共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
E Racker 《Federation proceedings》1967,26(5):1335-1340
3.
4.
Electrophysiology of the inner mitochondrial membrane 总被引:11,自引:0,他引:11
The application of electrophysiological techniques to mitochondrial membranes has allowed the observation and partial characterization of several ion channels, including an ATP-sensitive K+-selective one, a high-conductance megachannel, a 107 pS anionic channel and three others studied at alkaline pH's. A reliable correlation with the results of non-electrophysiological studies has been obtained so far only for the first two cases. Activities presumed to be associated with the Ca2+ uniporter and with the adenine nucleotide translocator, as well as the presence of various other conductances have also been reported. The review summarizes the main properties of these pores and their possible relationship to permeation pathways identified in biochemical studies. 相似文献
5.
6.
Mitochondria are complex organelles with two membranes. Their architecture is determined by characteristic folds of the inner membrane, termed cristae. Recent studies in yeast and other organisms led to the identification of four major pathways that cooperate to shape cristae membranes. These include dimer formation of the mitochondrial ATP synthase, assembly of the mitochondrial contact site and cristae organizing system (MICOS), inner membrane remodelling by a dynamin-related GTPase (Mgm1/OPA1), and modulation of the mitochondrial lipid composition. In this review, we describe the function of the evolutionarily conserved machineries involved in mitochondrial cristae biogenesis with a focus on yeast and present current models to explain how their coordinated activities establish mitochondrial membrane architecture. 相似文献
7.
8.
The inner membrane of mitochondria is organized in two morphologically distinct domains, the inner boundary membrane (IBM) and the cristae membrane (CM), which are connected by narrow, tubular cristae junctions. The protein composition of these domains, their dynamics, and their biogenesis and maintenance are poorly understood at the molecular level. We have used quantitative immunoelectron microscopy to determine the distribution of a collection of representative proteins in yeast mitochondria belonging to seven major processes: oxidative phosphorylation, protein translocation, metabolite exchange, mitochondrial morphology, protein translation, iron-sulfur biogenesis, and protein degradation. We show that proteins are distributed in an uneven, yet not exclusive, manner between IBM and CM. The individual distributions reflect the physiological functions of proteins. Moreover, proteins can redistribute between the domains upon changes of the physiological state of the cell. Impairing assembly of complex III affects the distribution of partially assembled subunits. We propose a model for the generation of this dynamic subcompartmentalization of the mitochondrial inner membrane. 相似文献
9.
10.
Chemical modification of the inner mitochondrial membrane 总被引:6,自引:0,他引:6
11.
Michael Schlame 《BBA》2021,1862(1):148305
The inner membrane of mitochondria is known for its low lipid-to-protein ratio. Calculations based on the size and the concentration of the principal membrane components, suggest about half of the hydrophobic volume of the membrane is occupied by proteins. Such high degree of crowding is expected to strain the hydrophobic coupling between proteins and lipids unless stabilizing mechanisms are in place. Both protein supercomplexes and cardiolipin are likely to be critical for the integrity of the inner mitochondrial membrane because they reduce the energy penalty of crowding. 相似文献
12.
13.
Electron microscopic evidence is presented for the extensive association of protein subunits into ribbons within the mitochondrial inner membrane. The mitochondrial cristae can be rearranged to a narrow tubular form which exhibits ribbon structure and is fully functional; the morphology of particles derived from submitochondrial electron transport particles by treatment with lysolecithin suggests that the backbone of the ribbon is provided by the cytochrome-free tripartite unit (headpiece, stalk, basepiece) in linear repeat. These results are inconsistent with any single model of the inner membrane previously proposed, but are best understood in terms of a model which combines the concept of an ordered protein continuum with the concept of a fluid lipid bilayer. Further, it is concluded that the headpiece out morphology of the tripartite unit represents a viable conformation of the endergonic transducing unit. 相似文献
14.
Bilirubin accumulates within, and induces loose coupling in, rat liver mitochondria. This state, characterized by a normal protonmotive force, but increased oxygen consumption and inner membrane conductance, could impair cellular energy metabolism. Loose coupling is observed at bilirubin concentrations (12-24 microM) attained in tissues of kernicteric animals. 相似文献
15.
The stoichiometry and dissociation constant for the binding of homogeneous chicken heart mitochondrial creatine kinase (MiMi-CK) to mitoplasts was examined under a variety of conditions. Salts and substrates release MiMi-CK from mitoplasts in a manner that suggests an ionic interaction. The binding of MiMi-CK to mitoplasts is competitively inhibited by Adriamycin, suggesting that they compete for the same binding site. Fluorescence measurements also show that Adriamycin binds to MiMi-CK so that the effect of Adriamycin on the binding of MiMi-CK to mitoplasts is not simple. Titrating mitoplasts with homogeneous MiMi-CK at different pH values shows a pH-dependent equilibrium involving a group(s) on either the membrane or the enzyme with a pKa = 6. Extrapolating these titrations to infinite MiMi-CK concentration gives 14.6 IU bound/nmol cytochrome aa3 corresponding to 1.12 mol MiMi-CK/mol cytochrome aa3. Chicken heart mitochondria contain, after isolation, 2.86 +/- 0.42 IU/nmol cytochrome aa3. Titrating respiring mitoplasts with carboxyatractyloside gives at saturation 3.3 mol ADP/ATP translocase/mol cytochrome aa3. Therefore, chicken heart mitoplasts can maximally bind about 1 mol of MiMi-CK per 3 mol translocase; in normal chicken heart mitochondria about 1 mol of MiMi-CK is present per 13 mol translocase. 相似文献
16.
17.
Takayuki Ozawa A. N. Malviya Yohei Takahashi Kunio Yagi 《Journal of bioenergetics and biomembranes》1975,7(5):201-214
When mitochondrial inner membrane was disintegrated into Complex I-III, IV, and oligomycin-sensitive ATPase, about 50% of cytochromeb in Complex I-III was readily reduced with NADH, as judged by the appearance of a peak at 562 nm, while in whole mitochondria less than 25% of cytochromeb was reduced by succinate. On addition of antimycin to the substrate-reduced Complex I-III, cytochromeb was further reduced to 71% of the total, and the peak at 562 nm was red-shifted to 564 nm as in the case of dithionite reduction. These results indicate that the 562 nm and 564 nm peaks, at 29°C correspond, respectively, tob
560 andb
562.5 at 77°K of Davis et al. [7] and to b
K and b
T of Chance et al. [2]. When Complex I-III and oligomycin-sensitive ATPase were reconstituted to form a membrane, about 60% of cytochromeb in Complex I-III was readily reduced with NADH. In this case the 562 nm peak was not red-shifted. However, the difference spectrum of NADH-reduced membraneminus that in the presence of deoxycholate showed a peak at 565 nm. A mirror image of the difference spectrum was obtained on addition of an uncoupler,m-chlorocarbonyl cyanide phenylhydrazone. This is characteristic for b
T. These results support the idea that the occurrence of spectral peaks of b
T and b
K is not due to two species but to single speciesAbbreviations OS-ATPase
oligomycin sensitive ATPase
- CCCP
m-chlorocarbonyl cyanide phenylhydrazone
- F1
coupling factor one
- OSCP
oligomycinsensitivity-conferring protein 相似文献
18.
Kathleen W. Kinnally Yuri N. Antonenko Dmitry B. Zorov 《Journal of bioenergetics and biomembranes》1992,24(1):99-110
Three classes of inner mitochondrial membrane (IMM) channel activities have been defined by direct measurement of conductance levels in membranes with patch clamp techniques in 150 mM K Cl. The 107 pS activity is slightly anion selective and voltage dependent (open with matrix positive potentials). Multiple conductance channel (MCC) activity includes several levels from about 40 to over 1000 pS and can be activated by voltage or Ca2+. MCC may be responsible for the Ca2+-induced permeability transition observed with mitochondrial suspensions. A low conductance channel (LCC) is activated by alkaline pH and inhibited by Mg2+. LCC has a unit conductance of about 15 pS and may correspond to the inner membrane anion channel, IMAC, which was proposed from results obtained from suspension studies. All of the IMM channels defined thus far appear to be highly regulated and have a low open probability under physiological conditions. A summary of what is known about IMM channel regulation and pharmacology is presented and possible physiological roles of these channels are discussed. 相似文献
19.
Sorting pathways of mitochondrial inner membrane proteins 总被引:14,自引:0,他引:14
K Mahlke N Pfanner J Martin A L Horwich F U Hartl W Neupert 《European journal of biochemistry》1990,192(2):551-555
Two distinct pathways of sorting and assembly of nuclear-encoded mitochondrial inner membrane proteins are described. In the first pathway, precursor proteins that carry amino-terminal targeting signals are initially translocated via contact sites between both mitochondrial membranes into the mitochondrial matrix. They become proteolytically processed, interact with the 60-kDa heat-shock protein hsp60 in the matrix and are retranslocated to the inner membrane. The sorting of subunit 9 of Neurospora crassa F0-ATPase has been studied as an example. F0 subunit 9 belongs to that class of nuclear-encoded mitochondrial proteins which are evolutionarily derived from a prokaryotic ancestor according to the endosymbiont hypothesis. We suggest that after import into mitochondria, these proteins follow the ancestral sorting and assembly pathways established in prokaryotes (conservative sorting). On the other hand, ADP/ATP carrier was found not to require interaction with hsp60 for import and assembly. This agrees with previous findings that the ADP/ATP carrier possesses non-amino-terminal targeting signals and uses a different import receptor to other mitochondrial precursor proteins. It is proposed that the ADP/ATP carrier represents a class of mitochondrial inner membrane proteins which do not have a prokaryotic equivalent and thus appear to follow a non-conservative sorting pathway. 相似文献
20.
The inner mitochondrial membrane has been shown to have a novel structure that contains tubular components whose radii are of the order of 10 nm as well as comparatively flat regions. The structural organization of mitochondria is important for understanding their functionality. We present a model that can account, thermodynamically, for the observed size of the tubules. The model contains two lipid constituents with different shapes. They are allowed to distribute in such a way that the composition differs on the two sides of the tubular membrane. Our calculations make two predictions: (1) there is a pressure difference of 0.2 atmospheres across the inner membrane as a necessary consequence of the experimentally observed tubule radius of 10 nm, and (2) migration of differently shaped lipids causes concentration variations of the order of 7% between the two sides of the tubular membrane. 相似文献