首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Two monoclonal antibodies (mAb) recognizing different CD2 epitopes each inhibited anti-CD3-induced proliferation and anti-CD3-induced increase in surface CD2 expression. The magnitude of inhibition by either anti-CD2 mAb was dependent upon which anti-CD3 mAb was used as the stimulus, being more pronounced when the anti-CD3 mAb 454 was used as the stimulus than when either anti-CD3 mAb 147 or 446 was the stimulus. The effects of neuraminidase-treated sheep erythrocytes (which bind to CD2) were also more pronounced on mAb 454-induced proliferation than on mAb 147- or 446-induced proliferation. Furthermore, the effects of preincubation with anti-CD2 mAb depended upon the responder status of the donor to IgG1 anti-CD3 mAb. Preincubation of high-responder cells with anti-CD2 mAb had little effect on subsequent IgG1 anti-CD3-induced proliferation. In contrast, preincubation of low-responder cells with anti-CD2 mAb usually augmented the otherwise small proliferative response to IgG1 anti-CD3 mAb. Taken together, these observations suggest that interaction of surface CD2 with ligand alters the response of T cells to anti-CD3 mAb, but these effects depend upon the individual anti-CD3 mAb used for stimulation. These studies raise the possibility that perturbation of different parts of the CD3-T cell antigen receptor complex may lead to different sequelae, and, as a result, the T cell may respond to a given immunomodulator in different ways.  相似文献   

2.
Three monoclonal antibodies (mAb) recognizing the CD3 (T3) surface complex each induced B cell differentiation (as measured by PFC generation) in cultures containing T + non-T cells. Irradiation of the T cells before culture usually augmented the PFC response. An IgG2a mAb (454) induced PFC in all donors tested, whereas two IgG1 mAb (147 and 446) induced PFC in only 80% of the donors tested. This heterogeneity in PFC response to IgG1 anti-CD3 mAb strictly paralleled the heterogeneity in proliferative response to IgG1 anti-CD3 mAb and was governed by cells within the non-T population. In IgG1 anti-CD3 high responders (HR), all anti-CD3 mAb tested induced Tac expression. In IgG1 anti-CD3 low responders (LR), mAb 454 induced Tac expression, but mAb 147 did not. However, when the cultures were supplemented with exogenous interleukin 2, Tac expression and PFC generation in response to mAb 147 was similar to the response to mAb 454 in both HR and LR. The addition of anti-Tac to the cultures partially inhibited anti-CD3-induced PFC generation. These studies indicate that anti-CD3 mAb can lead to B cell differentiation under appropriate experimental conditions and may be valuable in studying polyclonal T cell-dependent B cell differentiation in normal and disease states.  相似文献   

3.
Addition of anti-CD3 mAb 147 (IgG1), 446 (IgG1), or 454 (IgG2a) to cultures of T plus non-T cells can result in both B cell growth and differentiation. To determine whether lymphokines mediating these activities were similar to those described from conventional mitogen-induced T cell activation, normal peripheral blood T cells were stimulated with anti-CD3 mAb for 48 h. The supernatants were assayed for factors inducing B cell growth or differentiation (BCDF). A marked increase in Ig secretion was observed when either EBV-transformed B cell lines or normal B cells, pre-activated with Staphylococcus aureus Cowan I strain, were cultured in the presence of mAb 446 (anti-CD3) stimulated T cell supernatant whereas no significant increase in Ig secretion was noted with either mAb 454- or 147-induced T cell supernatant despite equivalent T cell proliferative responses to these antibodies. In contrast, IL-2 secretion was detectable in T cell supernatants from T cells stimulated with either mAb 454 or 147 but not 446. Factors promoting B cell proliferation were detected in all antibody-stimulated T cell supernatants but, contrary to BCDF, appear to act only on non-activated B cells. To determine whether these effector activities were due to distinct lymphokines, supernatants were pooled and concentrated by ammonium sulfate precipitation. Superose 12 permeation chromatography revealed BCDF activity with an apparent Mr of approximately 30,000 Da. The growth factor activity eluted over a wider and higher molecular weight range which overlapped the differentiation factor activity. Fractions containing BCDF activity were pooled, dialyzed, applied to a Mono Q anion-exchange column, and eluted with a linear NaCl gradient. The growth factor activity came off in a single-peak while BCDF was found divided into two major areas. The growth factor eluted at an ionic strength between the two BCDF activities. BCDF has an apparent isoelectric point (pI) of 6, in contrast to the reported pI 5 for IL-6 and more acidic than the documented basic pI of IFN-gamma. Lastly, peaks with BCDF activity were not active in assays for either IL-2 or IL-4. In addition, a rabbit anti-IL-6 heteroantiserum failed to inhibit the pI 6 BCDF, suggesting non-identity between IL-6 and anti-CD3 induced BCDF. Thus, anti-CD3 activated T cells generate both growth factor activity and BCDF as separate molecular entities distinct from IFN-gamma, IL-2, IL-4, and conventional IL-6.  相似文献   

4.
Incubation of human T lymphocytes with saturating concentrations of combinations of certain anti-CD2 and -CD4 mAb results in reciprocal down-regulation of the cell surface density expression of the respective CD molecules. Such reciprocal down-regulation occurs at 0 degrees C in the presence of sodium azide and appears selective for CD2 and CD4 molecules because mAb identifying various other CD T cell surface molecules (anti-Leu2a, -OK-CLL, -W6/32, -beta 2-microglobulin, -4B4) do not modulate CD2 or CD4 R density, and because anti-CD2 mAb (anti-OKT11 and -D66 clone-1) do not alter CD8 R density (anti-OKT8, -Leu2a) and vice versa. Down-regulation of CD2 by mAb specific to CD4 is epitope-specific but does not vary on the basis of the antibody isotype used. The anti-CD4 mAb, Leu3a, was the strongest CD2 down-regulator examined followed by OKT4F. mAb specific to other CD4 epitopes (B, C, D, and E) caused only slight down-regulation of CD2 expression whereas anti-OKT4 and -OKT4A mAb had no significant regulatory effect. Also, mAb specific to the 9.6 (anti-OKT11) and D66 (anti-D66 clone 1) epitopes of the CD2 molecule down-regulated CD4 density detectable with Leu3a, OKT4, and OKT4A anti-CD4 mAb. Down-regulation of CD2 by anti-CD4 mAb also occurred with the transformed T cell line, KE-37, which demonstrates that such effects can occur without mononuclear phagocytic accessory cells. From these data it can be concluded that important T cell immunoregulatory signals may be transmitted intramembranally between CD2 and CD4 glycoproteins.  相似文献   

5.
In this report, we describe for the first time an epitope common to human myelin basic protein (H.MBP), a structural component of central nervous system myelin, and T lymphocyte CD3, an activation molecule important in signal transduction. This cross-reactive determinant was recognized by a murine mAb WW.B1, which was raised against H.MBP. WW.B1 recognized PBMC and the Jurkat T leukemic cell line, immunoprecipitated both H.MBP and a complex indistinguishable from CD3, and possessed the same biologic properties--induction of T lymphocyte proliferation and inhibition of CTL function--as commercially available anti-CD3 antibodies. It is likely, however, that the epitope recognized by WW.B1 is distinct from those recognized by the anti-CD3 mAb OKT3 and anti-Leu-4. Although the biologic importance of this common determinant awaits further clarification, it is conceivable that autoimmunization to MBP could induce similar immunoregulatory antibody specificities.  相似文献   

6.
The CD44 molecule, also known as Hermes lymphocyte homing receptor, human Pgp-1, and extracellular matrix receptor III, has been shown to play a role in T cell adhesion and activation. Specifically, anti-CD44 mAb block binding of lymphocytes to high endothelial venules, inhibit T cell-E rosetting, and augment T cell proliferation induced by the CD2 or CD3-TCR pathways. We have characterized an anti-CD44 mAb (212.3) which immunoprecipitates a 90-kDa protein and is specific for CD44 as shown by peptide mapping and antibody competition studies. Interestingly, our studies with 212.3 demonstrate that this CD44-specific mAb completely inhibits T cell proliferation stimulated by the anti-CD3 mAb, OKT3. Inhibition is not a result of reduced cell viability, but is associated with 1) inhibition of IL-2 production, 2) inhibition of IL-2R expression, and 3) inhibition of OKT3-mediated increases in intracellular Ca2+ levels. In addition, 212.3 does not inhibit proliferation by the T cell mitogens PHA or PWM nor does it inhibit proliferation in a mixed lymphocyte reaction. Similar to other anti-CD44 mAb, 212.3 also augments T cell proliferation induced by mAb directed against the T11(2) and T11(3) epitopes of CD2. Thus, these studies describe a novel CD44-specific mAb (212.3) that inhibits T cell activation by OKT3 by blocking early signal transduction. Furthermore, these studies suggest that "receptor cross-talk" between the CD3-TCR complex and CD44 may regulate T cell activation.  相似文献   

7.
Expression of CD5 regulates responsiveness to IL-1   总被引:1,自引:0,他引:1  
The role of the CD5 surface molecule in T cell responsiveness to IL-1 was examined. A CD5-mutant Jurkat cell line was generated from a CD5+ parent cell line. This CD5- mutant subclone was infected with a defective retrovirus containing the CD5 cDNA and/or the neo gene encoding G418 resistance. The CD5+ wild type Jurkat produced IL-2 in response to anti-CD3 mAb, OKT3, cross-linked to a solid surface. IL-2 production was enhanced by co-culture with IL-1 or anti-CD5 Mab. Neither the CD5- mutant nor the CD5- G418-resistant infectant responded to anti-CD5 mAb or to IL-1. Responsiveness to IL-1 was restored by cell surface expression of CD5 in the CD5+ infectant. Both the CD5+ wild type Jurkat and the CD5+ infectant responded equivalently to purified IL-1, IL-1 alpha and rIL-1 beta. Optimal concentrations of IL-1 and anti-CD5 mAb had an additive effect on the enhancement of IL-2 production stimulated with cross-linked anti-CD3 mAb suggesting that IL-1 and CD5 act through distinct, complementary pathways to augment T cell activation. The correlation of CD5 expression and specific binding of rIL-1 beta was examined in these cell lines. Both the specific binding (at 4 degrees C) and subsequent internalization (at 37 degrees C) of 125I labeled rIL-1 beta was equivalent in the CD5+ infectant and the CD5+ wild type Jurkat cell, whereas specific binding of 125I-labeled rIL-1 beta was markedly decreased in the CD5-G418-resistant infectant. These observations strongly suggest that cell surface expression of CD5 regulates binding of and responsiveness to IL-1.  相似文献   

8.
In this study the effect of anti-cluster designation (CD) 2 monoclonal antibodies (mAb) on the activation of a cloned human T cell line, HY837, after triggering the CD3/T cell receptor (TcR) complex by anti-CD3 or anti-TcR mAb is described. HY837, which reacts with a series of mAb directed at different epitopes on the TcR, could be induced to proliferation and interleukin 2 (IL-2) production by soluble mAb directed at the CD3/TcR complex in the absence of accessory cells. mAb directed at the CD2 epitope T11-1 were shown to block the IL-2 production by HY837, as well as the expression of the IL-2 receptor, induced by anti-CD3 mAb, resulting in the inhibition of the proliferative response. The effect of anti-CD2 mAb on the proliferative response of HY837, induced by anti-CD3 mAb, was not due to a competition for Fc binding sites. In contrast, the proliferative responses and IL-2 production of HY837, induced by mAb directed at the TcR, were shown to be enhanced by the action of the anti-CD2 mAb. These results indicate that effects mediated by anti-CD3/TcR mAb cannot always be extrapolated to antigen-mediated effects and show that anti-CD2 mAb may regulate the T cell response, induced by mAb directed at the CD3/TcR complex, depending on which part of this complex is triggered during activation.  相似文献   

9.
Microbial superantigens can alter host immunity through aberrant activation and subsequent anergy of responding naive T cells. We show here that the superantigen, staphylococcal enterotoxin B (SEB), directly induces tolerance in memory CD4 T cells. Murine naive and memory CD4(+) T cells were labeled with the fluorescent dye CFSE and the cells were exposed to SEB before they were cultured with specific peptide antigen. Memory, but not naive, T cells became anergic and did not respond to their cognate peptide antigen. The extent and duration of T cell receptor (TCR) clustering was similar to promote naive T cell activation and memory T cell anergy, suggesting similar TCR-SEB interactions led to distinct intracellular signaling processes in the two cell types. Like SEB, soluble anti-CD3 mAb does not stimulate memory cell proliferation. However, unlike SEB, soluble anti-CD3 mAbs did not induce anergy to cognate peptide. Anergy was directly visualized in vivo. CD4(+) memory T cells were identified in mice that had been administered SEB. The cells failed to proliferate in response to subsequent immunization with their cognate recall antigen. Hence, one mode of pathogen survival is the modulation of host immunity through selective elimination of memory T cell responses.  相似文献   

10.
We used three anti-human anti-CD3 mAb each recognizing different surface CD3 epitopes to differentially perturb the CD3/TCR complex on the surface of Jurkat T cells. In the presence of phorbol ester, these anti-CD3 mAb triggered differential IL-2 production in Jurkat T cells, which could not be explained by differences in kinetics of IL-2 production, by differences in IL-2 adsorption caused by differential surface expression of p55 or p75 IL-2R, by effects on IL-2 secretion rather than actual synthesis, or by differential toxicities of the anti-CD3 mAb to Jurkat cells. In addition, this differential anti-CD3-induced IL-2 production could not be explained by differences in mAb isotype or in avidities of the anti-CD3 mAb for the Jurkat cells. Moreover, anti-CD3 mAb covalently immobilized onto beads also differentially induced IL-2 production in Jurkat cells, suggesting that the differential IL-2 response is not based on differential rates of anti-CD3-induced modulation of Jurkat cell surface CD3. Although differences among the anti-CD3 mAb in the initial rates of binding to Jurkat cell were observed, this was also believed unlikely to explain the differential IL-2 response. Regardless of the anti-CD3 mAb used, anti-CD3-induced total inositol phosphate (IP) production did not necessarily correlate with anti-CD3-induced IL-2 production. Nevertheless, despite the differences among the anti-CD3 mAb in inducing IL-2 production, the calcium responses were grossly similar. Taken together, these observations indicate that CD3/TCR-mediated IL-2 production in Jurkat cells can be dissociated from total IP generation, and the basis of differential CD3/TCR-mediated IL-2 production in these cells does not appear to be at the level of the initial activation-induced calcium response. These studies suggest that the nature of the CD3/TCR ligand (its physical form and/or the specific epitope it perturbs) can either directly influence intracellular events distal to the generation of IP and increase in intracellular free calcium leading to differential IL-2 production or can trigger IP-independent pathways that affect IL-2 production.  相似文献   

11.
The human CD30 molecule is expressed transiently at very low levels on intrafollicular and perifollicular T and B cell blasts in lymphoid tissues, but is specifically upregulated on certain tumor cells, e.g. Hodgkin and Reed-Sternberg (H-RS) cells. With its specific expression pattern and easy accessibility on the surface of H-RS cells CD30 is a valuable diagnostic marker and holds considerable promise as a target for in vivo immunotherapy. Knowledge of epitopes on the CD30 molecule is expected to facilitate the design of novel non-immunogenic anti-CD30 reagents. Therefore, we have mapped the epitopes of several monoclonal antibodies (mAb) applying a peptide array of overlapping CD30-derived peptides. For the mAb Ber-H2, two linear epitopes with identical sequence were found, while the mAb Ki-2 and the single chain Fv fragment R4-4 each recognized a single linear antigenic determinant, respectively. On the other hand, the mAb Ki-1 bound to a discontinuous epitope composed of two regions, one located near the N-terminus and the other near the membrane-spanning region of CD30. Using molecular modeling, it was possible to visualize the location of the epitopes on exposed loop regions of the molecule within the N-terminal domain. Finally, the results obtained with the mAb Ki-1 imply that the ends of the N- and C-terminal parts of the extracellular portion of CD30 are in close vicinity of each other, suggesting a flower-like structure for the membrane-bound homotrimeric CD30 molecule.  相似文献   

12.
Although both IL-2 and IL-4 can promote the growth of activated T cells, IL-4 appears to selectively promote the growth of those helper/inducer and cytolytic T cells which have been activated via their CD3/TCR complex. The present study examines the participation of CD28 and certain other T cell-surface molecules in inducing T cell responsiveness to IL-4. Purified small high density T cells were cultured in the absence of accessory cells with various soluble anti-human T cell mAb with or without soluble anti-CD3 mAb and their responsiveness to IL-4 was studied. None of the soluble anti-T cell mAb alone was able to induce T cell proliferation in response to IL-4. A combination of soluble anti-CD3 with anti-CD28 mAb but not with mAb directed at the CD2, CD5, CD7, CD11a/CD18, or class I MHC molecules induced T cell proliferation in response to IL-4. Anti-CD2 and anti-CD5 mAb enhanced and anti-CD18 mAb inhibited this anti-CD3 + anti-CD28 mAb-induced T cell response to IL-4. In addition, anti-CD2 in combination with anti-CD3 and anti-CD28 mAb induced modest levels of T cell proliferation even in the absence of exogenous cytokines. IL-1, IL-6, and TNF were each unable to replace either anti-CD3 or anti-CD28 mAb in the induction of T cell responsiveness to IL-4, but both IL-1 and TNF enhanced this response. The anti-CD3 + anti-CD28 mAb-induced response to IL-4 was exhibited only by cells within the CD4+CD29+CD45R- memory T subpopulation, and not by CD8+ or CD4+CD45R+ naive T cells. When individually cross-linked with goat anti-mouse IgG antibody immobilized on plastic surface, only anti-CD3 and anti-CD28 mAb were able to induce T cell proliferation. These results indicate that the CD3 and CD28 molecules play a crucial role in inducing T cell responsiveness to IL-4 and that the CD2, CD5, and CD11a/CD18 molecules influence this process.  相似文献   

13.
We have recently shown that engagement of the human monocytic Ag CD14 by murine mAb induces lymphocyte function-associated antigen-1/intercellular adhesion molecule-1-dependent homotypic adhesion. To determine whether CD14 plays a role in monocyte-T cell interactions, we tested the effect of anti-CD14 mAb on the proliferation of human T cells. Our results show that anti-CD14 mAb strongly inhibited T cell proliferation induced by Ag, anti-CD3 mAb, and mitogenic lectins. Inhibition by anti-CD14 mAb was epitope-dependent and required physical contact between monocytes and T cells. CD14 engagement did not affect IL-2R expression or IL-2 synthesis but induced a state of unresponsiveness that was not IL-2 specific; proliferation of anti-CD3-activated T cell blasts in response to both IL-2 and IL-4 was abrogated by addition of monocytes preincubated with anti-CD14 mAb. Inhibition of T cell proliferation after engagement of CD14 on monocytes was likely to result from delivery of a negative signal to T cells, rather than from disruption of a costimulatory monocyte-derived signal, because incubation of monocytes with anti-CD14 mAb also inhibited monocyte-independent T cell proliferation induced by PMA and ionophore. These results, together, point to a role of CD14 in the monocyte-dependent regulation of T cell proliferation.  相似文献   

14.
15.
A series of mouse monoclonal anti-CD4 preparations was characterized for the ability to recognize overlapping epitopes on CD4 and to inhibit HIV/simian immunodeficiency virus (SIV) syncytium formation. Based on this characterization, mAb able to recognize CD4 epitopes overlapping the HIV binding site were selected and used to immunize nonhuman primates to elicit the production of specific anti-Id antibodies. Five baboons and five rhesus monkeys were immunized with either individual or a cocktail consisting of several monoclonal anti-CD4 preparations. All the nonhuman primates produced specific anti-Id that recognized either private or cross-reactive Id depending on the monoclonal anti-CD4 used to generate the anti-Id response. Inhibition assays were performed to ascertain the ability of: 1) soluble CD4 to inhibit the Id-anti-Id reaction and 2) the various anti-Id to inhibit the CD4-monoclonal anti-CD4 reaction. These studies demonstrated that some of the anti-Id recognized a cross-reactive Id that was associated with the Ag-combining site. In addition, some of the anti-Id weakly recognized SIV gp120 by Western blot analysis. These studies may be useful in designing experiments that may lead to a better understanding of the CD4-HIV gp120 interaction and to the production of Id and/or anti-Id reagents that might be used to manipulate this virus-receptor interaction.  相似文献   

16.
We describe the requirements for T cell activation by a mAb termed 4-10 that recognizes a novel determinant on MHC class I molecules. The determinant recognized by mAb 4-10 appears on resting T cells of all individuals tested (n greater than 30). Unlike previously described anti-class I mAb, 4-10 was shown to be directly mitogenic for T cells obtained from more than 20 normal donors. In order for 4-10 to exert its mitogenic effect on purified T cell populations it must be immobilized on a solid support. Immobilization of 4-10 can be circumvented if low numbers of adherent cells are added to the T cell cultures. mAb 4-10 preferentially activates the CD8+ T cell subset as judged by the fact that CD8+ T cells preferentially down-regulated their TCR after 4-10 activation and because CD4+ T cell activation with 4-10 requires approximately five times the concentration of mAb needed to reach comparable levels of activation observed with CD8+ T cells. We further observed that simultaneous cross-linking of class I and CD8 Ag by using 4-10 and anti-CD8 mAb almost completely abrogated the proliferative response of T cells when anti-CD8 was presented in immobilized form. In contrast, similar cross-linking with 4-10 and anti-CD4 diminished the response by about 20%. We also found that other anti-class I mAb were able to synergize in the activation of T cells with mAb 4-10 in a dose-dependent manner.  相似文献   

17.
Recognition of peptide Ags by T cells through the TCR can be highly specific. In this report we show the degeneracy of Ag recognition at both MHC and TCR levels. We present evidence that unrelated promiscuous Th cell epitopes from various protein sources exhibit sufficient structural homology, despite minimal structural identity, to elicit cross-reactive proliferative responses at the bulk T cell level. This epitopic mimicry was also observed when peptide (CS.T3(378-395) and TT(830-844))-specific CD4+ T cell lines and T cell hybridoma clones were used in proliferation and Ag presentation assays. A scrambled CS.T3(378-395) peptide did not show any proliferation, indicating that the specificity of the cross-reactive responses may be linked with the primary structure of the peptides. Blocking of CS.T3(378-395)-specific CD4+ T cell proliferation by anti-MHC class II mAb showed that recognition of promiscuous T cell epitopes is largely in association with MHC class II molecules. These findings suggest that promiscuous Th epitopes may be useful in designing peptide-based vaccine constructs. At the same time these results show that at the T cell level there may be a great deal of immunological cross-reactivity between heterologous pathogens, and because of this the host's response to a pathogen may be modified by its previous experience with other unrelated pathogens.  相似文献   

18.
The mAb 131 to a determinant preferentially expressed on the gene products of the HLA-A locus, the mAb Q6/64 and 4E to determinants preferentially expressed on the gene products of the HLA-B locus, the anti-HLA-A2,A28 mAb CR11-351, HO-2, HO-3, HO-4, and KS1, and the anti-HLA-B7 cross-reacting group mAb KS4 enhanced proliferation of T cells in most, if not all, the PBMC preparations stimulated with the anti-CD2 mAb 9-1 + 9.6. The mAb CR10-215, W6/32, and 6/31 to distinct monomorphic determinants of HLA class I antigens enhanced CD2-induced T cell proliferation in at most 30% of the PBMC preparations tested. The anti human beta 2-microglobulin (beta 2-mu) mAb NAMB-1 displayed no detectable effect on the proliferation of T cells stimulated with the mAb 9-1 + 9.6. The enhancing effect of anti-HLA class I mAb is specific, is dose dependent, is not abrogated by the addition of exogenous IL-1 and IL-2 to the cultures, and reflects the interaction of anti-HLA class I mAb with T cells. Enhancement of CD2 mediated proliferation of T cells is not a unique property of anti-HLA class I mAb, since the anti-HLA class II mAb Q5/6 and Q5/13 also had a similar effect. Analysis of the kinetics of the enhancing effect of anti-HLA class I mAb suggests that they modulate an early event of T cell activation and may affect the interaction of T cells with mAb 9-1. Phenotyping of T lymphocytes activated by mAb 9-1 + 9.6 in the presence of anti-HLA class I mAb suggests that the enhancing effect of anti-HLA class I mAb may reflect the recruitment of a higher percentage of T cells. The present study has shown for the first time that certain, but not all, the determinants of the HLA class I molecular complex are involved in the proliferation of T cells stimulated with the anti-CD2 mAb 9-1 + 9.6. Furthermore, the inhibitory effect of mAb CR11-351, KS1, Q6/64, and W6/32 on the proliferation of T cells stimulated with mAb OKT3 or with mAb BMA 031 indicates that the same determinants of HLA class I antigens play a differential regulatory role in T cell proliferation induced via the CD2 and CD3 pathway.  相似文献   

19.
A mAb (I/24) has been generated that is specific for a determinant on mouse CD45 molecules. Reactivity of this mAb with a panel of CD45 transfected cell lines demonstrated that the determinant recognized is dependent upon expression of one or more CD45 variable exons and that exon C is sufficient for its expression. The exon C-specific epitope detected by I/24 is expressed at high density on essentially all B lymphocytes and at an intermediate density on the vast majority of CD8+ splenic T cells. Two distinct subpopulations of CD4+ splenic T cells were detected, a minor subpopulation that expresses this exon determinant at high density and a major subpopulation that expresses it at a much lower density. This first identification of a CD45RC-specific reagent allowed a comparison of the expression of exon A-, exon B-, and exon C-specific determinants on peripheral and thymic lymphoid populations. When splenic lymphocytes were analyzed for expression of CD45RA (reactive with mAb 14.8), CD45RB (reactive with mAb 23G2 or mAb 16.A), and CD45RC (reactive with mAb I/24) determinants, it was found that each of these CD45 determinants had a distinct pattern of expression on CD4+ and CD8+ T cells and B cells. CD45RB and RC epitopes were also detected at high density on a small proportion (0.7 to 4.1%) of thymocytes. Both CD45RB and RC epitopes were found predominantly on CD4-CD8- and CD4-CD8+ thymocytes but were also found on small numbers of CD4+CD8+ and CD4+CD8- cells. The population of thymocytes that expressed CD45RB and CD45RC determinants displayed a novel TCR CD3 phenotype characterized by a level of expression that was intermediate between that seen in the larger CD3 bright and CD3 dull populations of thymocytes.  相似文献   

20.
It has previously been reported that T lymphocytes can be targeted by using bispecific antibodies consisting of anti-target antibody and anti-CD3. In the present study, a bispecific mAb was developed by somatic hybridization of mouse hybridomas, one producing a mAb against the Id determinant of the mouse B cell lymphoma 38C13 and the other a mAb against a polymorphic determinant on murine CD3. The bispecific antibody, anti-38C13 x anti-CD3, is bi-isotypic (IgG1 x IgG2a) and was purified by ion exchange and affinity chromatography. The dual specificity of the hybrid hybridoma-produced mAb could be demonstrated by flow cytometry, the induction of T cell proliferation, the induction of IL-2 secretion by polyclonal T cells, and redirected lysis of the relevant target cells. The hybrid (bi-isotypic) Fc part of the bispecific antibodies was nonfunctional in FcR-dependent redirected lysis. In vivo studies demonstrate that this bispecific mAb could efficiently target T cells towards the tumor cells, resulting in long term survival and cure of the lymphoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号