessary to enhance chromatographic detection. To circumvent this problem, we have developed a facile method that combines the use of Endo-beta-galactosidase to first release linear polySia chains from N-CAM, with high resolution high pressure liquid chromatography profiling. This strategy avoids acid hydrolysis prior to chromatographic profiling and thus provides an accurate determination of the DP and distribution of polySia on N-CAM. The potential of this new method was evaluated using a nonpolysialylated construct of N-CAM that was polysialylated in vitro using a soluble construct of ST8Sia II or ST8Sia IV. Whereas most of the oligosialic acid/polySia chains consisted of DPs approximately 50-60 or less, a subpopulation of chains with DPs approximately 150 to approximately 180 and extending to DP approximately 400 were detected. The DP of this subpopulation is considerably greater than reported previously for N-CAM. Endo-beta-galactosidase can also release polySia chains from polysialylated membranes expressed in the neuroblastoma cell line, Neuro2A, and native N-CAM from embryonic chick brains.  相似文献   

3.
Polysialic acid (polySia) is a carbohydrate structure found on neural cell adhesion molecules (N-CAM). Two polysialyltransferases (polySiaTs) that catalyze synthesis of polySia have been described, and designated PST-1/PST/ST8SiaIV and STX/ST8SiaII. We cloned a polySiaT (xSTX) from a nonmammalian vertebrate, Xenopus laevis . xSTX had 80% amino acid similarity to the rat STX. This clone induced polySia expression when transfected into polySia-negative COS-1 cells. Northern blot analysis of whole embryos at different stages of development revealed that xSTX mRNA was most abundantly expressed in premetamorphic stages. The relative level of xSTX and N-CAM mRNAs was also examined and found to change in parallel to the extent of polysialylation on N-CAM. In adult tissues, the expression of xSTX mRNA was restricted to brain, eye and heart, which also expressed polySia. These results suggest that xSTX is the major enzyme responsible for the synthesis of polysialylated N-CAM in embryos at certain stages of development and also in adult tissues.   相似文献   

4.
S L Lin  Y Inoue  S Inoue 《Glycobiology》1999,9(8):807-814
Our previous studies have shown extensively diverse structures in oligo/polymers of sialic acid (oligo/polySia) that are expressed often in developmentally regulated manner on animal glycoconjugates. The aim of this study was to establish highlysensitive and specific methods that can be used to identify diverse types of oligo/polySia and thus can be applied to studies of biological phenomena associated with the differential expression of oligo/polySia chains with different degree of polymerization (DP). As model compounds, we analyzed five different homologous series of oligo/polySia, (-->8Neu5Acalpha2-->)(n), (-->9Neu 5Acalpha2-->)(n), (-->8Neu5Gcalpha2-->)(n), (-->5-O(glycolyl)-Neu5Gcalpha2-->)(n), and Neu5Gc9SO(4)alpha2-->(-->5-O(glycolyl)-Neu5Gcalpha2--> )(n), ()expressed in various biopolymers. The latter two structures have recently been identified in sea urchin egg receptor for sperm. First we examined application of high-performance anion-exchange chromatography (HPAEC) on a CarboPac PA-100 column with pulsed electrochemical detection (PED) to new types of oligo/polySiacompounds and confirmed that resolution of high polymers (DP >70) of sialic acids was remarkable as reported previously. However, there are limitations in sensitivity and selectivity in PED that become significant when material is available only in a minute amount or material contained a large proportion of protein. These limitations can be circumvented by fluorometric detection of oligo/polySia tagged with 1,2-diamino-4, 5-methyl-enedioxybenzene (DMB) at the reducing terminal residues after separation on a MonoQ HR5/5 column. The latter method can be applied to any type of oligo/polySia we examined if we choose the derivatization conditions and is more sensitive and specific than the method with PED for analysis of oligo/polySia with DP up to 25.  相似文献   

5.
Inoue S  Inoue Y 《Biochimie》2001,83(7):605-613
Polysialic acid (polySia) is a functional epitope and is known: 1) to regulate normal fertilization of lower vertebrates and invertebrates; 2) to be expressed on neural cell adhesion molecule (NCAM) when the formation or re-arrangement of nervous tissues takes place during embryonic stages as well as in adults of higher vertebrates; and 3) to be re-expressed in several human tumors. Thus, polySia serves as oncodevelopmental antigen. To date sensitive biochemical diagnostic probes (antibodies and endo-N-acylneuraminidase) to detect polySia are known. However, these reagents are not commercially available yet and they are only reactive to specific types of polySia structure. Moreover, precise information not only on diversity but also on the length or degree of polymerization (DP) of extended polySia chains is considered important in understanding the molecular mechanism of biosynthesis of polySia chains and fine-tuning of NCAM-NCAM adhesive interaction by polySia chain but cannot be obtained with these biochemical probes. We have been continuously making efforts to develop and improve the sensitivity of chemical methods for polySia analysis toward these challenging problems. This article presents our most recently developed chemical method for polySia analysis and its use in obtaining new information on DP of colominic acid samples and polySia chains present in rat brain tissues with the highest sensitivity that has ever been attained.  相似文献   

6.
We have studied alpha 2,8-linked polysialic acid (polySia) and the neural cell adhesion molecule (N-CAM) in the adult rat brain by immunohistochemistry and Western blot analysis. Both molecules were widely distributed but not ubiquitous. Various brain regions showed colocalization of polySia and N-CAM. Strong immunoreactivity for polySia was seen in regions which were negative for N-CAM, such as the main and accessory olfactory bulbs. Immunohistochemical evidence for the heterogeneity of polySia expression in different brain regions was confirmed by immunoblotting. We present evidence that N-CAM is not the only polySia bearing protein in adult rat brain. Specifically, immunoprecipitation using the polySia-specific monoclonal antibody mAb 735 precipitated not only N-CAM isoforms carrying polySia, but also the sodium channel alpha subunit. Immunoblotting using sodium channel alpha subunit antibody (SP20) revealed a smear from 250 kDa upwards. PolySia removal using an endoneuraminidase specific for alpha 2,8-linked polysialic acid of 8 or more residues long, reduced this smear to a single band at 250 kDa. Thus both N-CAM and sodium channels carry homopolymers of alpha 2,8-linked polysialic acid in adult rat brain.  相似文献   

7.
8.
Polysialic acid (polySia), an alpha2,8-linked polymer of N-acetylneuraminic acid, represents an essential regulator of neural cell adhesion molecule (NCAM) functions. Two polysialyltransferases, ST8SiaII and ST8SiaIV, account for polySia synthesis, but their individual roles in vivo are still not fully understood. Previous in vitro studies defined differences between the two enzymes in their usage of the two NCAM N-glycosylation sites affected and suggested a synergistic effect. Using mutant mice, lacking either enzyme, we now assessed in vivo the contribution of ST8SiaII and ST8SiaIV to polysialylation of NCAM. PolySia-NCAM was isolated from mouse brains and trypsinized, and polysialylated glycopeptides as well as glycans were analyzed in detail. Our results revealed an identical glycosylation and almost complete polysialylation of N-glycosylation sites 5 and 6 in polySia-NCAM irrespective of the enzyme present. The same sets of glycans were substituted by identical numbers of polySia chains in vivo, the length distribution of which, however, differed with the enzyme setting. Expression of ST8SiaIV alone led to higher amounts of short polySia chains and gradual decrease with length, whereas exclusive action of ST8SiaII evoked a slight reduction in long polySia chains only. These variations were most pronounced at N-glycosylation site 5, whereas the polysialylation pattern at N-glycosylation site 6 did not differ between NCAM from wild-type and ST8SiaII- or ST8SiaIV-deficient mice. Thus, our fine structure analyses suggest a comparable quality of polysialylation by ST8SiaII and ST8SiaIV and a distinct synergistic action of the two enzymes in the synthesis of long polySia chains at N-glycosylation site 5 in vivo.  相似文献   

9.
Modulation of levels of polysialic acid (polySia), a sialic acid polymer, predominantly associated with the neural cell adhesion molecule (NCAM), influences neural functions, including synaptic plasticity, neurite growth, and cell migration. Biosynthesis of polySia depends on two polysialyltransferases ST8SiaII and ST8SiaIV in vertebrate. However, the enzyme involved in degradation of polySia in its physiological turnover remains uncertain. In the present study, we identified and characterized a murine sialidase NEU4 that catalytically degrades polySia. Murine NEU4, dominantly expressed in the brain, was found to efficiently hydrolyze oligoSia and polySia chains as substrates in sialidase in vitro assays, and also NCAM-Fc chimera as well as endogenous NCAM in tissue homogenates of postnatal mouse brain as assessed by immunoblotting with anti-polySia antibodies. Degradation of polySia by NEU4 was also evident in neuroblastoma Neuro2a cells that were co-transfected with Neu4 and ST8SiaIV genes. Furthermore, in mouse embryonic hippocampal primary neurons, the endogenously expressed NEU4 was found to decrease during the neuronal differentiation. Interestingly, GFP- or FLAG-tagged NEU4 was partially co-localized with polySia in neurites and significantly suppressed their outgrowth, whereas silencing of NEU4 showed the acceleration together with an increase in polySia expression. These results suggest that NEU4 is involved in regulation of neuronal function by polySia degradation in mammals.  相似文献   

10.
The expression of the neural adhesion molecules L1 and N-CAM has been studied in the embryonic and early postnatal olfactory system of the mouse in order to gain insight into the function of these molecules during development of a neural structure which retains neuronal turnover capacities throughout adulthood. N-CAM was slightly expressed and L1 was not significantly expressed in the olfactory placode on Embryonic Day 9, the earliest stage tested. Rather, N-CAM was strongly expressed in the mesenchyme underlying the olfactory placode. In the developing nasal pit, L1 and N-CAM were detectable in the developing olfactory epithelium, but not in regions developing into the respiratory epithelium. At early developmental stages, expression of the so-called embryonic form of N-CAM (E-N-CAM) coincides with the expression of N-CAM, whereas at later developmental stages and in the adult it is restricted to a smaller number of sensory cell bodies and axons, suggesting that the less adhesive embryonic form is characteristic of morphogenetically dynamic neuronal structures. Moreover, E-N-CAM is highly expressed at contact sites between olfactory axons and their target cells in the glomeruli of the olfactory bulb. L1 and N-CAM 180, the component of N-CAM that accumulates at cell contacts by interaction with the cytoskeleton are detectable as early as the first axons extend toward the primordial olfactory bulb. L1 remains prominent throughout development on axonal processes, both at contacts with other axons and with ensheathing cells. Contrary to N-CAM 180 which remains detectable on differentiating sensory neuronal cell bodies, L1 is only transiently expressed on these and is no longer detectable on primary olfactory neuronal cell bodies in the adult. Furthermore, whereas throughout development L1 has a molecular form similar to that seen in other parts of the developing and adult central nervous systems, N-CAM and, in particular, N-CAM 180 retain their highly sialylated form at least partially throughout all ages studied. These observations suggest that E-N-CAM and N-CAM 180 are characteristic of developmentally active structures and L1 may not only be involved in neurite outgrowth, but also in stabilization of contacts among fasciculating axons and between axons and ensheathing cells, as it has previously been found in the developing peripheral nervous system.  相似文献   

11.
Sialic acid (Sia) is expressed as terminal sugar in many glycoconjugates and plays an important role during development and regeneration. Addition of homopolymers of Sia (polysialic acid; polySia/PSA) is a unique and highly regulated post-translational modification of the neural cell adhesion molecule (NCAM). The presence of polySia affects NCAM-dependent cell adhesion and plays an important role during brain development, neural regeneration, and plastic processes including learning and memory. PolySia-NCAM is expressed on several neuroendocrine tumors of high malignancy and correlates with poor prognosis. Two closely related enzymes, the polysialyltransferases ST8SiaII and ST8SiaIV, catalyze the biosynthesis of polySia. This review summarizes recent knowledge on Sia biosynthesis and the correlation between Sia biosynthesis and polysialylation of NCAM and report on approaches to modify the degree of polySia on NCAM in vitro and in vivo. First, we describe the inhibition of polysialylation of NCAM in ST8SiaII-expressing cells using synthetic Sia precursors. Second, we demonstrate that the key enzyme of the Sia biosynthesis (UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase) regulates and limits the synthesis of polySia by controlling the cellular Sia concentration.  相似文献   

12.
A new polysialoglycoprotein, designated PSGP(On), was isolated from the unfertilized eggs of the kokanee salmon, Oncorhynchus nerka adonis. 400-MHz 1H NMR analyses showed the O. nerka adonis PSGP contained alpha -2,8-linked oligo- and polysialic acid (polySia) chains that were made up of 4-O-Ac-, 7-O-Ac-, and 9-O-Ac esters of N-glycolylneuraminic acid (Neu5Gc) residues. The presence of a new sialic acid derivative, identified by 1H NMR as 9-O-acetyl-2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (trivial name, 9-O-acetyldeaminated neuraminic acid; 9-O-Ac-KDN), was also shown to be present as a minor component. The O-acetylated KDN residues appear to cap the nonreducing termini of the O-acetylated poly(Neu5Gc) chains. The O-acetylated polySia chains were resistant to depolymerization by bacterial exosialidases and a bacteriophage-derived endo-N-acylneuraminidase that is specific for catalyzing the hydrolysis of alpha -2,8-linkages in polySia containing either N-acetylneuraminic acid or Neu5Gc residues. After de-O-acetylation by mild alkali, the polySia chains were sensitive to digestion by endo-N-acylneuraminidase, yet partially resistant to exosialidase. These data confirm the alpha -2,8-ketosidic linkage in these chains and the nonreducing terminal location of the KDN residues. These results extend further the range of structural diversity in polySia-containing glycoconjugates, and in the family of naturally occurring sialic acids. They also suggest that the O-acetylated Neu5Gc and 9-O-Ac-KDN residues may have an important role during oogenesis.  相似文献   

13.
《The Journal of cell biology》1986,103(6):2429-2437
The neural cell adhesion molecules (N-CAM) occur chiefly in two molecular forms that are selectively expressed at various stages of development. Highly sialylated forms prevalent in embryonic and neonatal brain are gradually replaced by less sialylated forms as development proceeds. Here we describe a monoclonal antibody raised against the capsular polysaccharides of meningococcus group B (Men B) which specifically distinguishes embryonic N-CAM from adult N-CAM. This antibody recognizes alpha 2-8-linked N-acetylneuraminic acid units (NeuAc alpha 2-8). Immunoblot together with immunoprecipitation experiments with cell lines or tissue extracts showed that N-CAM are the major glycoproteins bearing such polysialosyl units. Moreover we could not detect any sialoglycolipid reactive with this antibody in mouse brain or in the neural cell lines examined. By indirect immunofluorescence staining this anti-Men B antibody decorated cells such as AtT20 (D16/16), which expressed the embryonic forms of N-CAM, but not cells that expressed the adult forms. In primary cultures this antibody allowed us to follow the embryonic-to-adult conversion in individual cells. In addition, the existence of cross-reactive polysialosyl structures on Men B and N-CAM in embryonic brain cells for caution in efforts to develop immunotherapy against neonatal meningitis.  相似文献   

14.
An ultrasensitive chemical method for polysialic acid analysis   总被引:1,自引:0,他引:1  
Inoue S  Lin SL  Lee YC  Inoue Y 《Glycobiology》2001,11(9):759-767
An ultrasensitive method for analysis of polysialic acid (polySia) chains, using fluorescence-assisted high-performance liquid chromatography was developed. The new method is a substantial improvement of our earlier method in which the reducing terminal Sia residues of a homologous series of oligo/polySia hydrolytically released during derivatization reaction were simultaneously labeled with a fluorogenic reagent, 1,2-diamino-4,5-methylenedioxybenzene (DMB) in situ. We first studied extensively the stability of oligo/polySia in the acid (0.02 M trifluoracetic acid) used for 1,2-diamino-4,5-methylenedioxybenzene derivatization under various conditions of reaction time and temperature, analyzing the hydrolytic products by high-performance anion exchange chromatography with pulsed electrochemical detection (HPAEC-PED). Then we optimized the reaction conditions to minimize degradation of the parent polySia while maintaining high derivatization rate. Using a DNAPac PA-100 column rather than a MonoQ column, baseline resolution of polySia peaks up to DP 90 with a detection threshold of 1.4 femtomol per resolved peak was achieved. The new method was used to analyze the degree of polymerization of a polySia-containing glycopeptide fraction derived from embryonic chicken brain, and the results were compared with those obtained by HPAEC-PED.  相似文献   

15.
Polysialic acid (polySia) attached to the neural cell adhesion molecule (NCAM) regulates inter alia the proliferation and differentiation via the interactions with neurotrophins. Since in postnatal epididymis neurotrophins and their receptors like the Low-Affinity Nerve Growth Factor Receptor p75 and TrK B receptor are expressed, we wanted to analyze if the polysialylation of NCAM is also involved during the development of the epididymis. To this end, we monitored the developmental changes in the expression of the polysialyltransferases and NCAM polysialylation using murine epididymis at different time points during postnatal development. Our results revealed that during postnatal development of the epididymis both polysialyltransferases, ST8SiaII and ST8SiaIV, were expressed and that the expression levels dropped with increasing age. In agreement with the expression levels of the polysialyltransferases the highest content of polysialylated NCAM was present during the first 10 days after birth. Interestingly, proliferating smooth muscle cell populations prevalently expressed polysialylated NCAM. Furthermore, we observed that inverse to the decrease in polysialylation of smooth muscle cells a strong up-regulation of collagen takes place suggesting a functional relationship since collagen was recently described to induce the turnover of polysialylated NCAM via an induction of endocytosis in cellulo. The same time course of polySia and collagen synthesis was also observed in other regions of the male reproductive system e.g. vas deferens and tunica albuginea (testis). Together, we identified a spatio-temporal expression pattern of polySia-NCAM characterized by high proliferation rate of smooth muscle cells and low collagen content.  相似文献   

16.
The sialic acid (Sia) N-acetylneuraminic acid (Neu5Ac) and its hydroxylated derivative N-glycolylneuraminic acid (Neu5Gc) differ by one oxygen atom. CMP-Neu5Gc is synthesized from CMP-Neu5Ac, with Neu5Gc representing a highly variable fraction of total Sias in various tissues and among different species. The exception may be the brain, where Neu5Ac is abundant and Neu5Gc is reported to be rare. Here, we confirm this unusual pattern and its evolutionary conservation in additional samples from various species, concluding that brain Neu5Gc expression has been maintained at extremely low levels over hundreds of millions of years of vertebrate evolution. Most explanations for this pattern do not require maintaining neural Neu5Gc at such low levels. We hypothesized that resistance of α2-8-linked Neu5Gc to vertebrate sialidases is the detrimental effect requiring the relative absence of Neu5Gc from brain. This linkage is prominent in polysialic acid (polySia), a molecule with critical roles in vertebrate neural development. We show that Neu5Gc is incorporated into neural polySia and does not cause in vitro toxicity. Synthetic polymers of Neu5Ac and Neu5Gc showed that mammalian and bacterial sialidases are much less able to hydrolyze α2-8-linked Neu5Gc at the nonreducing terminus. Notably, this difference was not seen with acid-catalyzed hydrolysis of polySias. Molecular dynamics modeling indicates that differences in the three-dimensional conformation of terminal saccharides may partly explain reduced enzymatic activity. In keeping with this, polymers of N-propionylneuraminic acid are sensitive to sialidases. Resistance of Neu5Gc-containing polySia to sialidases provides a potential explanation for the rarity of Neu5Gc in the vertebrate brain.  相似文献   

17.
《The Journal of cell biology》1985,101(5):1921-1929
The rodent neural cell adhesion molecule (N-CAM) consists of three glycoprotein chains of 180, 140, and 120 kD in their adult forms. Although the proportions of the three components are known to change during development and differ between brain regions, their individual distribution and function are unknown. Here we report studies carried out with a monoclonal antibody that specifically recognizes the 180-kD component of mouse N-CAM (N-CAM180) in its highly sialylated embryonic and less glycosylated adult forms. In primary cerebellar cell cultures, N-CAM180 antibody reacts intracellularly with all types of neural cells including astrocytes, oligodendrocytes, and neurons. During cerebellar, telencephalic, and retinal development N-CAM180 is detectable by indirect immunohistology in differentiated neural cells, but, in contrast to total N-CAM, not in their proliferating precursors in the ventricular zone and primordial and early postnatal external granular layer. In monolayer cultures of C1300 neuroblastoma cells, N-CAM180 appears by immunofluorescence more concentrated at contact points between adjacent cells, while N-CAM comprising the 180- and 140-kD component shows a more uniform distribution at the plasma membrane. Treatment of neuroblastoma cells with dimethylsulfoxide, which promotes differentiation, induces a shift toward the predominant expression of N- CAM180. These observations support the notion that N-CAM180 is expressed selectively in more differentiated neural cells and suggest a differential role of N-CAM180 in the stabilization of cell contacts.  相似文献   

18.
As acidic glycocalyx on primary mouse microglial cells and a mouse microglial cell line Ra2, expression of polysialic acid (polySia/PSA), a polymer of the sialic acid Neu5Ac (N-acetylneuraminic acid), was demonstrated. PolySia is known to modulate cell adhesion, migration, and localization of neurotrophins mainly on neural cells. PolySia on Ra2 cells disappeared very rapidly after an inflammatory stimulus. Results of knockdown and inhibitor studies indicated that rapid surface clearance of polySia was achieved by secretion of endogenous sialidase Neu1 as an exovesicular component. Neu1-mediated polySia turnover was accompanied by the release of brain-derived neurotrophic factor normally retained by polySia molecules. Introduction of a single oxygen atom change into polySia by exogenous feeding of the non-neural sialic acid Neu5Gc (N-glycolylneuraminic acid) caused resistance to Neu1-induced polySia turnover and also inhibited the associated release of brain-derived neurotrophic factor. These results indicate the importance of rapid turnover of the polySia glycocalyx by exovesicular sialidases in neurotrophin regulation.  相似文献   

19.
S J Small  S L Haines  R A Akeson 《Neuron》1988,1(10):1007-1017
The alternative splicing of a previously undiscovered 30 base exon confers a new level of polypeptide diversity on the N-CAM family of cell-surface glycoproteins. It results in the insertion of 10 amino acids into the fourth of five extracellular immunoglobulin-like folds. Each major size class of rat brain N-CAM mRNAs consists of members that contain or lack the exon. Furthermore, this splicing event is developmentally controlled: RNAs containing the inserted exon are expressed at extremely low levels (less than 3%) in embryonic brain but increase postnatally to 40%-45% of all N-CAM mRNAs in adult brain. Antibodies that recognize the alternative 10 amino acid segment react with a subset of N-CAM-expressing neurons in cultures of embryonic rat cells.  相似文献   

20.
Polysialic acid (polySia) forms linear chains which are usually attached to the external surface of the plasma membrane mainly through the Neural Cell Adhesion Molecule (NCAM) protein. It is exposed on neural cells, several types of cancer cells, dendritic cells, and egg and sperm cells. There are several lipid raft-related phenomena in which polySia is involved; however the mechanisms of polySia action as well as determinants of its localization in lipid raft microdomains are still unknown, although the majority of NCAM molecules in the liquid-ordered raft membrane fractions of neural cells appear to be polysialylated. Here we investigate the affinity of polySia (both soluble and NCAM-dependent plasma membrane-bound) for liquid-ordered- and liquid-disordered regions of lipid vesicle and neuroblastoma cell membranes. Our studies indicate that polySia chains have a higher affinity for ordered regions of membranes as determined by the dissociation constant values for polySia-lipid bilayer complex, the fluorescence intensity of polySia bound to giant vesicles, the polySia-to-membrane FRET signal at the plasma membrane of live cells, and the decrease of the FRET signals after Endo-N treatment of the cells. These results suggest that polysialylation may be one of the determinants of protein association with liquid-ordered membrane lipid raft domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号