首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formation of lipoidal steroids in follicular fluid   总被引:1,自引:0,他引:1  
The presence of high levels of lipoidal pregnenolone in follicular fluid has recently been established although no evidence has been presented concerning its possible origin. The following investigation focuses on the enzymatic conversion of non-conjugated steroids into their lipoidal derivatives in preovulatory follicular fluid obtained from women undergoing in vitro fertilization. Our observations indicated that pregnenolone, an important precursor steroid, was acylated at a similar rate as cholesterol in follicular fluid. Similar studies were subsequently conducted with serum obtained from a pool of normal women and women undergoing follicular stimulation which showed little difference to the results obtained in follicular fluid. Further studies using dehydroepiandrosterone, androst-5-ene-3 beta,17 beta-diol, estradiol and dihydrotestosterone were were also performed to monitor their respective lipoidal conversion percentages in follicular fluid which revealed a marked difference of conversion rates between steroids. The indirect identification of the lipoidal pregnenolone derivatives formed in follicular fluid was also conducted by incubating radiolabelled pregnenolone in follicular fluid. The fatty acid components of the resulting lipoidal pregnenolone derivatives showed a marked resemblance to those of cholesteryl esters formed in plasma by the enzymatic activity of lecithin:cholesterol acyltransferase. The pregnenolone derivatives were comprised predominantly of unsaturated fatty acids such as linoleate, palmitoleate, oleate, linolenate and arachidonate while saturated fatty acids, namely palmitate, constituted 20% of the total lipoidal pregnenolone.  相似文献   

2.
In vitro biosynthesis of gonadal steroids from dehydroepiandrosterone was studied in isolated and in socially reared male and female rats. Acetone-dried powder of gonadal tissue incubated with dehydroepiandrosterone-4-14C yielded androstenedione, androst-5-ene-3beta, 17beta-diol, 11beta-hydroxyandrostenedione and testosterone. In the male, conversion to androstenedione was significantly increased after isolation and conversion to androst-5-ene-3beta, 17beta-diol was significantly lowered. In the female, conversion to androstenedione and androstenediol was significantly lowered by isolation. Testosterone and 11beta-hydroxyandrostenedione were not affected by isolation. Gonadal tissue of isolated and of socially reared male and female rats metabolizes dehydroepiandrosterone in a different way. These findings support the view that the conditions of housing affect the production of sex steroids.  相似文献   

3.
The metabolism of pregnenolone in subcellular fractions of the testes of the macaque (Macaca fascicularis) has been studied using capillary gas chromatography to characterize and quantify the metabolites, after their conversion into the O-methyloxime and/or trimethylsilyl ether derivatives. The microsomal incubations yielded the greatest quantities of metabolites, with lesser amounts in the mitochondrial fraction. The cytosolic fraction contained no significant quantity of metabolites after incubation, except for 5alpha-androst-16-en-3 beta-ol. This, and other odorous androst-16-enes, found in the microsomal fraction, are of particular interest in the context of animal communication because of their possible pheromonal role. Pregnenolone was converted into androst-5-ene-3 beta,17 beta-diol, androst-4-ene-3,17-dione and testosterone, suggesting that both classical pathways for testosterone synthesis were operating. Testosterone was further converted into 5 alpha-reduced androstanediols, especially in the microsomal fraction.  相似文献   

4.
Pregnenolone (PREG) and dehydroepiandrosterone (DHEA), and their respective sulfated forms PREGS and DHEAS, were among the first steroids to be identified in rodent brain. However, unreliable steroid isolation and solvolysis procedures resulted in errors, particularly in the case of brain steroid sulfates analyzed by radioimmunology or GC-MS of liberated free steroids. By using a solid-phase extraction recycling/elution procedure, allowing the strict separation of sulfated, free, and fatty acid esters of PREG and DHEA, PREGS and DHEAS, unlike free PREG, were not detected in rat and mouse brain and plasma. Conversely, considerable amounts of PREG and DHEA were released from unknown precursor(s) present in the lipoidal fraction, distinct from fatty acid ester conjugates. Chromatographic and mass spectrometric studies of the nature of the precursor(s) showed that autoxidation of brain cholesterol (CHOL) was responsible for the release of PREG and DHEA from the lipoidal fraction. When inappropriate protocols were used, CHOL was also the precursor of PREG and DHEA obtained from the fraction assumed to contain sulfated steroids. In contrast, free PREG was definitely confirmed as an endogenous steroid in rat brain. Our study shows that an early removal of CHOL from brain extracts coupled to well-validated extraction and fractionation procedures are prerequisites for reliable measurements of free and conjugated PREG and DHEA by GC-MS or other indirect methods.  相似文献   

5.
Alveolar macrophages obtained by bronchoalveolar lavage of lungs of male and female guinea pigs were incubated with tritium-labelled androstenedione to evaluate the steroid metabolizing enzymes in these cells. The radiolabeled metabolites were isolated and thereafter characterized as testosterone, 5 alpha-androstanedione, 5 alpha-dihydrotestosterone, androsterone, isoandrosterone, 5 alpha-androstane-3 alpha, 17 beta-diol and 5 alpha-androstane-3 beta, 17 beta-diol. Thus, the following androstenedione metabolizing enzymes are present in guinea-pig alveolar macrophages: 17 beta-hydroxysteroid dehydrogenase, 5 alpha-reductase, 3 beta-hydroxysteroid dehydrogenase and 3 alpha-hydroxysteroid dehydrogenase. The predominant androstenedione metabolizing enzyme activity present in alveolar macrophages was 17 beta-hydroxysteroid dehydrogenase. The rate of testosterone formation increased with incubation time up to 4 h, and with macrophage number up to 1.6 X 10(7) cells per ml. Androstenedione metabolism was similar in alveolar macrophages obtained both from male and female guinea pigs. These results suggest that alveolar macrophages may be a site of peripheral transformation of blood-borne androstenedione to biologically potent androgens in vivo and, therefore, these cells may contribute to the plasma levels of testosterone in the guinea pig.  相似文献   

6.
Plasma levels of androstane-3 alpha, 17 beta-diol glucuronide (3 alpha-diol-G) and androsterone glucuronide (ADT-G) have been found to be effective markers of C-19 steroid metabolism in periphery in man. The present study has been performed in order to study in castrated patients the effect of antiandrogen administered alone or in combination with aminoglutethimide (AG) on the metabolism of adrenal C-19 steroid. Ten castrated patients with prostatic cancer received flutamide (FLU) alone for 2 months and, afterwards, the combined therapy of FLU and AG for 2 months. Antiandrogen treatment alone reduces the levels of dehydroepiandrosterone sulfate (DHEA-S), dehydroepiandrosterone glucuronide (DHEA-G) and androstenedione (4-ene-dione) by 43, 34 and 38% (P less than or equal to 0.01) respectively while dehydroepiandrosterone (DHEA), androst-5-ene-3 beta,17 beta-diol (5-ene-diol) and androst-5-ene-3 beta,17 beta-diol-glucuronide (5-ene-diol-G) levels show a nonsignificant inhibition. In these patients, plasma 3 alpha-diol-G and ADT-G concentrations are nonsignificantly stimulated to 122 and 143%. Moreover, when patients were receiving the combined administration of FLU and AG, adrenal C-19 steroids were further inhibited while both 3 alpha-diol-G and ADT-G show a small but nonsignificant decrease. Our data indicate that the antiandrogen increases the formation and/or the metabolism of adrenal C-19 steroids into steroid glucuronides.  相似文献   

7.
Adult male mongrel dogs were treated with the LHRH agonist [D-Trp6, des-Gly-NH10(2)]LHRH ethylamide, aminoglutethimide, ketoconazole or flutamide alone or in combination for 21 days before measurement of steroid levels in the testes, prostate, adrenals and serum. Ketoconazole alone caused a marked stimulation of the intra-testicular concentration of pregnenolone, 17OH-pregnenolone, progesterone and 17OH-progesterone with no or little change of androstenedione, testosterone and dihydrotestosterone. Aminoglutethimide caused a 30-95% inhibition in the concentration of all steroids in the tests while treatment with the LHRH agonist caused a near complete inhibition of all testicular steroids. When administered concomitantly with the LHRH agonist, ketoconazole partly prevented the inhibitory effect of the LHRH agonist on testicular steroid levels. Serum levels of dehydroepiandrosterone, androst-5-ene-3 beta,17 beta-diol, androstenedione and androstane-3 alpha, 17 beta-diol were 75 to 95% inhibited by the LHRH agonist while serum testosterone and dihydrotestosterone concentrations were reduced below detection limits by the same treatment. Moreover, treatment with the LHRH agonist caused a 70-95% reduction in the intraprostatic concentration of testosterone and dihydrotestosterone in all the groups although maximal effect was observed when the LHRH agonist was combined with any of the three other agents. The present data show that while treatment with ketoconazole, aminoglutethimide or Flutamide alone has only partial inhibitory effects on androgen levels, combination with an LHRH agonist provides maximal inhibition. In addition to its direct blockade of the androgen receptor, some of the effect of Flutamide could be related to its blockade of testicular 3 beta-hydroxy-steroid dehydrogenase activity.  相似文献   

8.
A new sample preparation method coupled to GC-MS analysis was developed and validated for quantification of sulfate esters of pregnenolone (PREG-S) and dehydroepiandrosterone (DHEA-S) in rat brain. Using a solid-phase extraction recycling protocol, the results show that little or no PREG-S and DHEA-S (<1 pmol/g) is present in rat and mouse brain. These data are in agreement with studies in which steroid sulfates were analyzed without deconjugation. We suggest that the discrepancies between analyses with and without deconjugation are caused by internal contamination of brain extract fractions, supposed to contain steroid sulfates, by lipoidal forms of PREG and DHEA (L-PREG and L-DHEA, respectively). These derivatives can be acylated very efficiently with heptafluorobutyric anhydride and triethylamine, and their levels in rodent brain (approximately 1 nmol/g) are much higher than those of their unconjugated counterparts. They are distinct from fatty acid esters, and preliminary data do not favor structures such as sulfolipids or sterol peroxides. Noncovalent interactions between steroids and proteolipidic elements, such as lipoproteins, could account for some experimental data. Given their abundance in rodent brain, the structural characterization and biological functions of L-PREG and L-DHEA in the central nervous system merit considerable attention.  相似文献   

9.
Twelve neuroactive and neuroprotective steroids, androgens and androgen precursors i.e. 3alpha,17beta-dihydroxy-5alpha-androstane, 3alpha-hydroxy-5alpha-androstan-17-one, 3alpha-hydroxy-5beta-androstan-17-one, androst-5-ene-3beta,17beta-diol, 3beta,17alpha-dihydroxy-pregn-5-en-20-one (17alpha-hydroxy-pregnenolone), 3beta-hydroxy-androst-5-en-17-one (dehydroepiandrosterone, DHEA), testosterone, androst-4-ene-3,17-dione (androstenedione), 3alpha-hydroxy-5alpha-pregnan-20-one (allopregnanolone), 3beta-hydroxy-pregn-5-en-20-one (pregnenolone), 7alpha-hydroxy-DHEA, and 7beta-hydroxy-DHEA were measured using the GC-MS system in young men before and after ejaculation provoked by masturbation. The circulating level of 17alpha-hydroxypregnenolone increased significantly, whereas the other circulating steroids were not changed at all. This fact speaks against the hypothesis that a drop in the level of neuroactive steroids, e.g. allopregnanolone may trigger the orgasm-related increase of oxytocin, reported by other authors.  相似文献   

10.
Neuro-steroids: 3 beta-hydroxy-delta 5-derivatives in rat and monkey brain   总被引:4,自引:0,他引:4  
The rat brain accumulates pregnenolone (P) as the unconjugated steroid, the sulfate ester (S) and fatty acid esters (L). P + PS do not disappear from rat brain after combined adrenalectomy (adx) and castration (orx). PL does not serve a source of P after adx + orx. P is metabolized by several rat brain regions to progesterone and to PL. Brain microsomes contain the acyl-transferase which converts P to PL using endogenous substrates. Brain P and dehydroepiandrosterone (D) undergo a prominent circadian variation with their acrophases at the beginning of the dark span. The circadian variation of brain D persists after adx + orx. The monkey brain (Macaca fascicularis) also accumulates P and D. Adrenal suppression with dexamethasone for 4 days does not decrease the concentrations of brain P and 3rd ventricle CSFP and D. The concentrations of brain D are decreased to a much smaller extent than plasma D. D inhibits the aggressive behavior of castrated male mice exposed to lactating female intruders. This is not the case for DS or androst-5-ene-3 beta, 17 beta-diol. The D analog 3 beta-methyl-androst-5-en-17-one, which is not estrogenic and cannot be metabolized to testosterone or estradiol, is as active as D in inhibiting the aggressive behavior of castrated mice.  相似文献   

11.
Recently, several natural steroids have been found to be esterified to long-chain fatty acids (FAE) in various mammalian tissues. The purpose of the present study was to determine the ability of a series of 3H-labeled steroids to serve as substrates for the formation and accumulation of such non-polar derivatives in intact cells, using the hormone-responsive ZR-75-1 human breast cancer cell line as model. All 14 steroids tested were found to be converted, directly or following further metabolism, to lipoidal ester derivatives. The percentage of intracellular steroids recovered as FAE derivatives was usually substantial (14-90%), especially in the case of C-19 steroids (75-90%). The composition of the lipoidal steroid fractions recovered from the labeled cell extracts was characterized by chromatographic comparison with synthetic steroid FAEs and by saponification of the steroid FAEs and identification of the released steroidal moieties. Following metabolism, most steroid substrates were converted into multiple lipoidal esters. Furthermore, 5 alpha-androstane-3 alpha, 17 beta-diol, 5 alpha-androstane-3 beta, 17 beta-diol, as well as androst-5-ene-3 beta, 17 beta-diol formed lipoidal diesters in addition to the monoester form. The high level of intracellular steroid FAE accumulation reported in this study suggests that these yet poorly known steroid derivatives may play important functions in the regulation of steroid hormone metabolism and action.  相似文献   

12.
Simultaneous determination of progesterone, androst-4-enedione, pregnenolone, dehydroepiandrosterone (DHEA) and 17-hydroxyprogesterone has been developed for human cerebral tissue. Before immunoassay, steroids were separated on a Celite column with propylene glycol as stationary phase with hexane containing increasing proportions of dichloromethane as mobile phase. This system allowed separation of steroids of similar polarity, especially of pregnenolone and progesterone. The brain regions studied cortex (prefrontal, parietal and temporal), cerebellum and corpus callosum, were obtained after autopsy from 9 women and 1 man between 76 and 93 years of age. Steroids were found in all regions. The overall concentrations expressed in nmol/kg of tissue were: 10.1, 7.6, 120.7, 19.6 and 10.4 respectively, for progesterone, androst-4-enedione, pregnenolone, dehydroepiandrosterone and 17-hydroxyprogesterone, corresponding to 7.3, 4.9, 74, 6.5 and 9.2 times the plasma levels. These very high concentrations, not previously described in human brain tissue, pose the question of the existence of local biosynthetic pathways independent of the peripheral endocrine gland system as well as that of progressive accumulation of steroids over a lifetime. Concentrations of each steroid in each subject varied little among the various brain regions studied, but there was much variation among the subjects with respect to the concentrations of a given steroid.  相似文献   

13.
The present study was designed to investigate the effect of acute administration of gonadotropin on testicular steroid secretion in dog and rat. Animals received a subcutaneous injection of 25 IU/kg of hCG or 1.5 microgram/kg of [D-Trp6, des-Gly-NH2(10)]LHRH ethylamide (LHRH-A). Testosterone is the predominant steroid measured, in dog plasma, under basal conditions. After LHRH-A injection, testosterone levels are not significantly changed while dehydroepiandrosterone and androst-5-ene-3 beta,17 beta-diol (delta 5-steroids) levels are stimulated by almost 20-fold (P less than 0.01). When dogs were injected with hCG, we also observed a marked stimulation of dehydroepiandrosterone levels (20-fold; P less than 0.01) accompanied by a small increase of plasma testosterone concentration (2-fold, P less than 0.01). In rats injected with either hCG or the LHRH analogue, an increment of plasma testosterone (7-fold, P less than 0.01) is detected in the first hour while plasma dehydroepiandrosterone levels are slightly stimulated. Moreover, in rats injected with hCG, low plasma steroid levels are present between 4-12 h after injection due to testicular desensitization. This marked decrease is then followed by a second peak of steroid secretion 24 h later. Acute testicular steroidogenic responsiveness to hCG on the dog is, however, different: after stimulation, the levels of plasma dehydroepiandrosterone are maintained at a plateau and slowly decline after 24-48 h. Our data indicate that in dogs, stimulation of testicular steroidogenesis leads to an increase of plasma delta 5-steroid levels while the same stimuli cause, in the rat, a stimulation of delta 4-androgen, particularly testosterone.  相似文献   

14.
Between Days 9 and 15 after oestrus, concentrations of pregnenolone, pregnenolone sulphate, dehydroepiandrosterone (DHEA), DHEA sulphate, androstenedione, oestrone and oestrone sulphate in free uterine fluid collected from non-pregnant gilts were greater than respective values in plasma (P less than 0.05). The total contents of pregnenolone, progesterone, DHEA, testosterone, oestrone and oestradiol in washings from pregnant uteri exceeded (P less than 0.05) respective non-pregnancy levels during this same period. Concentrations of pregnenolone, pregnenolone sulphate, DHEA, DHEA sulphate, androstenedione, oestrone, oestrone sulphate and oestradiol in free uterine fluid recovered from gravid uteri were also higher (P less than 0.05) than respective plasma values. By contrast, the progesterone concentration in uterine fluid from pregnant animals was lower (P less than 0.001) than the plasma value. Concentrations of DHEA, DHEA sulphate, androstenedione and oestrone sulphate in plasma of pregnant gilts between Days 9 and 15 after mating exceeded (P less than 0.05) the respective concentrations in unmated gilts between Days 9 and 15 after oestrus. Plasma levels of pregnenolone sulphate were lower (P less than 0.05) in the pregnant animals. We therefore suggest that the endometrium of the pig can concentrate steroid hormones in uterine fluid and that increases in steroid levels in this milieu between Days 9 and 15 after coitus reflect steroidogenesis by embryonic tissues and modification of enzyme activities within uterine tissues under the influence of progestagens. The pool of steroid sulphoconjugates present in uterine fluid between Days 9 and 15 post coitum could serve as an important precursor source for progestagen, androgen and oestrogen synthesis by tissues of pig embryos before implantation.  相似文献   

15.
Esterification of dehydroepiandrosterone by human plasma HDL   总被引:2,自引:0,他引:2  
Evidence for metabolic esterification of dehydroepiandrosterone (DHEA) in human blood plasma, identification of the active lipoprotein (LP) subclass involved, namely HDL3, as well as positive identification of the long-chain fatty acid esters of DHEA formed as incubation products is presented. The esterification reaction of DHEA and subsequent transfer and transport of DHEA esters in human plasma appears to proceed in a manner similar to that of cholesterol. The experiments presented serve as a model predicting similar metabolic transformations during HDL3 interactions with other steroid hormones that have the delta 5-3 beta-hydroxy steroid ring structure and exhibit nonequilibrium associations with HDL. These observations imply that significant quantities of DHEA, particularly in the conjugated ester form, can enter cells via the membrane receptor-mediated pathways of LP internalization.  相似文献   

16.
We have investigated the potential of autonomous hormonal steroidogenesis in liver and small intestine of male and female frogs, Rana esculenta, during the recovery phase. After incubation of mitochondrial fractions with [4-14C]cholesterol, female liver and intestine formed pregnenolone at a rate of 0.63 and 2.3 pmol/mg protein/h, respectively, whereas conversion by male organs was only c. 0.03 pmol/mg protein/h. Minced tissues preparations transformed [4-14C]pregnenolone into progesterone and 17alpha-hydroxypregnenolone, the former prevailing in the liver, the latter in the intestine. Moreover, both tissues produced 20alpha-dihydropregnenolone, 20alpha-dihydroprogesterone and dehydroepiandrosterone. From incubates with [4-14C]dehydroepiandrosterone, androstenedione and androst-5-ene-3beta, 17beta-diol were identified, the former being more abundant in the liver, the latter in the intestine. These results indicate that both liver and intestine in frog can be independent sources of hormonally active steroids in both sexes.  相似文献   

17.
Using mass spectrometric, radioisotopic, chromatographic and chemical techniques, five fatty acid esters of 3 beta-hydroxy-5-pregnen-20-one (pregnenolone) have been identified as components of the lipoidal derivatives biosynthesized in vitro with bovine adrenal mitochondria. The five compounds are: pregnenolone arachidonate, pregnenolone linoleate, pregnenolone oleate, pregnenolone palmitate, and pregnenolone stearate. The distribution of the fatty acids among these five esters is different from the previously reported (Cmelik, S.H.W., and Ley, H. (1977) Comp. Biochem. Physiol. 56B, 267-270) fatty acid composition of these organelles.  相似文献   

18.
In humans, the onset of adrenache has been found to occur with the appearance of the zona reticularis, the inner zone of the adrenal cortex. Since an increase in the volume of adrenal cortex during maturation in the guinea pig has been associated with the growth of the zona reticularis, we were interested in investigating the changes in adrenal steroidogenesis during maturation in this species. In addition, the effect of androgens on adrenal steroidogenesis was studied. We demonstrated that between 1 and 10 weeks of age, a period of maximal growth of the adrenals in the guinea pig, there is a decrease in the concentrations of adrenal pregnenolone, cortisol, dehydroepiandrosterone, testosterone, androstenedione, and 11 beta-hydroxyandrostenedione, suggesting lower steroid production by the guinea pig adrenals. In plasma, we observed that the concentration of 11 beta-hydroxyandrostenedione (the sole C19 steroid present after castration) remained unchanged during maturation, while cortisol and corticosterone were lower between 1 and 4 weeks of age. Although castration as well as the administration of the antiandrogen flutamide had no effect on adrenal steroidogenesis, dihydrotestosterone caused an inhibition of cortisol and corticosterone levels in the adrenals while the concentrations of progestins (namely, pregnenolone, 17-hydroxypregnenolone, progesterone, and 17-hydroxyprogesterone) tended to increase in the adrenals, thus suggesting that dihydrotestosterone induces a blockade in the steroidogenic pathway.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Estrogen-sensitive human breast cancer cells (ZR-75-1) were incubated with the 3H-labeled adrenal C19-delta 5-steroids dehydroepiandrosterone (DHEA) and its fully estrogenic derivative, androst-5-ene-3 beta,17 beta-diol (delta 5-diol) for various time intervals. When fractionated by solvent partition, Sephadex LH-20 column chromatography and silica gel TLC, the labeled cell components were largely present (40-75%) in three highly nonpolar, lipoidal fractions. Mild alkaline hydrolysis of these lipoidal derivatives yielded either free 3H-labeled DHEA or delta 5-diol. The three lipoidal fractions cochromatographed with the synthetic DHEA 3 beta-esters, delta 5-diol 3 beta (or 17 beta)-monoesters and delta 5-diol 3 beta,17 beta-diesters of long-chain fatty acids. DHEA and delta 5-diol were mainly esterified to saturated and mono-unsaturated fatty acids. For delta 5-diol, the preferred site of esterification of the fatty acids is the 3 beta-position while some esterification also takes place at the 17 beta-position. Time course studies show that ZR-75-1 cells accumulate delta 5-diol mostly (greater than 95%) as fatty acid mono- and diesters while DHEA is converted to delta 5-diol essentially as the esterified form. Furthermore, while free C19-delta 5-steroids rapidly diffuse out of the cells after removal of the precursor [3H]delta 5-diol, the fatty acid ester derivatives are progressively hydrolyzed, and DHEA and delta 5-diol thus formed are then sulfurylated prior to their release into the culture medium. The latter process however is rate-limited, since new steady-state levels of free steroids and fatty acid esters are rapidly reached and maintained for extended periods of time after removal of precursor, thus maintaining minimal concentrations of intracellular steroids. The rapid rate and large extent of esterification of DHEA and delta 5-diol to long-chain fatty acids in breast cancer cells indicate that this reaction could constitute an important regulatory step in the estrogenic action of DHEA and delta 5-diol in these cells.  相似文献   

20.
The incubation of pregnenolone or dehydroisoandrosterone with bovine or rat adrenal homogenates leads to the formation of nonpolar metabolites of these steroids. The enzymatically prepared compounds have properties that are similar to the endogenous lipoidal derivatives of pregnenolone found in bovine adrenals (Hochberg, R. B., Bandy, L., Ponticorvo, L., and Lieberman, S. (1977) Proc. Natl. Acad. Sci. U. S. A. 74, 941-945) in that they are much less polar than the parent steroid and yield the parent steroid as a product of treatment with alkali. The lipoidal derivatives of both dehydroisoandrosterone and pregnenolone proved to be chromatographically heterogeneous. 17 alpha-Hydroxypregnenolone, 17 alpha-hydroxyprogesterone, progesterone, and testosterone were not converted into lipoidal derivatives when incubated with the bovine adrenal homogenate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号