首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 354 毫秒
1.
Measuring standard metabolic rate (SMR) and specific dynamic action (SDA) has yielded insight into patterns of energy expenditure in snakes, but less emphasis has been placed on identifying metabolic variation and associated energy cost of circadian rhythms. To estimate SMR, SDA, and identify metabolic variation associated with circadian cycles in nocturnally active African house snakes (Lamprophis fuliginosus), we measured oxygen consumption rates (VO2) at frequent intervals before and during digestion of meals equaling 10%, 20% and 30% of their body mass. Circadian rhythms in metabolism were perceptible in the VO2 data during fasting and after the initial stages of digestion. We estimated SMR of L. fuliginosus (mean mass=16.7+/-0.3 g) to be 0.68+/-0.02 (+/-SEM) mL O2/h at 25 degrees C. Twenty-four hours after eating, VO2 peaked at 3.2-5.3 times SMR. During digestion of meals equaling 10-30% of their body mass, the volume of oxygen consumed ranged from 109 to 119 mL O2 for SMR, whereas extra oxygen consumed for digestion and assimilation ranged from 68 to 256 mL O2 (equivalent to 14.5-17.0% of ingested energy). The oxygen consumed due to the rise in metabolism during the active phase of the daily cycle ranged from 55 to 66 mL O2 during digestion. Peak VO2, digestive scope, and SDA increased with increasing meal size. Comparisons of our estimates to estimates derived from methods used in previous investigations resulted in wide variance of metabolic variables (up to 39%), likely due to the influence of circadian rhythms and activity on the selection of baseline metabolism. We suggest frequent VO2 measurements over multiple days, coupled with mathematical methods that reduce the influence of undesired sources of VO2 variation (e.g., activity, circadian cycles) are needed to reliably assess SMR and SDA in animals exhibiting strong circadian cycles.  相似文献   

2.
Standard metabolic rate (SMR) is both a highly informative and variable trait. Variation in SMR stems not only from diverse intrinsic and extrinsic factors, but also from the use of diverse methods for metabolic measurements. We measured CO(2) production (VCO(2)) and oxygen consumption rates (VO(2)) using two flow-through respirometry modes, continuous and intermittent (stop-flow), to evaluate their potential contribution to SMR variation in Alpine newts, Ichthyosaura alpestris. Both respirometry modes yielded similar and repeatable VCO(2) values. Although VO(2) was highly repeatable, continuous respirometry produced lower VO(2) than the intermittent method. During intermittent measurements, the total number of activity bouts was higher than during continuous respirometry trials. Statistical correction for disparate activity levels minimized variation in oxygen consumption between respirometry modes. We conclude that use of either method of flow-through respirometry, if properly applied, introduced less noise to SMR estimates than a variation in activity levels.  相似文献   

3.
We asked what effects hyperoxia may have on the metabolic response to cold of the newborn rat. Whole body gaseous metabolism (VO2 and VCO2) was measured in 2-day old rats by open flow respirometry at ambient temperatures (Tamb) between 40 and 20 degrees C, changed at a rate of 0.5 degrees C/min during normoxia and hyperoxia (100% O2 breathing). In normoxia, the thermoneutral range was very narrow, at Tamb = 33-35 degrees C. A decrease in Tamb at first stimulated VO2; a further drop in Tamb below 28 degrees C reduced metabolic rate. The metabolic response to cold was not sufficient to maintain body temperature (Tb). In hyperoxia average values of VO2 were above the normoxic values at all Tamb, but the difference was mostly apparent at low Tamb; at 20 degrees C, hyperoxic VO2 averaged 73% more than in normoxia. This metabolic increase determined a significant but small rise of Tb. We conclude that in the 2-days-old rat hyperoxia has a stimulatory effect on metabolism which is Tamb-dependent, being much more apparent in the cold. This supports the concept that the normoxic VO2 of the newborn is limited by the supply of O2. However, the fact that in the cold, even in hyperoxia, VO2 did not reach very high values, and Tb was not maintained, suggests that not only O2 availability, but also the rate of O2 utilization limits the aerobic metabolic response of the newborn.  相似文献   

4.
Because fasting king penguins (Aptenodytes patagonicus) need to conserve energy, it is possible that they exhibit particularly low metabolic rates during periods of rest. We investigated the behavioral and physiological aspects of periods of minimum metabolic rate in king penguins under different circumstances. Heart rate (f(H)) measurements were recorded to estimate rate of oxygen consumption during periods of rest. Furthermore, apparent respiratory sinus arrhythmia (RSA) was calculated from the f(H) data to determine probable breathing frequency in resting penguins. The most pertinent results were that minimum f(H) achieved (over 5 min) was higher during respirometry experiments in air than during periods ashore in the field; that minimum f(H) during respirometry experiments on water was similar to that while at sea; and that RSA was apparent in many of the f(H) traces during periods of minimum f(H) and provides accurate estimates of breathing rates of king penguins resting in specific situations in the field. Inferences made from the results include that king penguins do not have the capacity to reduce their metabolism to a particularly low level on land; that they can, however, achieve surprisingly low metabolic rates at sea while resting in cold water; and that during respirometry experiments king penguins are stressed to some degree, exhibiting an elevated metabolism even when resting.  相似文献   

5.
Muscle mitochondrial capacity exceeds maximal oxygen delivery in humans   总被引:1,自引:0,他引:1  
Across a wide range of species and body mass a close matching exists between maximal conductive oxygen delivery and mitochondrial respiratory rate. In this study we investigated in humans how closely in-vivo maximal oxygen consumption (VO(2) max) is matched to state 3 muscle mitochondrial respiration. High resolution respirometry was used to quantify mitochondrial respiration from the biopsies of arm and leg muscles while in-vivo arm and leg VO(2) were determined by the Fick method during leg cycling and arm cranking. We hypothesized that muscle mitochondrial respiratory rate exceeds that of systemic oxygen delivery. The state 3 mitochondrial respiration of the deltoid muscle (4.3±0.4 mmol o(2)kg(-1) min(-1)) was similar to the in-vivo VO(2) during maximal arm cranking (4.7±0.5 mmol O(2) kg(-1) min(-1)) with 6 kg muscle. In contrast, the mitochondrial state 3 of the quadriceps was 6.9±0.5 mmol O(2) kg(-1) min(-1), exceeding the in-vivo leg VO(2) max (5.0±0.2 mmol O(2) kg(-1) min(-1)) during leg cycling with 20 kg muscle (P<0.05). Thus, when half or more of the body muscle mass is engaged during exercise, muscle mitochondrial respiratory capacity surpasses in-vivo VO(2) max. The findings reveal an excess capacity of muscle mitochondrial respiratory rate over O(2) delivery by the circulation in the cascade defining maximal oxidative rate in humans.  相似文献   

6.
Basal rate of metabolism (BMR) and temperature regulation are described for Goeldi's monkey (Callimico goeldii), a threatened New World primate species of the family Callitrichidae. Measurements were conducted on sleeping individuals during the night, using a special nestbox designed to serve as a respirometry chamber, such that test animals remained undisturbed in their customary surroundings. Oxygen consumption was measured at ambient temperatures between 17.5 and 32 degrees C for 10 individuals with an average body mass of 557 g. Average BMR was 278+/-41 ml O(2) h(-1), which is lower than the value predicted on the basis of body mass. Individual differences in BMR were significant even when body mass was accounted for. Body temperature was measured in five individuals below thermoneutrality and averaged 36+/-0.3 degrees C. The corresponding thermal conductance averaged 29.3+/-2.2 ml O(2) h(-1) degrees C(-1), which is similar to the expected value. The metabolic and thermoregulatory patterns observed in C. goeldii resemble those of the closely related marmosets and tamarins. Low BMR is presumably associated with limited access to energy resources and may be directly linked with phylogenetic dwarfing in the family Callitrichidae.  相似文献   

7.
Standard metabolic rates of S. invicta workers, males, female alates, larvae and pupae were determined using closed-system respirometry. Vdot;(O(2)) (ml h(-1)) of all castes and life stages scaled with temperature and mass. Differences between castes and life stages are discussed in light of their different life histories and the different functions of these stages within the colony. Workers, female alates, male alates, larvae and pupae had mass-specific Vdot;(O(2)) (ml O(2) g wet weight(-1) h(-1), corrected to 25 degrees C) of 0.404+/-0.023, 0.316+/-0.010, 0.674+/-0.024, 0.291+/-0.020, and 0.227+/-0.015 (mean+/-SE), respectively. Measurement of CO(2) and O(2) made possible the examination of temperature and mass effects on respiratory quotient (RQ), as well as accurate transformation of O(2) consumption to metabolic rate (&mgr;W) for comparison with other ant species. Mass-specific metabolic rates of S. invicta females and workers compare favorably with data from 17 other ant species, but metabolic rates of males (177%) and pupae (42%) fall above and below predicted rates, respectively. Several equations relating temperature and mass to Vdot;(O(2)) are presented.  相似文献   

8.
The rate of oxygen consumption (VO2) is commonly used as a measure of whole organism metabolic rate, but requires the animal to be motionless and at rest. Few studies have measured whether animals that appear motionless are truly at rest, or whether being in a novel environment elevates metabolic rate. We investigated whether conditioning of the gecko Naultinus manukanus to experimental procedures influenced the VO2 and probability of achieving a constant rate of oxygen consumption. Metabolic rate was measured at 24 degrees C in 22 individuals until a steady-state was achieved, or for 80 min if no steady-state was reached, once a day on 5 consecutive days (five trials). Geckos in the first trial, when compared with subsequent trials, had a significantly higher mass-adjusted VO2 (0.89+/-0.06 vs. 0.67+/-0.05 ml O2 h(-1), respectively), and time to reach a steady-state VO2 (66+/-8 vs. 47+/-3 min, respectively), as well as a significantly lower probability of reaching a steady-state VO2 (24% vs. 74%, respectively). We conclude that there may be hidden inaccuracies in studies that do not condition animals and that at least one conditioning trial should be used to obtain a metabolic rate at rest for small lizards.  相似文献   

9.
The majority of vertebrates are not tolerant to hypoxia but epaulette sharks (Hemiscyllium ocellatum) living on shallow reef platforms appear to tolerate hypoxic periods during tidal fluctuations. The effects of progressive hypoxia on the metabolic and ventilatory responses of these elasmobranchs were examined in a closed respirometer. In order to determine whether repeated exposure to hypoxia primes these sharks to alter their metabolism, one group of sharks was exposed to repeated sub-lethal hypoxia, at 5% of air saturation, prior to respirometry. In response to falling oxygen concentration [O(2)], the epaulette shark increased its ventilatory rate and maintained its O(2) consumption rate (VO(2)) down to 2.2 mg O(2) l(-1) at 25 degrees C. This is the lowest critical [O(2)] ([O(2)](crit)) ever measured for any elasmobranch. After reaching the [O(2)](crit), the shark remained in the respirometer for a further 4-5 h of progressive hypoxia. Only after the [O(2)] fell to 1.0 mg l(-1) was there a decrease in the ventilatory rate followed by a rise in blood lactate levels, indicating that the epaulette shark responds to severe hypoxia by entering a phase of metabolic and ventilatory depression. Interestingly, hypoxia tolerance was dynamic because hypoxic pre-conditioning lowered the VO(2) of the epaulette shark by 29%, which resulted in a significantly reduced [O(2)](crit) (1.7 mg O(2) l(-1)), revealing that hypoxic pre-conditioning elicits an enhanced physiological response to hypoxia.  相似文献   

10.
Despite the importance of metabolic rate in determining flight time of tsetse and in mediating the influence of abiotic variables on life history parameters (and hence abundance and distribution), metabolic rate measurements and their repeatability have not been widely assessed in these flies. We investigate age-related changes in standard metabolic rate (SMR) and its repeatability, using flow-through respirometry, for a variety of feeding, gender and pregnancy classes during early adult development in laboratory-reared individuals of the tsetse fly, Glossina pallidipes. Standard metabolic rate (144-635 microW) was generally within 22% of previous estimates, though lower than the values found using closed system respirometry. There was no significant difference between the genders, but metabolic rate increased consistently with age, probably owing to flight muscle development. Repeatability of metabolic rate was generally high (r=0.6-.09), but not in younger teneral adults and pregnant females (r approximately equal to 0.05-0.4). In these individuals, low repeatability values are a consequence of muscle or in utero larval development. Tsetse and other flies generally have a much higher metabolic rate, for a given size, than do other insect species investigated to date.  相似文献   

11.
Insights into muscle energetics during exercise (e.g., muscular efficiency) are often inferred from measurements of pulmonary gas exchange. This procedure presupposes that changes of pulmonary O2 (VO2) associated with increases of external work reflect accurately the increased muscle VO2. The present investigation addressed this issue directly by making simultaneous determinations of pulmonary and leg VO2 over a range of work rates calculated to elicit 20-90% of maximum VO2 on the basis of prior incremental (25 or 30 W/min) cycle ergometry. VO2 for both legs was calculated as the product of twice one-leg blood flow (constant-infusion thermodilution) and arteriovenous O2 content difference across the leg. Measurements were made 3-5 min after each work rate imposition to avoid incorporation of the VO2 slow component above the lactate threshold. For all 17 subjects, the slope of pulmonary VO2 (9.9 +/- 0.2 ml O2.W-1.min-1) was not different (P greater than 0.05) from that for leg VO2 (9.2 +/- 0.6 ml O2.W-1.min-1). Estimation of "delta" efficiency (i.e., delta work accomplished divided by delta energy expended, calculated from slope of VO2 vs. work rate and a caloric equivalent for O2 of 4.985 cal/ml) using pulmonary VO2 measurements (29.1 +/- 0.6%) was likewise not significantly different (P greater than 0.05) from that made using leg VO2 measurements (33.7 +/- 2.4%). These data suggest that the net VO2 cost of metabolic "support" processes outside the exercising legs changes little over a relatively broad range of exercise intensities. Thus, under the conditions of this investigation, changes of VO2 measured from expired gas reflected closely those occurring within the exercising legs.  相似文献   

12.
1. Under controlled conditions, the rate of oxygen consumption (VO2) respiratory frequency, evaporative water loss, heat balance, rectal (Trec) and surface temperatures were determined in the dik-dik antelopes at ambient temperatures (Ta) ranging from 1 to 44 degrees C. 2. The thermal neutral zone was found to be between 24 and 35 degrees C. 3. Respiratory frequency ranged between 27 and 630 breaths/min. 4. At a Ta of 44 degrees C, 95% of the heat produced by the dik-dik was lost via respiratory evaporation. Despite an increase in Trec, cutaneous evaporation did not increase. 5. During panting, VO2 increased in accordance with the expected Q10 effect, contrary to earlier findings. 6. Measurements of circadian rhythm [LD 12:12 (7-19) CT26 degrees C] in VO2 showed that the minimum VO2 (0.42 ml O2/g/hr) occurred at midnight while the maximum (0.78 ml O2/g/hr) occurred at midday. The 24 hr mean VO2 was 0.61 ml O2/g/hr. 7. These measurements suggest that in nature, determinants other than light may be responsible for triggering the variations observed in VO2.  相似文献   

13.
Diet-induced thermogenesis (DIT) in young rats overeating a "cafeteria" (CAF) diet of palatable human foods is characterized by a chronic, propranolol-inhibitable elevation in resting metabolic rate (VO2) and is associated with various changes in brown adipose tissue (BAT) that have been taken as evidence for BAT as the effector of DIT. But direct evidence for participation of BAT in DIT has been lacking. By employing a nonocclusive cannula to sample the venous effluent of interscapular BAT (IBAT) for analysis of its O2 content and measuring tissue blood flow with microspheres, we accomplished direct determination (Fick principle) of the O2 consumption of BAT in conscious CAF rats. In comparison with normophagic controls fed chow, the CAF rats exhibited a 43% increase in metabolizable energy intake, reduced food efficiency, a 22% elevation in resting VO2 at 28 degrees C (thermoneutrality) or 24 degrees C (housing temperature), and characteristic changes in the properties of their BAT (e.g., increased mass, protein content and mitochondrial GDP binding). They also exhibited the greater metabolic response to exogenous noradrenaline characteristic of CAF rats and the near elimination by propranolol of their elevation in VO2. By the criterion of their elevated VO2, the CAF rats were exhibiting DIT at the time of the measurements of BAT blood flow and blood O2 levels. However, BAT O2 consumption was found to be no greater in the CAF rats than in the controls at either 28 or 24 degrees C. At 28 degrees C it accounted for less than 1% of whole body VO2; at 24 degrees C it increased to about 10% of overall VO2 in both diet groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Intra-specific variation in life history and mating strategies can lead to differences in energy allocation and expenditure in males and females. This may, in turn, explain large-scale evolutionary patterns. In this study, I investigated the effects of body mass, temperature and sex on resting metabolic rates (RMRs) in sexually mature male and female tarantulas (Aphonopelma anax (Chamberlin)), a species that exhibits extreme inter-sexual differences in life history after reaching sexual maturity. RMRs were measured as rates of CO(2) production in an open-flow respirometry system at 20, 25, 30 and 35 degrees C. These temperatures are typical to what this species experiences under natural conditions. In addition, a respiratory quotient (RQ) of 0.92 was calculated from rates of CO(2) production and O(2) consumption in a closed, constant-volume respirometry system. As expected, RMRs increased with increasing temperature and body mass. However, after adjusting for the influence of body mass, males had substantially higher metabolic rates than females at each temperature. This higher metabolic rate is proposed as an adaptive strategy to support higher energetic demands for males during their active, locomotory search for females during the mating season.  相似文献   

15.
Maximal and submaximal metabolic and cardiovascular measures and work capacity were studied in control (n = 7) and experimental (n = 9) subjects (S's) during arm work prior to and following 10 wk of interval arm training. These measures were oxygen uptake (VO2), minute ventilation (VE), heart rate (HR), respiratory exchange ratio (R), cardiac output (Q), stroke volume (SV), and arteriovenous oxygen difference ((a--v)O2 diff). In addition, maximal oxygen uptake (VO2max) was measured in both groups during treadmill running. Experimental S's showed significant increases (P less than 0.01) in peak VO2 (438 ml.min-1), max VE (17.7 l.min-1), max (a--v)O2 diff (20.8 ml.l-1), and work time (9.2 min) during arm ergometry, while maximum values of Q, SV, HR, and R remained unchanged. In addition, submaximal heart rates were significantly lower during arm ergometry after training. VO2max during treadmill running remained essentially unchanged. No changes in metabolic and physiological measures were noted for the controls after the 10-wk training period. The results support the concept of training specificity for VO2max, and indicate that the improvement in peak VO2 in arm ergometry reflects enhanced oxygen utilization due to an expanded (a--v)O2 diff.  相似文献   

16.
An instrument has been developed for the simultaneous measurement of carbon dioxide excretion (VCO2) and oxygen uptake (VO2). This instrument, the Nutrimeter, gives these breath-averaged measurements continuously without having to determine respiratory flow rate, perform timed spirometric gas collections, or determine absolute CO2 or O2 concentrations. It can be used on ventilated or nonventilated patients in long- and short-term studies. VO2 is determined via the replenishment technique. VCO2 is determined via a new technique, absorption-titration, described here. Bench test results of VCO2 measurements show a standard error of the estimate (SEE) +/- 0.591% of full scale (500 ml/min) and maximum single point error (MSPE) of +/- 3.54% over a 100--350 ml/min range. VO2 measurements show SEE +/- 0.518% of full scale (1,000 ml/min) and MSPE +/- 2.42% over a 100--450 ml/min range. In 31 human clinical trials the Nutrimeter was compared with the open-circuit spirometric collection and micro-Scholander analysis technique. VCO2 measurements show SEE +/- 2.208% and MSPE +/- 10.57% over 135--315 ml/min. VO2 measurements show SEE +/- 1.134% of full scale and MSPE +/- 9.54% over 170--360 ml/min. Response time is 60 s optimally for step changes in VO2 (0--90% of steady-state value), 90 s for VCO2.  相似文献   

17.
The objective of this study was to determine whether arterial PCO2 (PaCO2) decreases or remains unchanged from resting levels during mild to moderate steady-state exercise in the dog. To accomplish this, O2 consumption (VO2) arterial blood gases and acid-base status, arterial lactate concentration ([LA-]a), and rectal temperature (Tr) were measured in 27 chronically instrumented dogs at rest, during different levels of submaximal exercise, and during maximal exercise on a motor-driven treadmill. During mild exercise [35% of maximal O2 consumption (VO2 max)], PaCO2 decreased 5.3 +/- 0.4 Torr and resulted in a respiratory alkalosis (delta pHa = +0.029 +/- 0.005). Arterial PO2 (PaO2) increased 5.9 +/- 1.5 Torr and Tr increased 0.5 +/- 0.1 degree C. As the exercise levels progressed from mild to moderate exercise (64% of VO2 max) the magnitude of the hypocapnia and the resultant respiratory alkalosis remained unchanged as PaCO2 remained 5.9 +/- 0.7 Torr below and delta pHa remained 0.029 +/- 0.008 above resting values. When the exercise work rate was increased to elicit VO2 max (96 +/- 2 ml X kg-1 X min-1) the amount of hypocapnia again remained unchanged from submaximal exercise levels and PaCO2 remained 6.0 +/- 0.6 Torr below resting values; however, this response occurred despite continued increases in Tr (delta Tr = 1.7 +/- 0.1 degree C), significant increases in [LA-]a (delta [LA-]a = 2.5 +/- 0.4), and a resultant metabolic acidosis (delta pHa = -0.031 +/- 0.011). The dog, like other nonhuman vertebrates, responded to mild and moderate steady-state exercise with a significant hyperventilation and respiratory alkalosis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Many ectothermic vertebrates ingest very large meals at infrequent intervals. The digestive processes associated with these meals, often coupled with an extensive hypertrophy of the gastrointestinal organs, are energetically expensive and metabolic rate, therefore, increases substantially after feeding (specific dynamic action, SDA). Here, we review the cardio-respiratory consequences of SDA in amphibians and reptiles. For some snakes, the increased oxygen uptake during SDA is of similar magnitude to that of muscular exercise, and the two physiological states, therefore, exert similar and profound demands on oxygen transport by the cardiorespiratory systems. In several species, SDA is attended by increases in heart rate and overall systemic blood flows, but changes in blood flow distribution remain to be investigated. In snakes, the regulation of heart rate appears to involve a non-adrenergic-non-cholinergic mechanism, which may be a regulatory peptide released from the gastrointestinal system during digestion. Digestion is also associated with a net acid secretion to the stomach that causes an increase in plasma HCO3- concentration (the 'alkaline tide'). Experiments on chronically cannulated amphibians and reptiles, show that this metabolic alkalosis is countered by an increased P(CO2), so that the change in arterial pH is reduced. This respiratory compensation of arterial pH is accomplished through a reduction in ventilation relative to metabolism, but the estimated reductions in lung P(O2) are relatively small. The SDA response is also associated with haematological changes, but large interspecific differences exist. The studies on cardiorespiratory responses to digestion may allow for a further understanding of the physiological and structural constraints that limits the ability of reptiles and amphibians to sustain high metabolic rates.  相似文献   

19.
Although the concept of a metabolic rate is readily understood, actual measurement of metabolism has proved much more difficult. The numerous strategies for estimation of metabolic rate all result in an incomplete accounting. Respirometry or gas exchange is the most widely used approach but mostly ignores the anaerobic component. Here, we describe a readily-built and low cost direct heat calorimeter that may be coupled with standard respirometry equipment to provide a more complete portrait of metabolism. The device is sensitive and provides a predictable measurement of heat flow from an organism.  相似文献   

20.
Thirty-seven species of seaweeds including 10 Chlorophyta, 13 Phaeophyta, and 14 Rhodophyta collected from the coast of Nagasaki Prefecture, Japan, were screened for algicidal activity against the red-tide phytoplankton Heterosigma akashiwo. The green alga Ulva fasciata (Ulvaceae, Chlorophyta) showed the strongest algicidal activity among the seaweeds tested. Bioassay-guided fractionation of the methanol extract of U. fasciata led to isolation of three algicidal compounds whose structures were determined to be hexadeca-4,7,10,13-tetraenoic acid (HDTA), octadeca-6,9,12,15-tetraenoic acid (ODTA), and alpha-linolenic acid on the basis of spectroscopic information. These polyunsaturated fatty acids (PUFAs) showed potent algicidal activity against H. akashiwo (LC(50) 1.35 microg/ml, 0.83 microg/ml, and 1.13 microg/ml for HDTA, ODTA, and alpha-linolenic acid, respectively), and the result demonstrated the potential of these PUFAs for practical harmful algal bloom control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号