首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4-alpha-Glucanotransferase (GTase) is an essential enzyme in alpha-1,4-glucan metabolism in bacteria and plants. It catalyses the transfer of maltooligosaccharides from an 1,4-alpha-D-glucan molecule to the 4-hydroxyl group of an acceptor sugar molecule. The crystal structures of Thermotoga maritima GTase and its complex with the inhibitor acarbose have been determined at 2.6A and 2.5A resolution, respectively. The GTase structure consists of three domains, an N-terminal domain with the (beta/alpha)(8) barrel topology (domain A), a 65 residue domain, domain B, inserted between strand beta3 and helix alpha6 of the barrel, and a C-terminal domain, domain C, which forms an antiparallel beta-structure. Analysis of the complex of GTase with acarbose has revealed the locations of five sugar-binding subsites (-2 to +3) in the active-site cleft lying between domain B and the C-terminal end of the (beta/alpha)(8) barrel. The structure of GTase closely resembles the family 13 glycoside hydrolases and conservation of key catalytic residues previously identified for this family is consistent with a double-displacement catalytic mechanism for this enzyme. A distinguishing feature of GTase is a pair of tryptophan residues, W131 and W218, which, upon the carbohydrate inhibitor binding, form a remarkable aromatic "clamp" that captures the sugar rings at the acceptor-binding sites +1 and +2. Analysis of the structure of the complex shows that sugar residues occupying subsites from -2 to +2 engage in extensive interactions with the protein, whereas the +3 glucosyl residue makes relatively few contacts with the enzyme. Thus, the structure suggests that four subsites, from -2 to +2, play the dominant role in enzyme-substrate recognition, consistent with the observation that the smallest donor for T.maritima GTase is maltotetraose, the smallest chain transferred is a maltosyl unit and that the smallest residual fragment after transfer is maltose. A close similarity between the structures of GTase and oligo-1,6-glucosidase has allowed the structural features that determine differences in substrate specificity of these two enzymes to be analysed.  相似文献   

2.
Amylomaltases are 4-alpha-glucanotransferases (EC 2.4.1.25) of glycoside hydrolase family 77 that transfer alpha-1,4-linked glucans to another acceptor, which can be the 4-OH group of an alpha-1,4-linked glucan or glucose. The amylomaltase-encoding gene (PAE1209) from the hyperthermophilic archaeon Pyrobaculum aerophilum IM2 was cloned and expressed in Escherichia coli, and the gene product (PyAMase) was characterized. PyAMase displays optimal activity at pH 6.7 and 95 degrees C and is the most thermostable amylomaltase described to date. The thermostability of PyAMase was reduced in the presence of 2 mM dithiothreitol, which agreed with the identification of two possible cysteine disulfide bridges in a three-dimensional model of PyAMase. The kinetics for the disproportionation of malto-oligosaccharides, inhibition by acarbose, and binding mode of the substrates in the active site were determined. Acting on gelatinized food-grade potato starch, PyAMase produced a thermoreversible starch product with gelatin-like properties. This thermoreversible gel has potential applications in the food industry. This is the first report on an archaeal amylomaltase.  相似文献   

3.
TmPul13, a family 13 glycoside hydrolase from Thermotoga maritima, is a four-module protein having pullulanase activity; the three N-terminal modules are of unknown function while the large C-terminal module is likely the catalytic module. Dissection of the functions of the three unknown modules revealed that the 100 amino acid module at the extreme N-terminus of TmPul13 comprises a new family of carbohydrate-binding modules (CBM) that a bioinformatic analysis shows are most frequently found in pullulanase-like sequences from bacterial pathogens. Detailed binding studies of this isolated CBM, here called TmCBM41, reveals a preference for alpha-(1,4)-linked glucans, but occasional alpha-(1,6)-linked glucose residues, such as those found in pullulan, are tolerated. UV difference, isothermal titration calorimetry, and analytical ultracentrifugation binding studies suggest that maltooligosaccharides longer than four glucose residues are able to bind two TmCBM41 molecules per oligosaccharide when sugar concentrations are below the CBM concentration. This is explained in terms of an equilibrium expression involving the formation of both a 1 to 1 sugar to CBM complex and a 1 to 2 sugar to CBM complex (i.e., a CBM dimer ligated by an oligosaccharide). The presence of an alpha-(1-6) linkage in the oligosaccharide appears to prevent this phenomenon.  相似文献   

4.
Thermococcus litoralis 4-alpha-glucanotransferase (TLGT) belongs to glucoside hydrolase family 57 and catalyzes the disproportionation of amylose and the formation of large cyclic alpha-1,4-glucan (cycloamylose) from linear amylose. We determined the crystal structure of TLGT with and without an inhibitor, acarbose. TLGT is composed of two domains: an N-terminal domain (domain I), which contains a (beta/alpha)7 barrel fold, and a C-terminal domain (domain II), which has a twisted beta-sandwich fold. In the structure of TLGT complexed with acarbose, the inhibitor was bound at the cleft within domain I, indicating that domain I is a catalytic domain of TLGT. The acarbose-bound structure also clarified that Glu123 and Asp214 were the catalytic nucleophile and acid/base catalyst, respectively, and revealed the residues involved in substrate binding. It seemed that TLGT produces large cyclic glucans by preventing the production of small cyclic glucans by steric hindrance, which is achieved by three lids protruding into the active site cleft, as well as an extended active site cleft. Interestingly, domain I of TLGT shares some structural features with the catalytic domain of Golgi alpha-mannosidase from Drosophila melanogaster, which belongs to glucoside hydrolase family 38. Furthermore, the catalytic residue of the two enzymes is located in the same position. These observations suggest that families 57 and 38 evolved from a common ancestor.  相似文献   

5.
The three-dimensional structure of Aspergillus aculeatus beta-1,4-galactanase (AAGAL), an enzyme involved in pectin degradation, has been determined by multiple isomorphous replacement to 2.3 and 1.8 A resolution at 293 and 100 K, respectively. It represents the first known structure for a polysaccharidase with this specificity and for a member of glycoside hydrolase family 53 (GH-53). The enzyme folds into a (beta/alpha)(8) barrel with the active site cleft located at the C-terminal side of the barrel consistent with the classification of GH-53 in clan GH-A, a superfamily of enzymes with common fold and catalytic machinery but diverse specificities. Putative substrate-enzyme interactions were elucidated by modeling of beta-1,4-linked galactobioses into the possible substrate binding subsites. The structure and modeling studies identified five potential subsites for the binding of galactans, of which one is a pocket suited for accommodating the arabinan side chain in arabinogalactan, one of the natural substrates. A comparison with the substrate binding grooves of other Clan GH-A enzymes suggests that shape complementarity is crucial in determining the specificity of polysaccharidases.  相似文献   

6.
The room-temperature structure of xylanase (EC 3.2.1.8) from the bacterial plant pathogen Erwinia chrysanthemi expressed in Escherichia coli, a 45 kDa, 413-amino acid protein belonging to glycoside hydrolase family 5, has been determined by multiple isomorphous replacement and refined to a resolution of 1.42 A. This represents the first structure of a xylanase not belonging to either glycoside hydrolase family 10 or family 11. The enzyme is composed of two domains similar to most family 10 xylanases and the alpha-amylases. The catalytic domain (residues 46-315) has a (beta/alpha)(8)-barrel motif with a binding cleft along the C-terminal side of the beta-barrel. The catalytic residues, Glu165 and Glu253, determined by correspondence to other family 5 and family 10 glycoside hydrolases, lie inside this cleft on the C-terminal ends of beta-strands 4 and 7, respectively, with an O(epsilon)2...O(epsilon)1 distance of 4.22 A. The smaller domain (residues 31-43 and 323-413) has a beta(9)-barrel motif with five of the strands interfacing with alpha-helices 7 and 8 of the catalytic domain. The first 13 N-terminal residues form one beta-strand of this domain. Residues 44, 45, and 316-322 form the linkers between this domain and the catalytic domain.  相似文献   

7.
Bacteria in a biofilm are enmeshed in a self-synthesized extracellular polysaccharide matrix that holds the bacteria together in a mass and firmly attaches the bacterial mass to the underlying surface. A major component of the extracellular polysaccharide matrix in several phylogenetically diverse bacteria is PGA, a linear polymer of N-acetylglucosamine residues in beta(1,6)-linkage. PGA is produced by the Gram-negative periodontopathogen Actinobacillus actinomycetemcomitans as well as by the Gram-positive device-associated pathogen Staphylococcus epidermidis. We recently reported that A.actinomycetemcomitans produces a soluble glycoside hydrolase named dispersin B, which degrades PGA. Here, we present the crystal structure of dispersin B at 2.0A in complex with a glycerol and an acetate ion at the active site. The enzyme crystallizes in the orthorhombic space group C222(1) with cell dimensions a=41.02A, b=86.13A, c=185.77A. The core of the enzyme consists a (beta/alpha)(8) barrel topology similar to other beta-hexosaminidases but significant differences exist in the arrangement of loops hovering in the vicinity of the active site. The location and interactions of the glycerol and acetate moieties in conjunction with the sequence analysis suggest that dispersin B cleaves beta(1,6)-linked N-acetylglucosamine polymer using a catalytic machinery similar to other family 20 hexosaminidases which cleave beta(1,4)-linked N-acetylglucosamine residues.  相似文献   

8.
Multiple alignment of deduced amino-acid sequences of glucansucrases (glucosyltransferases and dextransucrases) from oral streptococci and Leuconostoc mesenteroides has shown them to share a well-conserved catalytic domain. A portion of this domain displays homology to members of the alpha-amylase family (glycoside hydrolase family 13), which all have a (beta/alpha)8 barrel structure. In the glucansucrases, however, the alpha-helix and beta-strand elements are circularly permuted with respect to the order in family 13. Previous work has shown that amino-acid residues contributing to the active site of glucansucrases are situated in structural elements that align with those of family 13. In alpha-amylase and cyclodextrin glucanotransferase, a histidine residue has been identified that acts to stabilize the transition state, and a histidine is conserved at the corresponding position in all other members of family 13. In all the glucansucrases, however, the aligned position is occupied by glutamine. Mutants of glucosyltransferase I were constructed in which this glutamine, Gln937, was changed to histidine, glutamic acid, aspartic acid, asparagine or alanine. The effects on specific activity, ability to form glucan and ability to transfer glucose to a maltose acceptor were examined. Only histidine could substitute for glutamine and maintain Michaelis-Menten kinetics, albeit at a greatly reduced kcat, showing that Gln937 plays a functionally equivalent role to the histidine in family 13. This provides additional evidence in support of the proposed alignment of the (beta/alpha)8 barrel structures. Mutation at position 937 altered the acceptor reaction with maltose, and resulted in the synthesis of novel gluco-oligosaccharides in which alpha1,3-linked glucosyl units are joined sequentially to maltose.  相似文献   

9.
A gene encoding a dextransucrase (dsrBCB4) that synthesizes only alpha-1,6-linked dextran was cloned from Leuconostoc mesenteroides B-1299CB4. The coding region consisted of an open reading frame (ORF) of 4,395 bp that coded a 1,465-amino-acids protein with a molecular mass 163,581 Da. The expressed recombinant DSRBCB4 (rDSRBCB4) synthesized oligosaccharides in the presence maltose or isomaltose as an acceptor, plus the products included alpha-1,6-linked glucosyl residues in addition to the maltosyl or isomaltosyl residue. Alignments of the amino acid sequence of DSRBCB4 with glucansucrases from Streptococcus and Leuconostoc identified conserved amino acid residues in the catalytic core that are critical for enzyme activity. The mutants D530N, E568Q, and D641N displayed a 98- to 10,000-fold reduction of total enzyme activity.  相似文献   

10.
Amylomaltases are 4-α-glucanotransferases (EC 2.4.1.25) of glycoside hydrolase family 77 that transfer α-1,4-linked glucans to another acceptor, which can be the 4-OH group of an α-1,4-linked glucan or glucose. The amylomaltase-encoding gene (PAE1209) from the hyperthermophilic archaeon Pyrobaculum aerophilum IM2 was cloned and expressed in Escherichia coli, and the gene product (PyAMase) was characterized. PyAMase displays optimal activity at pH 6.7 and 95°C and is the most thermostable amylomaltase described to date. The thermostability of PyAMase was reduced in the presence of 2 mM dithiothreitol, which agreed with the identification of two possible cysteine disulfide bridges in a three-dimensional model of PyAMase. The kinetics for the disproportionation of malto-oligosaccharides, inhibition by acarbose, and binding mode of the substrates in the active site were determined. Acting on gelatinized food-grade potato starch, PyAMase produced a thermoreversible starch product with gelatin-like properties. This thermoreversible gel has potential applications in the food industry. This is the first report on an archaeal amylomaltase.  相似文献   

11.
N-acetyl-D-glucosamine 2-epimerase (GlcNAc 2-epimerase) catalyzes the reversible epimerization between N-acetyl-D-glucosamine (GlcNAc) and N-acetyl-D-mannosamine (ManNAc). We report here the 2.0 A resolution crystal structure of the GlcNAc 2-epimerase from Anabaena sp. CH1. The structure demonstrates an (alpha/alpha)(6) barrel fold, which shows structural homology with porcine GlcNAc 2-epimerase as well as a number of glycoside hydrolase enzymes and other sugar-metabolizing enzymes. One side of the barrel structure consists of short loops involved in dimer interactions. The other side of the barrel structure is comprised of long loops containing six short beta-sheets, which enclose a putative central active-site pocket. Site-directed mutagenesis of conserved residues near the N-terminal region of the inner alpha helices shows that R57, H239, E308, and H372 are strictly required for activity. E242 and R375 are also essential in catalysis. Based on the structure and kinetic analysis, H239 and H372 may serve as the key active site acid/base catalysts. These results suggest that the (alpha/alpha)(6) barrel represents a steady fold for presenting active-site residues in a cleft at the N-terminal ends of the inner alpha helices, thus forming a fine-tuned catalytic site in GlcNAc 2-epimerase.  相似文献   

12.
Branching enzymes (BEs) catalyze the formation of branch points in glycogen and amylopectin by cleavage of α-1,4 glycosidic bonds and subsequent transfer to a new α-1,6 position. BEs generally belong to glycoside hydrolase family 13 (GH13); however TK1436, isolated from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1, is the first GH57 member, which possesses BE activity. To date, the only BE structure that had been determined is a GH13-type from Escherichia coli. Herein, we have determined the crystal structure of TK1436 in the native state and in complex with glucose and substrate mimetics that permitted mapping of the substrate-binding channel and identification of key residues for glucanotransferase activity. Its structure encompasses a distorted (β/α)(7)-barrel juxtaposed to a C-terminal α-helical domain, which also participates in the formation of the active-site cleft. The active site comprises two acidic catalytic residues (Glu183 and Asp354), the polarizer His10, aromatic gate-keepers (Trp28, Trp270, Trp407, and Trp416) and the residue Tyr233, which is fully conserved among GH13- and GH57-type BEs. Despite TK1436 displaying a completely different fold and domain organization when compared to E. coli BE, they share the same structural determinants for BE activity. Structural comparison with AmyC, a GH57 α-amylase devoid of BE activity, revealed that the catalytic loop involved in substrate recognition and binding, is shortened in AmyC structure and it has been addressed as a key feature for its inability for glucanotransferase activity. The oligomerization has also been pointed out as a possible determinant for functional differentiation among GH57 members.  相似文献   

13.
The cloning, sequencing and structural characterization of a gene encoding a thermostable alpha-1,4-glucosidase from Thermomonospora curvata is described. DNA sequence analysis revealed four open reading frames designated aglA, aglR, aglE and aglF. The aglA gene encodes a thermostable alpha-1,4-glucosidase from T. curvata and is situated between two genes, aglR and aglE. Genes aglA, aglE and aglF are transcribed in the same direction, while aglR is transcribed in the opposite direction. By comparing the amino acid sequence of the alpha-1,4-glucosidase from T. curvata with other alpha-glucanases, it appears that the enzyme is a member of the alpha-amylase family. The proteins of this family have an (alpha/beta)8 barrel super secondary structure. The topology of the alpha-1,4-glucosidase was predicted by computer-assisted analysis. The topology of the secondary structures of the alpha-1,4-glucosidase resembles the structure of barley alpha-amylase, but the primary structure resembles most closely the oligo-1,6-glucosidase from Bacillus cereus. Putative catalytic residues (D221, E281 and D343) and calcium binding residues (N116, E179, D191, H224 or G225) are proposed.  相似文献   

14.
Modular glycoside hydrolases that attack recalcitrant polymers generally contain noncatalytic carbohydrate-binding modules (CBMs), which play a critical role in the action of these enzymes by localizing the appended catalytic domains onto the surface of insoluble polysaccharide substrates. Type B CBMs, which recognize single polysaccharide chains, display ligand specificities that are consistent with the substrates hydrolyzed by the associated catalytic domains. In enzymes that contain multiple catalytic domains with distinct substrate specificities, it is unclear how these different activities influence the evolution of the ligand recognition profile of the appended CBM. To address this issue, we have characterized the properties of a family 11 CBM (CtCBM11) in Clostridium thermocellum Lic26A-Cel5E, an enzyme that contains GH5 and GH26 catalytic domains that display beta-1,4- and beta-1,3-1,4-mixed linked endoglucanase activity, respectively. Here we show that CtCBM11 binds to both beta-1,4- and beta-1,3-1,4-mixed linked glucans, displaying K(a) values of 1.9 x 10(5), 4.4 x 10(4), and 2 x 10(3) m(-1) for Glc-beta1,4-Glc-beta1,4-Glc-beta1,3-Glc, Glc-beta1,4-Glc-beta1,4-Glc-beta1,4-Glc, and Glc-beta1,3-Glc-beta1,4-Glc-beta1,3-Glc, respectively, demonstrating that CBMs can display a preference for mixed linked glucans. To determine whether these ligands are accommodated in the same or diverse sites in CtCBM11, the crystal structure of the protein was solved to a resolution of 1.98 A. The protein displays a beta-sandwich with a concave side that forms a potential binding cleft. Site-directed mutagenesis revealed that Tyr(22), Tyr(53), and Tyr(129), located in the putative binding cleft, play a central role in the recognition of all the ligands recognized by the protein. We propose, therefore, that CtCBM11 contains a single ligand-binding site that displays affinity for both beta-1,4- and beta-1,3-1,4-mixed linked glucans.  相似文献   

15.
The hydrolases and transferases that constitute the alpha-amylase family are multidomain proteins, but each has a catalytic domain in the form of a (beta/alpha)(8)-barrel, with the active site being at the C-terminal end of the barrel beta-strands. Although the enzymes are believed to share the same catalytic acids and a common mechanism of action, they have been assigned to three separate families - 13, 70 and 77 - in the classification scheme for glycoside hydrolases and transferases that is based on amino acid sequence similarities. Each enzyme has one glutamic acid and two aspartic acid residues necessary for activity, while most enzymes of the family also contain two histidine residues critical for transition state stabilisation. These five residues occur in four short sequences conserved throughout the family, and within such sequences some key amino acid residues are related to enzyme specificity. A table is given showing motifs distinctive for each specificity as extracted from 316 sequences, which should aid in identifying the enzyme from primary structure information. Where appropriate, existing problems with identification of some enzymes of the family are pointed out. For enzymes of known three-dimensional structure, action is discussed in terms of molecular architecture. The sequence-specificity and structure-specificity relationships described may provide useful pointers for rational protein engineering.  相似文献   

16.
alpha-1,4-Glucan lyase cleaves alpha-1,4-linkages of nonreducing termini of alpha-1,4-glucans to produce 1,5-anhydrofructose (1,5-AnFru). The enzymes isolated from fungi and algae show high homology with glycoside hydrolase family 31. Purification of alpha-1,4-glucan lyase from rat liver using DEAE Cellulose chromatography resulted in separation of two enzymatic active fractions, one was bound to the column and the other was in the flow-through. Partial amino acid sequence determined from the lyase, retained on the anion exchange column, were identical with that of the N:-linked oligosaccharide processing enzyme glucosidase II. The lyase showed similar enzymatic properties as the microsomal glucosidase such as inhibition by 1-deoxynojirimycin and castanospermine. On the other hand, glucosidase II purified from rat liver microsomes produced not only glucose but also a small amount of 1,5-AnFru using maltose as substrate. Furthermore, CHO cells overexpressing pig liver glucosidase II showed a 1.5- to 2-fold higher lyase activity compared to the nontransfected CHO cells. Conversely, no lyase activity was detectable either in PHAR2.7, the glucosidase II-deficient mutant from a mouse lymphoma cell line, or in Saccharomyces cerevisiae strain YG427 having the glucosidase II gene disrupted. These data demonstrate that glucosidase II possesses an additional enzymatic activity of releasing 1,5-AnFru from maltose.  相似文献   

17.
The action patterns of glucoamylase (amyloglucosidase) and glucosyltransferase (transglucosylase) on D-[1-14C]glucose, [1-14C]maltose, and [1-14C]malto-oligosaccharides (labeled at position 1 of the D-glucose group at the reducing end) have been investigated by paper-chromatographic and oligosaccharide-mapping techniques. Under the conditions of the experiments, the extent of conversion of D-glucose and of maltose into new oligosaccharides was 2.2 and 1.9% with glucoamylase, and 5.7 and 33% with glucosyltransferase. The major oligosaccharides produced by both enzymes were isomaltose (6-O-alpha-D-glucopyranosyl-alpha-D-glucose), panose (O-alpha-D-glucopyranosyl (1 leads to 6)-O-alpha-D-glucopyranosyl-(1 leads to 4)-alpha-D-glucose), and nigerose (3-O-alpha-D-glucopyranosyl-alpha-D-glucose). The glucosyltransferase also synthesized oligosaccharides from malto-oligosaccharides of higher molecular weight to yield compounds having alpha-(1 leads to 6)-linked D-glucosyl groups at the non-reducing ends. Glucoamylase exhibited little, if any, such activity on malto-oligosaccharides.  相似文献   

18.
Ficko-Blean E  Stuart CP  Boraston AB 《Proteins》2011,79(10):2771-2777
CPF_2247 from Clostridium perfringens ATCC 13124 was identified as a putative carbohydrate‐active enzyme by its low sequence identity to endo‐β‐1,4‐glucanases belonging to family 8 of the glycoside hydrolase classification. The X‐ray crystal structure of CPF_2247 determined to 2.0 Å resolution by single‐wavelength anomalous dispersion using seleno‐methionine‐substituted protein revealed an (α/α)6 barrel fold. A large cleft on the surface of the protein contains residues that are structurally conserved with key elements of the catalytic machinery in clan GH‐M glycoside hydrolases. Assessment of CPF_2247 as a carbohydrate‐active enzyme disclosed α‐glucanase activity on amylose, glycogen, and malto‐oligosaccharides. Proteins 2011;. © 2011 Wiley‐Liss, Inc.  相似文献   

19.
Bacillus stearothermophilus alpha-1,4-glucosidase (BS) is highly specific for alpha-1,4-glucosidic bonds of maltose, maltooligosaccharides and alpha-glucans. Bacillus thermoglucosdasius oligo-1,6-glucosidase (BT) can specifically hydrolyse alpha-1,6 bonds of isomaltose, isomaltooligosaccharides and alpha-limit dextrin. The two enzymes have high homology in primary structure and belong to glycoside hydrolase family 13, which contain four conservative regions (I, II, III and IV). The two enzymes are suggested to be very close in structure, even though there are strict differences in their substrate specificities. Molecular determinants of substrate recognition in these two enzymes were analysed by site-directed mutagenesis. Twenty BT-based mutants and three BS-based mutants were constructed and characterized. Double substitutions in BT of Val200 -->Ala in region II and Pro258 -->Asn in region III caused an appearance of maltase activity compared with BS, and a large reduction of isomaltase activity. The values of k(0)/K(m) (s(-1). mM(-1)) of the BT-mutant for maltose and isomaltose were 69.0 and 15.4, respectively. We conclude that the Val/Ala200 and Pro/Asn258 residues in the alpha-glucosidases may be largely responsible for substrate recognition, although the regions I and IV also exert a slight influence. Additionally, BT V200A and V200A/P258N possessed high hydrolase activity towards sucrose.  相似文献   

20.
Resolution of the crystal structure of the banana fruit endo-beta-1,3-glucanase by synchrotron X-ray diffraction at 1.45-A resolution revealed that the enzyme possesses the eightfold beta/alpha architecture typical for family 17 glycoside hydrolases. The electronegatively charged catalytic central cleft harbors the two glutamate residues (Glu94 and Glu236) acting as hydrogen donor and nucleophile residue, respectively. Modeling using a beta-1,3 linked glucan trisaccharide as a substrate confirmed that the enzyme readily accommodates a beta-1,3-glycosidic linkage in the slightly curved catalytic groove between the glucose units in positions -2 and -1 because of the particular orientation of residue Tyr33 delimiting subsite -2. The location of Phe177 in the proximity of subsite +1 suggested that the banana glucanase might also cleave beta-1,6-branched glucans. Enzymatic assays using pustulan as a substrate demonstrated that the banana glucanase can also cleave beta-1,6-glucans as was predicted from docking experiments. Similar to many other plant endo-beta-1,3-glucanases, the banana glucanase exhibits allergenic properties because of the occurrence of well-conserved IgE-binding epitopes on the surface of the enzyme. These epitopes might trigger some cross-reactions toward IgE antibodies and thus account for the IgE-binding cross-reactivity frequently reported in patients with the latex-fruit syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号