首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Very few selected species of primates are known to be capable of entering torpor. This exciting discovery means that the ability to enter a natural state of dormancy is an ancestral trait among primate...  相似文献   

3.
The ERK cascade     
Sequential activation of protein kinases within the mitogen-activated protein kinase (MAPK) cascades is a common mechanism of signal transduction in many cellular processes. Four such cascades have been elucidated thus far, and named according to their MAPK tier component as the ERK1/2, JNK, p38MAPK, and ERK5 cascades. These cascades cooperate in transmitting various extracellular signals, and thus control cellular processes such as proliferation, differentiation, development, stress response, and apoptosis. Here we describe the classic ERK1/2 cascade, and concentrate mainly on the properties of MEK1/2 and ERK1/2, including their mode of regulation and their role in various cellular processes and in oncogenesis. This cascade may serve as a prototype of the other MAPK cascades, and the study of this cascade is likely to contribute to the understanding of mitogenic and other processes in many cell lines and tissues.  相似文献   

4.
MAP kinase cascades in elicitor signal transduction   总被引:3,自引:0,他引:3  
 Protein kinases play important roles in elicitor signal transduction. In this article, I describe the current view of the role of mitogen-activated protein kinase (MAPK) cascades in elicitor signal transduction of plant cells based on our own research and recent developments in this field. In the past several years, it has become apparent that MAPK cascades play important roles in elicitor signal transduction in plants. Our early studies demonstrated the identification of p47 MAPK in tobacco as an elicitor-responsive protein kinase and possible involvement of p47 MAPK in elicitor signal transduction to induce defense responses, including defense gene expression and hypersensitive cell death. However, the molecular identity of p47 MAPK is still unclear. Recent important studies suggest that tobacco MAPK cascades that include SIPK, and/or WIPK, and NtMEK2, an upstream kinase for both SIPK and WIPK, have a crucial function in induction of defense responses and hypersensitive cell death. The orthologs of these protein kinases in Arabidopsis and alfalfa are also suggested to have similar functions. Furthermore, the identification of loss-of-function mutation in Arabidopsis reveals a negative regulatory role for putative MAPK cascades in plant defense mechanisms. Received: February 7, 2002 / Accepted: February 25, 2002  相似文献   

5.
Two signaling pathways, the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK)-dependent pathway and the nuclear factor-kappaB (NF-kappaB)-dependent pathway, have been known to mediate megakaryocytic differentiation of K562 cells induced by phorbol 12-myristate 13-acetate (PMA). In this study, we examined whether 90-kDa ribosomal S6 kinase (RSK), known as a substrate of ERK/MAPK and a signal-inducible IkappaBalpha kinase, would link two pathways during the differentiation. RSK1 was activated in a time- and dose-dependent manner during the PMA-induced differentiation. Overexpression of wild-type or dominant inhibitory mutant (D205N) of RSK1 enhanced or suppressed PMA-stimulated NF-kappaB activation and megakaryocytic differentiation as shown by morphology, nonspecific esterase activity, and expression of the CD41 megakaryocytic marker, respectively. In addition, overexpression of the dominant inhibitory mutant (S32A/S36A) of IkappaBalpha inhibited PMA-stimulated and RSK1-enhanced megakaryocytic differentiation, indicating that NF-kappaB mediates a signal for megakaryocytic differentiation downstream of RSK1. PMA-stimulated activation of ERK/MAPK, RSK1, and NF-kappaB and the PMA-induced megakaryocytic differentiation were prevented by pretreatment with PD98059, a specific inhibitor of the mitogen-activated ERK kinase (MEK). Therefore, these results demonstrate that the sequential ERK/RSK1/NF-kappaB pathway mediates PMA-stimulated megakaryocytic differentiation of K562 cells.  相似文献   

6.
Growth factors and their receptors regulate development of many organs through activation of multiple intracellular signaling cascades including a mitogen‐activated protein kinase (MAPK). Extracellular regulated kinases (ERK)1/2, classic MAPK family members, are expressed in fetal mouse submandibular glands (SMG), and stimulate branching morphogenesis. ERK5, also called big mitogen‐activated protein kinase 1, was recently found as a new member of MAPK super family, and its biological roles are still largely unknown. In this study, we investigated the expression and function of ERK5 in developing fetal mouse SMGs. Western blotting analysis showed that the expression pattern of ERK5 was different from the pattern of ERK1/2 in developing fetal SMGs. Both ERK1/2 and ERK5 were phosphorylated after exposure to ligands of the ErbB family of receptor tyrosine kinases (RTKs). Phosphorylation of ERK1/2 was strongly induced by epidermal growth factor (EGF) in SMG rudiments at embryonic day 14 (E14), E16 and E18. However, ERK5 phosphorylation induced by EGF was clearly observed at E14 and E16, but not at E18. Branching morphogenesis of cultured E13 SMG rudiments was strongly suppressed by administration of U0126, an inhibitor for ERK1/2 activation, whereas the phosphorylation of ERK5 was not inhibited by U0126. BIX02188, a specific inhibitor for ERK5 activation, also inhibited branching morphogenesis in cultured SMG rudiments. These results show that EGF‐responsive ERK5 is expressed in developing fetal mouse SMG, and suggest that both ERK1/2 and ERK5 signaling cascades might play an important role in the regulation of branching morphogenesis.  相似文献   

7.
Lin HY  Tang HY  Shih A  Keating T  Cao G  Davis PJ  Davis FB 《Steroids》2007,72(2):180-187
Thyroid hormone (l-thyroxine, T(4), or 3,5,3'-triiodo-l-thyronine, T(3)) treatment of human papillary and follicular thyroid cancer cell lines resulted in enhanced cell proliferation, measured by proliferating cell nuclear antigen (PCNA). Thyroid hormone also induced activation of the Ras/MAPK (ERK1/2) signal transduction pathway. ERK1/2 activation and cell proliferation caused by thyroid hormone were blocked by an iodothyronine analogue, tetraiodothyroacetic acid (tetrac), that inhibits binding of iodothyronines to the cell surface receptor for thyroid hormone on integrin alphaVbeta3. A MAPK cascade inhibitor at MEK, PD 98059, also blocked hormone-induced cell proliferation. We then assessed the possibility that thyroid hormone is anti-apoptotic. We first established that resveratrol (10 microM), a pro-apoptotic agent in other cancer cells, induced p53-dependent apoptosis and c-fos, c-jun and p21 gene expression in both papillary and follicular thyroid cancer cells. Induction of apoptosis by the stilbene required Ser-15 phosphorylation of p53. Resveratrol-induced gene expression and apoptosis were inhibited more than 50% by physiological concentrations of T(4). T(4) activated MAPK in the absence of resveratrol, caused minimal Ser-15 phosphorylation of p53 and did not affect c-fos, c-jun and p21 mRNA abundance. Thus, plasma membrane-initiated activation of the MAPK cascade by thyroid hormone promotes papillary and follicular thyroid cancer cell proliferation in vitro.  相似文献   

8.
9.
10.
How senile plaques and neurofibrillary tangles are linked represents a major gap in our understanding of the pathophysiology of Alzheimer's disease (AD). We have previously shown that the addition of fibrillar beta-amyloid (Abeta) to mature hippocampal neurons results in progressive neuritic degeneration accompanied by the enhanced phosphorylation of adult tau isoforms. In the present study, we sought to obtain more direct evidence of the signal transduction pathway(s) activated by fibrillar Abeta leading to tau phosphorylation and the generation of dystrophic neurites. Our results indicated that fibrillar Abeta induced the progressive and sustained activation of the mitogen-activated protein kinase (MAPK) in mature hippocampal neurons. On the other hand, the specific inhibition of the MAPK signal transduction pathway by means of PD98059, a MAPK kinase (MEK) specific inhibitor, prevented the phosphorylation of tau (at Ser199/Ser202) induced by fibrillar Abeta. In addition, the inhibition of MAPK activation partially prevented neurite degeneration. Taken collectively, our results suggest that the sustained activation of the MAPK signal transduction pathway induced by fibrillar Abeta may lead to the abnormal phosphorylation of tau and the neuritic degeneration observed in AD.  相似文献   

11.
Extracellular signal-regulated kinases such as ERK1 [p44 mitogen-activated protein kinase (MAPK)] and ERK2 (p42 MAPK) are activated in the CNS under physiological and pathological conditions such as ischemia and epilepsy. Here, we studied the activation state of ERK1/2 in rat hippocampal slices during application of the K(+) channel blocker 4-aminopyridine (4AP, 50 micro m), a procedure that enhances synaptic transmission and leads to the appearance of epileptiform activity. Hippocampal slices superfused with 4AP-containing medium exhibited a marked activation of ERK1/2 phosphorylation that peaked within about 20 min. These effects were not accompanied by changes in the activation state of c-Jun N-terminal kinase (JNK), another member of the MAP kinase superfamily. 4AP-induced ERK1/2 activation was inhibited by the voltage-gated Na(+) channel blocker tetrodotoxin (1 micro m). We also found that application of the ERK pathway inhibitors U0126 (50 micro m) or PD98059 (100 micro m) markedly reduced 4AP-induced epileptiform synchronization, thus abolishing ictal discharges in the CA3 area. The effects induced by U0126 or PD98059 were not associated with changes in the amplitude and latency of the field potentials recorded in the CA3 area following electrical stimuli delivered in the dentate hylus. These data demonstrate that activation of ERK1/2 accompanies the appearance of epileptiform activity induced by 4AP and suggest a cause-effect relationship between the ERK pathway and epileptiform synchronization.  相似文献   

12.
13.
Kuang E  Tang Q  Maul GG  Zhu F 《Journal of virology》2008,82(4):1838-1850
The extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway is essential for infection by a variety of viruses. The p90 ribosomal S6 kinases (RSKs) are direct substrates of ERK and functional mediators of ERK MAPK signaling, but their roles in viral infection have never been examined. We demonstrate that ORF45 of Kaposi's sarcoma-associated herpesvirus (KSHV) interacts with RSK1 and RSK2 and strongly stimulates their kinase activities. The activation of RSK by ORF45 is correlated with ERK activation but does not require MEK. We further demonstrate that RSK1/RSK2 is activated during KSHV primary infection and reactivation from latency; a subset of RSK1/RSK2 is present in the viral replication compartment in the nucleus. Depletion of RSK1/RSK2 by small interfering RNA or the specific inhibitor BI-D1870 suppresses KSHV lytic gene expression and progeny virion production, suggesting an essential role of RSK1/RSK2 in KSHV lytic replication.  相似文献   

14.
The p38 mitogen-activated protein kinase (MAPK) cascade transduces multiple extracellular signals from cell surface to nucleus and is employed in cellular responses to cellular stresses and apoptotic regulation. The involvement of the p38 MAPK cascade in opioid- and opioid receptor-like receptor-1 (ORL1) receptor-mediated signal transduction was examined in NG108-15 neuroblastoma x glioma hybrid cells. Stimulation of endogenous delta-opioid receptor (DOR) or ORL1 resulted in activation of p38 MAPK. It also induced the activation of extracellular signal-regulated kinases (ERKs), another member of the MAPK family, with slower kinetics. Activation of p38 MAPK was abolished by selective antagonists of DOR or ORL1, pretreatment with pertussis toxin, or SB203580, a specific inhibitor of p38 MAPK. Inhibition of p38 MAPK had no significant effect on opioid-induced ERK activation, indicating that p38 MAPK activity was not required for ERK activation, though its stimulation preceded ERK activation. Inhibition of protein kinase A (PKA) strongly diminished p38 activation mediated by DOR or ORL1 but had no significant effect on ERK activation, and protein kinase C (PKC) inhibitors potentiated stimulation of p38 while inhibiting activation of ERKs. Taken together, our results provide the first evidence for coupling of DOR and ORL1 to the p38 MAPK cascade and clearly demonstrate that receptor-mediated activation of p38 MAPK both involves PKA and is negatively regulated by PKC.  相似文献   

15.
The primary endpoint of signalling through the canonical Raf–MEK–ERK MAP kinase cascade is ERK activation. Here we report a novel signalling outcome for this pathway. Activation of the MAP kinase pathway by growth factors or phorbol esters during G2 phase results in only transient activations of ERK and p90RSK, then suppression to below control levels. A small peak of ERK and p90RSK activation in early G2 phase cells was identified, and inhibition of this delayed entry into mitosis. The previously identified, proteolytically cleaved form of MEK1 termed tMEK (truncated MEK1), is also induced with G2 phase MAPK pathway activation. We demonstrate that addition of recombinant mutants of MEK1 with an N-terminal truncation similar to that of tMEK also inhibited ERK and p90RSK activations and delayed progression into mitosis. Only catalytically inactive forms of tMEK were capable of these effects, but surprisingly, phosphorylation on the activating Ser218/222 sites was also required. A lack of MEK1 or ability to accumulate tMEK resulted in the absence of the feedback inhibition of ERK and p90RSK activations. tMEK is a novel output from the canonical MAP kinase signalling pathway, acting in a MAPK signalling-regulated dominant negative manner to inhibit ERK and p90RSK activations, acting as a dampening mechanism to reduce the magnitude or duration of MAPK pathway signalling in G2/M phase.  相似文献   

16.
17.
Signal transduction is a complex protein signaling process with a rich network of multifunctional interactions that occur in a non‐linear fashion. Mitogen‐activated protein kinase (MAPK) signal transduction pathways regulate diverse cellular processes ranging from proliferation and differentiation to apoptosis. In mammals, out of five, there are three well characterized subfamilies of MAPKs ‐ ERKs (Extracellular signal‐regulated kinases), JNKs (c‐Jun N‐terminal kinases), and P38 kinases, and their activators, are implicated in human diseases and are targets for drug development. Kinase cascades in MAPK pathways mediate the sensing and processing of stimuli. To understand how cells makes decisions, the dynamic interactions of components of signaling cascades are important rather than just creating static maps. Based on enzyme kinetic reactions, we have developed a mathematical model to analyze the impact of the cross‐talks between JNK and P38 kinase cascades. Cross‐talks between JNK and P38 kinase cascades influence the activities of P38 kinases. Responses of the signals should be studied for network of kinase cascades by considering cross‐talks.  相似文献   

18.
Mitogen‐activated protein kinase (MAPK)/extracellular signal‐regulated kinase (ERK) signalling is implicated in initiation of embryonic stem (ES) cell differentiation. The pathway is subject to complex feedback regulation. Here, we examined the ERK‐responsive phosphoproteome in ES cells and identified the negative regulator RSK1 as a prominent target. We used CRISPR/Cas9 to create combinatorial mutations in RSK family genes. Genotypes that included homozygous null mutations in Rps6ka1, encoding RSK1, resulted in elevated ERK phosphorylation. These RSK‐depleted ES cells exhibit altered kinetics of transition into differentiation, with accelerated downregulation of naïve pluripotency factors, precocious expression of transitional epiblast markers and early onset of lineage specification. We further show that chemical inhibition of RSK increases ERK phosphorylation and expedites ES cell transition without compromising multilineage potential. These findings demonstrate that the ERK activation profile influences the dynamics of pluripotency progression and highlight the role of signalling feedback in temporal control of cell state transitions.  相似文献   

19.
Effects of MAP kinase cascade inhibitors on the MKK5/ERK5 pathway   总被引:24,自引:0,他引:24  
Mody N  Leitch J  Armstrong C  Dixon J  Cohen P 《FEBS letters》2001,502(1-2):21-24
Antibodies that recognise the active phosphorylated forms of mitogen-activated protein kinase (MAPK) kinase 5 (MKK5) and extracellular signal-regulated kinase 5 (ERK5) in untransfected cells have been exploited to show that the epidermal growth factor (EGF)-induced activation of MKK5 and ERK5 occurs subsequent to the activation of ERK1 and ERK2 in HeLa cells. The drugs U0126 and PD184352, which prevent the activation of MKK1 (and hence the activation of ERK1/ERK2), also prevent the activation of MKK5, although higher concentrations are required. Our studies define physiological targets of the MKK5/ERK5 pathway as proteins whose phosphorylation is largely prevented by 10 microM PD184352, but unaffected by 2 microM PD184352. Surprisingly, 2 microM PD184352 prolongs the activation of MKK5 and ERK5 induced by EGF or H(2)O(2), indicating negative control of the MKK5/ERK5 pathway by the classical MAPK cascade. Our results also indicate that ERK5 is not a significant activator of MAPK-activated protein kinase-1/RSK in HeLa cells.  相似文献   

20.
Mitogen-activated protein kinases (MAPKs) appear to be ubiquitously involved in signal transduction during eukaryotic responses to extracellular stimuli. In plants, no heat shock-activated MAPK has so far been reported. Also, whereas cold activates specific plant MAPKs such as alfalfa SAMK, mechanisms of such activation are unknown. Here, we report a heat shock-activated MAPK (HAMK) immunologically related to ERK (Extracellular signal-Regulated Kinase) superfamily of protein kinases. Molecular mechanisms of heat-activation of HAMK and cold-activation of SAMK were investigated. We show that cold-activation of SAMK requires membrane rigidification, whereas heat-activation of HAMK occurs through membrane fluidization. The temperature stress- and membrane structure-dependent activation of both SAMK and HAMK is mimicked at 25 degrees C by destabilizers of microfilaments and microtubules, latrunculin B and oryzalin, respectively; but is blocked by jasplakinolide, a stabilizer of actin microfilaments. Activation of SAMK or HAMK by temperature, chemically modulated membrane fluidity, or by cytoskeleton destabilizers is inhibited by blocking the influx of extracellular calcium. Activation of SAMK or HAMK is also prevented by an antagonist of calcium-dependent protein kinases (CDPKs). In summary, our data indicate that cold and heat are sensed by structural changes in the plasma membrane that translates the signal via cytoskeleton, Ca2+ fluxes and CDPKs into the activation of distinct MAPK cascades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号