首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
DNA loss and evolution of genome size in Drosophila   总被引:8,自引:0,他引:8  
Petrov DA 《Genetica》2002,115(1):81-91
  相似文献   

2.
Insertions, deletions, and inversions in the chloroplast genome of higher plants have been shown to be extremely useful for resolving phylogenetic relationships both between closely related taxa and among more basal lineages. Introns and intergenic spacers from the chloroplast genome are now increasingly used for phylogenetic and population genetic studies of populations from a single species, and it is therefore interesting to know whether indels can provide useful data and hence increase the power of intraspecific studies. Here, we show that indels in three cpDNA intergenic spacers and one cpDNA intron for two species of Silene evolve at slightly higher rates than base pair substitutions. Repeat indels appear to have the highest rate of evolution and are thus more prone to homoplasy. We show that coded indel data have high information content for phylogenetic analysis, and indels thus provide useful information to infer phylogenetic relationships at the intraspecific level.  相似文献   

3.
Transposable elements and the evolution of genome size in eukaryotes   总被引:30,自引:2,他引:30  
Kidwell MG 《Genetica》2002,115(1):49-63
It is generally accepted that the wide variation in genome size observed among eukaryotic species is more closely correlated with the amount of repetitive DNA than with the number of coding genes. Major types of repetitive DNA include transposable elements, satellite DNAs, simple sequences and tandem repeats, but reliable estimates of the relative contributions of these various types to total genome size have been hard to obtain. With the advent of genome sequencing, such information is starting to become available, but no firm conclusions can yet be made from the limited data currently available. Here, the ways in which transposable elements contribute both directly and indirectly to genome size variation are explored. Limited evidence is provided to support the existence of an approximately linear relationship between total transposable element DNA and genome size. Copy numbers per family are low and globally constrained in small genomes, but vary widely in large genomes. Thus, the partial release of transposable element copy number constraints appears to be a major characteristic of large genomes.  相似文献   

4.
The evolution of migration in birds has fascinated biologists for centuries. In this study, we performed phylogenetic-based analyses of Catharus thrushes, a model genus in the study of avian migration, and their close relatives. For these analyses, we used both mitochondrial and nuclear genes, and the resulting phylogenies were used to trace migratory traits and biogeographic patterns. Our results provide the first robust assessment of relationships within Catharus and relatives and indicate that both mitochondrial and autosomal genes contribute to overall support of the phylogeny. Measures of phylogenetic informativeness indicated that mitochondrial genes provided more signal within Catharus than did nuclear genes, whereas nuclear loci provided more signal for relationships between Catharus and close relatives than did mitochondrial genes. Insertion and deletion events also contributed important support across the phylogeny. Across all taxa included in the study, and for Catharus, possession of long-distance migration is reconstructed as the ancestral condition, and a North American (north of Mexico) ancestral area is inferred. Within Catharus, sedentary behaviour evolved after the first speciation event in the genus and is geographically and temporally correlated with Central American distributions and the final closure of the Central American Seaway. Migratory behaviour subsequently evolved twice in Catharus and is geographically and temporally correlated with a recolonization of North America in the late Pleistocene. By temporally linking speciation events with changes in migratory condition and events in Earth history, we are able to show support for several competing hypotheses relating to the geographic origin of migration.  相似文献   

5.
Most angiosperms possess small genomes (mode 1C = 0.6 pg, median 1C = 2.9 pg). Those with truly enormous genomes (i.e. > or = 35 pg) are phylogenetically restricted to a few families and include Liliaceae - with species possessing some of the largest genomes so far reported for any plant as well as including species with much smaller genomes. To gain insights into when and where genome size expansion took place during the evolution of Liliaceae and the mode and tempo of this change, data for 78 species were superimposed onto a phylogenetic tree and analysed. Results suggest that genome size in Liliaceae followed a punctuated rather than gradual mode of evolution and that most of the diversification evolved recently rather than early in the evolution of the family. We consider that the large genome sizes of Liliaceae may have emerged passively rather than being driven primarily by selection.  相似文献   

6.
We assessed genome size variation by flow cytometry within and among 31 species of nine families of African and South American hystricognath rodents. Interspecific variation was extensive and genome size was relatively high among the South American radiation whereas only moderate variation and smaller estimates of genome size were observed in the African counterparts. The largest genome size, indicating tetraploidy was recorded in the South American octodontid, Tympanoctomys barrerae (16.8 pg DNA). This quantum shift in DNA content represents a novel mechanism of genome evolution in mammals. As expected in polyploid organisms, varying nucleotypic effects were observed in the dimensions of the sperm cells and lymphocytes of T. barrerae. The role of control mechanisms that influence cell dimensions in polyploid organisms is discussed.  相似文献   

7.
Correlated evolution of genome size and seed mass   总被引:2,自引:0,他引:2  
Previous investigators have identified strong positive relationships between genome size and seed mass within species, and across species from the same genus and family. Here, we make the first broad-scale quantification of this relationship, using data for 1222 species, from 139 families and 48 orders. We analyzed the relationship between genome size and seed mass using a statistical framework that included four different tests. A quadratic relationship between genome size and seed mass appeared to be driven by the large genome/seed mass gymnosperms and the many small genome size/large seed mass angiosperms. Very small seeds were never associated with very large genomes, possibly indicating a developmental constraint. Independent contrast results showed that divergences in genome size were positively correlated with divergences in seed mass. Divergences in seed mass have been more closely correlated with divergences in genome size than with divergences in other morphological and ecological variables. Plant growth form is the only variable examined thus far that explains a greater proportion of variation in seed mass than does genome size.  相似文献   

8.
Evolution of genome size in Brassicaceae   总被引:25,自引:0,他引:25  
BACKGROUND AND AIMS: Brassicaceae, with nearly 340 genera and more than 3350 species, anchors the low range of angiosperm genome sizes. The relatively narrow range of DNA content (0.16 pg < 1C < 1.95 pg) was maintained in spite of extensive chromosomal change. The aim of this study was to erect a cytological and molecular phylogenetic framework for a selected subset of the Brassicacae, and use this as a template to examine genome size evolution in Brassicaceae. METHODS: DNA contents were determined by flow cytometry and chromosomes were counted for 34 species of the family Brassicaceae and for ten Arabidopsis thaliana ecotypes. The amplified and sequenced ITS region for 23 taxa (plus six other taxa with known ITS sequences) were aligned and used to infer evolutionary relationship by parsimony analysis. KEY RESULTS: DNA content in the species studied ranged over 8-fold (1C = 0.16-1.31 pg), and 4.4-fold (1C = 0.16-0.71 pg) excluding allotetraploid Brassica species. The 1C DNA contents of ten Arabidopsis thaliana ecotypes showed little variation, ranging from 0.16 pg to 0.17 pg. CONCLUSIONS: The tree roots at an ancestral genome size of approximately 1x = 0.2 pg. Arabidopsis thaliana (1C = 0.16 pg; approximately 157 Mbp) has the smallest genome size in Brassicaceae studied here and apparently represents an evolutionary decrease in genome size. Two other branches that represent probable evolutionary decreases in genome size terminate in Lepidium virginicum and Brassica rapa. Branches in the phylogenetic tree that represent probable evolutionary increases in genome size terminate in Arabidopsis halleri, A. lyrata, Arabis hirsuta, Capsella rubella, Caulanthus heterophyllus, Crucihimalaya, Lepidium sativum, Sisymbrium and Thlaspi arvense. Branches within one clade containing Brassica were identified that represent two ancient ploidy events (2x to 4x and 4x to 6x) that were predicted from published comparative mapping studies.  相似文献   

9.
Nucleotide substitutions, insertions, and deletions constitute the principal molecular mechanisms generating genetic variation on small length scales. In contrast to substitutions, the nature of short DNA insertions and deletions (indels) is far less understood. With the recent availability of whole-genome multiple alignments between human and other primates, detailed investigations on indel characteristics and origin have come within reach. Here, we show that the majority of short (1-100 bp) DNA insertions in the human lineage are tandem duplications of directly adjacent sequence segments with conserved polarity. Indels in microsatellites comprise only a small fraction. The underlying molecular processes generating indels do not necessarily rely on the presence of preexisting duplicates, as would be expected for unequal crossing over, as well as replication slippage. Instead, our findings point toward a mechanism that preferentially occurs in the male germline and is not recombination-mediated. Surprisingly, nonframeshifting tandem duplications and deletions in coding regions still occur at approximately 50% of their genomic background rates. As is already well established in the context of gene and segmental duplications, our results demonstrate that duplications are also likely to constitute the predominant process for rapid generation of new genetic material and function on smaller scales.  相似文献   

10.
Plant DNA flow cytometry and estimation of nuclear genome size   总被引:25,自引:0,他引:25  
BACKGROUND: DNA flow cytometry describes the use of flow cytometry for estimation of DNA quantity in cell nuclei. The method involves preparation of aqueous suspensions of intact nuclei whose DNA is stained using a DNA fluorochrome. The nuclei are classified according to their relative fluorescence intensity or DNA content. Because the sample preparation and analysis is convenient and rapid, DNA flow cytometry has become a popular method for ploidy screening, detection of mixoploidy and aneuploidy, cell cycle analysis, assessment of the degree of polysomaty, determination of reproductive pathway, and estimation of absolute DNA amount or genome size. While the former applications are relatively straightforward, estimation of absolute DNA amount requires special attention to possible errors in sample preparation and analysis. SCOPE: The article reviews current procedures for estimation of absolute DNA amounts in plants using flow cytometry, with special emphasis on preparation of nuclei suspensions, stoichiometric DNA staining and the use of DNA reference standards. In addition, methodological pitfalls encountered in estimation of intraspecific variation in genome size are discussed as well as problems linked to the use of DNA flow cytometry for fieldwork. CONCLUSIONS: Reliable estimation of absolute DNA amounts in plants using flow cytometry is not a trivial task. Although several well-proven protocols are available and some factors controlling the precision and reproducibility have been identified, several problems persist: (1) the need for fresh tissues complicates the transfer of samples from field to the laboratory and/or their storage; (2) the role of cytosolic compounds interfering with quantitative DNA staining is not well understood; and (3) the use of a set of internationally agreed DNA reference standards still remains an unrealized goal.  相似文献   

11.
BACKGROUND AND AIMS: We tested whether the local differences in genome size recorded earlier in the wild barley, Hordeum spontaneum, at 'Evolution Canyon', Mount Carmel, Israel, can also be found in other organisms. As a model species for our test we chose the evergreen carob tree, Ceratonia siliqua. METHODS: Genome size was measured by means of DAPI flow cytometry. KEY RESULTS: In adults, significantly more DNA was recorded in trees growing on the more illuminated, warmer, drier, microclimatically more fluctuating 'African' south-facing slope than in trees on the opposite, less illuminated, cooler and more humid, 'European' north-facing slope in spite of an interslope distance of only 100 m at the canyon bottom and 400 m at the top. The amount of DNA was significantly negatively correlated with leaf length and tree circumference. In seedlings, interslope differences in the amount of genome DNA were not found. In addition, the first cases of triploidy and tetraploidy were found in C. siliqua. CONCLUSIONS: The data on C. siliqua at 'Evolution Canyon' showed that local variability in the C-value exists in this species and that ecological stress might be a strong evolutionary driving force in shaping the amount of DNA.  相似文献   

12.
Crucifers (Brassicaceae, Cruciferae) are a large family comprisingsome 338 genera and c. 3,700 species. The family includes importantcrops as well as several model species in various fields ofplant research. This paper reports new genome size (GS) datafor more than 100 cruciferous species in addition to previouslypublished C-values (the DNA amount in the unreplicated gameticnuclei) to give a data set comprising 185 Brassicaceae taxa,including all but 1 of the 25 tribes currently recognized. Evolutionof GS was analyzed within a phylogenetic framework based ongene trees built from five data sets (matK, chs, adh, trnLF,and ITS). Despite the 16.2-fold variation across the family,most Brassicaceae species are characterized by very small genomeswith a mean 1C-value of 0.63 pg. The ancestral genome size (ancGS)for Brassicaceae was reconstructed as anc1C = 0.50 pg. Approximately50% of crucifer taxa analyzed showed a decrease in GS comparedwith the ancGS. The remaining species showed an increase inGS although this was generally moderate, with significant increasesin C-value found only in the tribes Anchonieae and Physarieae.Using statistical approaches to analyze GS, evolutionary gainsor losses in GS were seen to have accumulated disproportionatelyfaster within longer branches. However, we also found that GShas not changed substantially through time and most likely evolvespassively (i.e., a tempo that cannot be distinguished betweenneutral evolution and weak forms of selection). The data revealan apparent paradox between the narrow range of small GSs overlong evolutionary time periods despite evidence of dynamic genomicprocesses that have the potential to lead to genome obesity(e.g., transposable element amplification and polyploidy). Toresolve this, it is suggested that mechanisms to suppress amplificationand to eliminate amplified DNA must be active in Brassicaceaealthough their control and mode of operation are still poorlyunderstood.  相似文献   

13.
Angiosperms represent one of the key examples of evolutionary success, and their diversity dwarfs other land plants; this success has been linked, in part, to genome size and phenomena such as whole genome duplication events. However, while angiosperms exhibit a remarkable breadth of genome size, evidence linking overall genome size to diversity is equivocal, at best. Here, we show that the rates of speciation and genome size evolution are tightly correlated across land plants, and angiosperms show the highest rates for both, whereas very slow rates are seen in their comparatively species-poor sister group, the gymnosperms. No evidence is found linking overall genome size and rates of speciation. Within angiosperms, both the monocots and eudicots show the highest rates of speciation and genome size evolution, and these data suggest a potential explanation for the megadiversity of angiosperms. It is difficult to associate high rates of diversification with different types of polyploidy, but it is likely that high rates of evolution correlate with a smaller genome size after genome duplications. The diversity of angiosperms may, in part, be due to an ability to increase evolvability by benefiting from whole genome duplications, transposable elements and general genome plasticity.  相似文献   

14.
Genomes vary greatly in size and complexity, and identifying the evolutionary forces that have generated this variation remains a major goal in biology. A controversial proposal is that most changes in genome size are initially deleterious and therefore are linked to episodes of decrease in effective population sizes. Support for this hypothesis comes from large-scale comparative analyses, but vanishes when phylogenetic nonindependence is taken into account. Another approach to test this hypothesis involves analyzing sequence evolution among clades where duplications have recently fixed. Here we show that episodes of fixation of duplications in mitochondrial genomes of the gecko Heteronotia binoei (two independent clades) and of mantellid frogs (five distinct branches) coincide with reductions in the ability of selection to purge slightly deleterious mutations. Our results support the idea that genome complexity can arise through nonadaptive processes in tetrapods.  相似文献   

15.
MethodsNuclear genome sizes were measured from cultivated plant material for a comprehensive sampling of taxa, including nearly half of all species of Genlisea and representing all major lineages. Flow cytometric measurements were conducted in parallel in two laboratories in order to compare the consistency of different methods and controls. Chromosome counts were performed for the majority of taxa, comparing different staining techniques for the ultrasmall chromosomes.ConclusionsGenlisea is an ideal candidate model organism for the understanding of genome reduction as the genus includes species with both relatively large (∼1700 Mbp) and ultrasmall (∼61 Mbp) genomes. This comparative, phylogeny-based analysis of genome sizes and karyotypes in Genlisea provides essential data for selection of suitable species for comparative whole-genome analyses, as well as for further studies on both the molecular and cytogenetic basis of genome reduction in plants.  相似文献   

16.
17.
Amphibians have featured prominently in discussions of the C-value enigma, the still-unresolved puzzle regarding the evolution of genome size. Their wide range in nuclear DNA contents and diverse ecological and developmental lifestyles make them excellent subjects for addressing the key elements of the C-value enigma. However, in some cases the importance of work on amphibians appears to be overstated. This is especially true of claims that patterns of variation in salamanders support a particular theory of genome size evolution to the exclusion of others. This study provides a critical re-examination of some of these claims, as well as an investigation of the relationships between genome size, cell and nuclear size, and metabolism in amphibians. The results of these analyses, combined with an overview of previous amphibian genome size literature, strongly indicate the need for a pluralistic approach to the C-value enigma. In particular, it must be recognized that evolutionary forces operating and interacting at several levels of biological organization (of which the genome itself is one) are responsible for the observed patterns in amphibian genome size distributions.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 79 , 329–339.  相似文献   

18.
In spite of the large number of studies on genome size, studies comparing genome size and growth‐related traits across a wider range of species from the same habitat, taking into account species phylogeny, are largely missing. I estimated the relationship between genome size and different seed and seedling traits in perennial herbs occurring in dry calcareous grasslands in northern Bohemia, Czech Republic. There was no relationship between genome size and plant traits in simple regression analyses, but several strong relationships emerged in analyses based on pairwise phylogenetically independent contrasts. There was a significant relationship between monoploid genome size and production of above‐ground biomass, seedling establishment success and seed weight and between holoploid genome size and seed dormancy. Because the results are based on phylogenetically independent contrasts over a range of species from the same type of habitat, they allow me to conclude that these patterns were not because of species group or habitat type, but really show a correlation with genome size. In contrast to previous studies, I found a higher number of relationships with monoploid than with holoploid genome size. This may be because the traits observed in this study are directly related to plant growth and thus to life‐cycle time, which is determined by monoploid genome size. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160 , 290–298.  相似文献   

19.
The genomes of barley and wheat, two of the world's most important crops, are very large and complex due to their high content of repetitive DNA. In order to obtain a whole-genome sequence sample, we performed two runs of 454 (GS20) sequencing on genomic DNA of barley cv. Morex, which yielded approximately 1% of a haploid genome equivalent. Almost 60% of the sequences comprised known transposable element (TE) families, and another 9% represented novel repetitive sequences. We also discovered high amounts of low-complexity DNA and non-genic low-copy DNA. We identified almost 2300 protein coding gene sequences and more than 660 putative conserved non-coding sequences. Comparison of the 454 reads with previously published genomic sequences suggested that TE families are distributed unequally along chromosomes. This was confirmed by in situ hybridizations of selected TEs. A comparison of these data for the barley genome with a large sample of publicly available wheat sequences showed that several TE families that are highly abundant in wheat are absent from the barley genome. This finding implies that the TE composition of their genomes differs dramatically, despite their very similar genome size and their close phylogenetic relationship.  相似文献   

20.
Hybridization and polyploidy can induce rapid genomic changes, including the gain or loss of DNA, but the magnitude and timing of such changes are not well understood. The homoploid hybrid system in Helianthus (three hybrid-derived species and their two parents) provides an opportunity to examine the link between hybridization and genome size changes in a replicated fashion. Flow cytometry was used to estimate the nuclear DNA content in multiple populations of three homoploid hybrid Helianthus species (Helianthus anomalus, Helianthus deserticola, and Helianthus paradoxus), the parental species (Helianthus annuus and Helianthus petiolaris), synthetic hybrids, and natural hybrid-zone populations. Results confirm that hybrid-derived species have 50% more nuclear DNA than the parental species. Despite multiple origins, hybrid species were largely consistent in their DNA content across populations, although H. deserticola showed significant interpopulation differences. First- and sixth-generation synthetic hybrids and hybrid-zone plants did not show an increase from parental DNA content. First-generation hybrids differed in DNA content according to the maternal parent. In summary, hybridization by itself does not lead to increased nuclear DNA content in Helianthus, and the evolutionary forces responsible for the repeated increases in DNA content seen in the hybrid-derived species remain mysterious.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号