共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of amino acid substitutions upon the behavior of poly(Leu)-rich alpha-helices inserted into model membrane vesicles were investigated. One or two consecutive Leu residues in the hydrophobic core of the helix were substituted with A, F, G, S, D, K, H, P, GG, SS, PG, PP, KK, or DD residues. A Trp placed at the center of the sequence allowed assessment of peptide behavior via fluorescence emission lambda(max) and dual quenching analysis of Trp depth [Caputo, G. A., and London, E. (2003) Biochemistry 42, 3265-3274]. In vesicles composed of dioleoylphosphatidylcholine (DOPC), all of the peptides with single substitutions adopted a transmembrane (TM) state. Experiments were also performed in thicker bilayers composed of dierucoylphosphatidylcholine (DEuPC). In DEuPC vesicles TM states were destabilized by mismatch between helix length and bilayer thickness. Nevertheless, in DEuPC vesicles TM states were still prevalent for peptides with single substitutions, although less so for peptides with P, K, H, or D substitutions. In contrast to single substitutions, certain consecutive double substitutions strongly interfered with formation of TM states. In both DOPC and DEuPC vesicles DD and KK substitutions abolished the normal TM state, but GG and SS substitutions had little effect. In even wider bilayers, a SS substitution reduced the formation of a TM state. A peptide with a PP substitution maintained the TM state in DOPC vesicles, but in DEuPC vesicles the level of formation of the TM state was significantly reduced. Upon disruption of normal TM insertion peptides moved close to the bilayer surface, with the exception of the KK-substituted peptide in DOPC vesicles, which formed a truncated TM segment. These studies begin to provide a detailed relationship between sequence and the stability of TM insertion and show that the influence of insertion-destabilizing residues upon hydrophobic helices can be strongly modulated by properties such as mismatch. For certain helix-forming hydrophobic sequences, sensitivity to lipid structure may be sufficient to induce large conformational changes in vivo. 相似文献
2.
3.
The study shows that in coiled-coil proteins the distribution of hydrophobic side-chain rotamers in a- and d-positions of alpha-helices is strongly dependent on the mutual arrangement of the a-helices. In coiled-coil dimers, where a-helices are packed "face-to-face", most side chains occupying a-positions adopt t-rotamers, and those in d-positions adopt g- -rotamers. In tetramers, where alpha-helices are packed "side-by-side", most side chains in a-positions adopt g- -rotamers and those in d-positions adopt t-rotamers. These features can be used for prediction of side-chain rotamers in protein modeling and design. 相似文献
4.
Free energy simulations using the Metropolis Monte Carlo method and the coupling parameter approach with umbrella sampling
are described for several problems of interest in structural biochemistry; the liquid water, the hydrophobic interaction of
alkyl and phenyl groups in water and solvent effects on the conformational stability of the alanine dipeptide and the dimethyl
phosphate anion in water. Proximity analysis of results is employed to identify stabilizing factors. Implications of result
with respect to the structural chemistry of proteins and nucleic acids is considered. 相似文献
5.
This paper reviews studies on thermostable proteins from thermophilic bacteria and on mutant proteins of human hemoglobin, tryptophan synthase α-subunit of E. coli, T4 phage lysozyme, and phage λ repressor with respect to the role of the consisting amino acid residues in stabilization of conformation. The stability of a protein is easily affected by single amino acid substitutions, by which the protein undergoes change(s) of one or more of the following: a hydrogen bond, a salt bridge, a hydrophobic interaction, the volume of the residue, a disulfide bond, or the relative position of two aromatic rings. 相似文献
6.
Thermodynamic studies of a model system for hydrophobic bonding 总被引:1,自引:0,他引:1
7.
Folding simulations of polyalanine peptides were carried out using an off-lattice Monte Carlo simulation technique. The peptide was represented as a chain of residues, each of which contains two interaction sites: one corresponding to the C(alpha) atom and the other to the side chain. A statistical potential was used to describe the interaction between these sites. The preferred conformations of the peptide chain on the energy surface, starting from several initial conditions, were searched by perturbations on its generalized coordinates with the Metropolis criterion. We observed that, at low temperatures, the effective energy was low and the helix content high. The calculated helix propagation (s) and nucleation (sigma) parameters of the Zimm-Bragg model were in reasonable agreement with the empirical data. Exploration of the energy surface of the alanine-based peptides (AAQAA)(3) and AAAAA(AAARA)(3)A demonstrated that their behavior is similar to that of polyalanine, in regard to their effective energy, helix content, and the temperature-dependence of their helicity. In contrast, stable secondary structures were not observed for (Gly)(20) at similar temperatures, which is consistent with the nonfolder nature of this peptide. The fluctuations in the slowest dynamics mode, which describe the elastic behavior of the chain, showed that as the temperature decreases, the polyalanine peptides become stiffer and retain conformations with higher helix content. Clustering of conformations during the folding phase implied that polyalanine folds into a helix through fewer numbers of intermediate conformations as the temperature decreases. 相似文献
8.
9.
Contribution of hydrogen bonding to the conformational stability of ribonuclease T1. 总被引:21,自引:0,他引:21
For 30 years, the prevailing view has been that the hydrophobic effect contributes considerably more than hydrogen bonding to the conformational stability of globular proteins. The results and reasoning presented here suggest that hydrogen bonding and the hydrophobic effect make comparable contributions to the conformational stability of ribonuclease T1 (RNase T1). When RNase T1 folds, 86 intramolecular hydrogen bonds with an average length of 2.95 A are formed. Twelve mutants of RNase T1 [Tyr----Phe (5), Ser----Ala (3), and Asn----Ala (4)] have been prepared that remove 17 of the hydrogen bonds with an average length of 2.93 A. On the basis of urea and thermal unfolding studies of these mutants, the average decrease in conformational stability due to hydrogen bonding is 1.3 kcal/mol per hydrogen bond. This estimate is in good agreement with results from several related systems. Thus, we estimate that hydrogen bonding contributes about 110 kcal/mol to the conformational stability of RNase T1 and that this is comparable to the contribution of the hydrophobic effect. Accepting the idea that intramolecular hydrogen bonds contribute 1.3 +/- 0.6 kcal/mol to the stability of systems in an aqueous environment makes it easier to understand the stability of the "molten globule" states of proteins, and the alpha-helical conformations of small peptides. 相似文献
10.
Mistic is an unusual membrane protein from Bacillus subtilis. It appears to fold and insert autonomously into a lipid bilayer and has been suggested as a tool that aids the targeting of eukaryotic membrane proteins to bacterial membranes. The NMR structure of Mistic in detergent (LDAO) micelles has revealed it to be a four alpha-helix bundle. From a structural perspective, Mistic does not resemble other membrane proteins. Its external surface is not very hydrophobic, and standard methods do not predict any of its helices to be in the transmembrane orientation. Molecular dynamics simulations (simulation times approximately 30 ns) in water and in detergent micelles have been used to explore the conformational stability of Mistic as a function of its environment. In water, the protein is stable, exhibiting no significant change in fold on a 30 ns time scale. In contrast, in three simulations in detergent micelles, the partial unfolding of Mistic occurred, whereby the H4 helix drifted away from the H1-H3 core. This was due to the penetration of detergent molecules between H4 and the remainder of the protein. This is unlike the behavior of several other membrane proteins, both alpha-helix bundles and beta-barrels, in comparable detergent micelle simulations. The unfolding of H4 from the H1-H3 core of Mistic could be partially reversed by a simulation in which the detergent molecules were removed, and the unfolded protein was simulated in water. These results suggest that Mistic may not be a stable integrated membrane protein but rather that it may undergo a conformational change upon interaction with a membrane or membrane-like environment. 相似文献
11.
Effects of various amino acid replacements on the conformational stability of G-actin 总被引:1,自引:0,他引:1
H Strzelecka-Go?aszewska S Venyaminov SYuZmorzynski M Mossakowska 《European journal of biochemistry》1985,147(2):331-342
Circular dichroic spectra of native, EDTA-treated and heat-denatured G-actin from chicken gizzard smooth muscle are virtually the same as those of rabbit skeletal muscle actin. The rates of changes produced by EDTA or heat in the secondary structure are, however, higher in the case of gizzard actin. Similar differences were found in the rates of inactivation as measured by loss of polymerizability during incubation with EDTA or Dowex 50. The results are explicable in terms of local differences in the conformation at specific site(s) important for maintaining the native state of actin monomer. Involvement of the ATP binding site was shown by measuring the equilibrium constant for the binding of ATP to the two actins. Difference in the conformation of some additional site(s) is indicated by a higher rate constant of inactivation of nucleotide-free actin observed for gizzard actin. No significant difference was found in the equilibrium constant for the binding of Ca2+ at the single high-affinity site in gizzard and skeletal muscle actin. Comparison of inactivation kinetics of actin from chicken gizzard, rabbit skeletal, bovine aorta, and bovine cardiac muscle suggests that the amino acid replacements Val-17----Cys-17 and/or Thr-89----Ser-89 have a destabilizing effect on the native conformation of G-actin. The results indicate that deletion of the acidic residue at position 1 of the amino acid sequence has no effect on the conformation of the ATP binding site and the high-affinity site for divalent cation as well. 相似文献
12.
A E Pekary 《Biophysical chemistry》1978,7(4):325-338
Pyridine interactions with phenol, substituted phenol, tyrosine and poly(Glu50,Tyr50) in aqueous solutions have been studied by ultraviolet (UV) difference spectroscopy, spectrophotometric pH titration, circular dichroism (CD) and proton magnetic resonance (PMR) spectroscopy. A red shift and spectral sharpening of the near-UV spectrum of phenol in water was noted at pyridine concentrations greater than 0.25 M. In addition, the spectrophotometric equivalence point for the phenol- or substituted phenol-phenolate equilibrium was increased about 0.5 pH units upon the addition of 1.0 M pyridine. PMR studies were consistent with the formation of a 1 : 1 phenol-pyridine hydrogen bonded complex. The equilibrium constant derived for this interaction, 0.6-0.7 M-1, is greater than the corresponding value for phenol-acetate hydrogen bonding in water. Enhancement of thepyridine hydrogen bond interaction with Tyr within poly(Glu50,Tyr50) was observed at pH greater than 12 due to a hydrophobic microenvironment produced by pyridine molecules intercalating between neighboring tyrosyl residues. 相似文献
13.
To evaluate the contribution of the amino acid residues on the surface of a protein to its stability, a series of hydrophobic mutant human lysozymes (Val to Gly, Ala, Leu, Ile, Met, and Phe) modified at three different positions on the surface, which are located in the alpha-helix (Val 110), the beta-sheet (Val 2), and the loop (Val 74), were constructed. Their thermodynamic parameters of denaturation and crystal structures were examined by calorimetry and by X-ray crystallography at 100 K, respectively. Differences in the denaturation Gibbs energy change between the wild-type and the hydrophobic mutant proteins ranged from 4.6 to -9.6 kJ/mol, 2.7 to -1.5 kJ/mol, and 3.6 to -0.2 kJ/mol at positions 2, 74, and 110, respectively. The identical substitution at different positions and different substitutions at the same position resulted in different degrees of stabilization. Changes in the stability of the mutant proteins could be evaluated by a unique equation considering the conformational changes due to the substitutions [Funahashi et al. (1999) Protein Eng. 12, 841-850]. For this calculation, secondary structural propensities were newly considered. However, some mutant proteins were not adapted to the equation. The hydration structures around the mutation sites of the exceptional mutant proteins were affected due to the substitutions. The stability changes in the exceptional mutant proteins could be explained by the formation or destruction of the hydration structures. These results suggest that the hydration structure mediated via hydrogen bonds covering the protein surface plays an important role in the conformational stability of the protein. 相似文献
14.
Fourier transform infrared difference spectroscopy has been used to study the effect of water on the conformation of bacteriorhodopsin. The infrared spectra as a function of water content show a conformational change at about 0.06 g H2O/g bacteriorhodopsin. By an interference method the thickness of the sample was measured and shows similar behavior as a function of water content. This study gives insight into the process of water absorption by purple membrane. The observations are in good agreement with those found for other proteins.Abbreviations IR
infrared
- FTIR
Fourier transform IR 相似文献
15.
16.
This study sought to attain a better understanding of the contribution of buried water molecules to protein stability. The 3SS human lysozyme lacks one disulfide bond between Cys77 and Cys95 and is significantly destabilized compared with the wild-type human lysozyme (4SS). We examined the structure and stability of the I59A-3SS mutant human lysozyme, in which a cavity is created at the mutation site. The crystal structure of I59A-3SS indicated that there were ordered new water molecules in the cavity created. The stability of I59A-3SS is 5.5 kJ/mol less than that of 3SS. The decreased stability of I59A-3SS (5.5 kJ/mol) is similar to that of Ile to Ala mutants with newly introduced water molecules in other globular proteins (6.3 +/- 2.1 kJ/mol), but is less than that of Ile/Leu to Ala mutants with empty cavities (13.7 +/- 3.1 kJ/mol). This indicates that water molecules partially compensate for the destabilization by decreasing hydrophobic and van der Waals interactions. These results provide further evidence that buried water molecules contribute to protein stability. 相似文献
17.
It was recently found that some short peptides (including C- and S-peptide fragments of RNase A) can have considerable helicity in solution, 1–12 which was considered to be surprising. Does the observed helicity require a new explanation, or is it consistent with previous understanding? In this work we show that this helicity is consistent with the physical theory of secondary structure12–19 based on an extension of the conventional Zimm-Bragg model.20 Without any special modifications, this theory explains reasonably well almost all the experimentally observed dependencies of helicity on pH, temperature, and amino acid replacements. We conclude that the observed “general level” of helicity of C- and S-peptides (5–30% at room temperature and 10–50% near 0°C) is “normal” for short peptides consisting mainly of helix-forming and helix-indifferent residues. The helicity is modified by a multitude of weak specific side chain interactions, many of which are taken into account by the present theory;13–19 some discrepancies between the theory and experiment can be explained by weak side-chain-side chain interactions that were neglected. A reasonable coincidence of the theory with experiment suggests that it had been used to investigate the role of local interactions in the formation of α-helical “embryos” in unfolded protein chains. 相似文献
18.
Two conformational states of the coat protein of the filamentous bacteriophage M13 have been detected in detergent solution by using magnetic resonance techniques. When 3-fluorotyrosine is incorporated in place of the two tyrosine residues in the protein, four 19F nuclear magnetic resonance signals are observed, two for each conformer of the protein. The equilibrium between the two forms can be modulated by pH, temperature, and detergent structure. The rate of interconversion of the isomers is rapid on the minutes time scale but is slow relative to the T1 relaxation time of the fluorine resonances of approximately 50 ms. The conformational change between the conformers results in the perturbation of a basic residue in the protein such that this group has a pKa of approximately 9.5 in one state which shifts to 10.5 or more in the other conformational state. The temperature dependence of the equilibrium suggests an enthalpy difference of about 10 kcal/mol which is offset by entropy to give nearly zero free energy difference between the states at pH 8.3 in deoxycholate solution at room temperature. This suggests a substantial reorganization of the noncovalent interactions defining the two conformational states. The conformational equilibrium is strongly dependent on detergent structure and the presence of phospholipid in the detergent micelle. The results are not consistent with a strong, specific lipid binding to the protein but appear to be consistent with a more general effect of the overall micelle structure on the conformational state of the protein. 相似文献
19.
Del Vecchio P Graziano G Granata V Barone G Mandrich L Rossi M Manco G 《Biophysical chemistry》2003,104(2):407-415
The conformational stability of the hyperthermophilic esterase AFEST from Archeoglobus fulgidus against the denaturing action of 2,2,2-trifluoroethanol (TFE) has been investigated by means of circular dichroism (CD) measurements. At room temperature far-UV and near-UV CD spectra point out the occurrence of a co-operative transition from the native structure to a denatured state characterized by a high content of alpha-helix. The TFE concentration at half-completion of the transition proves to be 3.5 M (25% v v(-1)), by recording the molar ellipticity at both 222 and 276 nm. Thermal transition curves of AFEST in the absence and in the presence of TFE indicate a significant stability decrease on increasing the TFE concentration. The denaturation temperature is 99 degrees C for native AFEST, but becomes 85 degrees C at 1.4 M TFE (10% v v(-1)), and 56 degrees C at 2.8 M TFE (20% v v(-1)). It is also shown that, even though AFEST is very resistant to temperature, its resistance towards the denaturing action of TFE is similar to that of mesophilic proteins, including an esterase from Escherichia coli, AES. The proposal of a general mechanism for the TFE action on globular proteins leads to a reliable rationale of experimental data. 相似文献
20.
Ptak D 《Biophysical chemistry》1998,73(1-2):121-127
A quasi-continuity model protein consisting of two alpha-helices undergoing rigid-body torsional oscillations demonstrates that factors stabilizing the model protein, such as increased helix rigidity and hydrophobicity, are the same factors that stabilize thermophilic proteins relative to their mesophilic analogs. The model predicts oscillatory motions with frequencies in the microwave (10(10) Hz) range. These oscillations decrease in frequency with increasing helix rigidity because of compensating increases in the force constant and moment of inertia, thus explaining the retention of activity in the more rigid thermophilic enzymes. Implications for protein design, based on the predictions of the model, are discussed. 相似文献