首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In cyclic hamsters, exogenous progesterone (100 micrograms) administered s.c. at 09:00 h on the day of dioestrus II reduced prostaglandin (PG) E and 6-keto PGF-1 alpha but not PGF concentrations in preovulatory follicles measured at 09:00 h of pro-oestrus. The injection of 10 micrograms ovine LH (NIADDK-oLH-25) concurrently with 100 micrograms progesterone on dioestrus II prevented the decline in follicular PGE and 6-keto PGF-1 alpha values. Administration of LH alone did not significantly alter follicular PG concentrations. Inhibition of follicular PGE accumulation by progesterone was due to a decline in granulosa PGE concentration and not thecal PGE. Progesterone administration also reduced follicular oestradiol concentrations. Administration of oestradiol-17-cyclopentanepropionate (ECP) (10 micrograms) with progesterone did not prevent the decline in follicular PGE and 6-keto PGF-1 alpha but did increase follicular PGF concentrations. However, ECP given alone on dioestrus II reduced follicular PGE and increased PGF concentrations in preovulatory follicles on pro-oestrus. It is concluded that exogenous progesterone administered on dioestrus II inhibits granulosa PGE and 6-keto PGF-1 alpha accumulation in preovulatory follicles, probably by reducing serum LH concentrations, and that the granulosa cells, which are LH-dependent, are a major source of follicular PGE.  相似文献   

2.
The experimental objective was to evaluate how a spontaneously formed corpus luteum (CL) differed in its response to prostaglandin (PG) F-2 alpha, given during the first 5 days after ovulation, from a CL induced during dioestrus with hCG. Sixteen Holstein heifers were used during each of 2 consecutive oestrous cycles. During the first cycle (sham cycle), heifers were given no PGF-2 alpha (control) or PGF-2 alpha (25 mg, i.m.) on Day 2, 4 or 6 (oestrus = Day 0). During the second cycle (hCG-treated cycle), heifers were given hCG (5000 i.u., i.m.) on Day 10, followed by no PGF-2 alpha (control) or PGF-2 alpha on Day 12, 14 or 16, corresponding to 2, 4 or 6 days after the ovulatory dose of hCG. A new ovulation was induced in 13 of 16 heifers given hCG on Day 10. Luteolysis did not occur immediately in heifers given PGF-2 alpha on Day 2 or 4 during the sham cycle, but concentration of progesterone in serum during the remainder of the cycle was lower in heifers given PGF-2 alpha on Day 4 than in sham controls or heifers given PGF-2 alpha on Day 2 (P less than 0.05). Luteolysis occurred immediately in heifers given PGF-2 alpha on Day 6 of the sham cycle or on Day 12, 14 or 16 of the hCG-treated cycle, with concentration of progesterone in serum decreasing to less than 1 ng/ml within 2 days.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Successful ovulation requires elevated follicular prostaglandin E2 (PGE2) levels. To determine which PGE2 receptors are available to mediate periovulatory events in follicles, granulosa cells and whole ovaries were collected from monkeys before (0 h) and after administration of an ovulatory dose of hCG to span the 40-h periovulatory interval. All PGE2 receptor mRNAs were present in monkey granulosa cells. As assessed by immunofluorescence, PTGER1 (EP1) protein was low/nondetectable in granulosa cells 0, 12, and 24 h after hCG but was abundant 36 h after hCG administration. PTGER2 (EP2) and PTGER3 (EP3) proteins were detected by immunofluorescence in granulosa cells throughout the periovulatory interval, and Western blotting showed an increase in PTGER2 and PTGER3 levels between 0 h and 36 h after hCG. In contrast, PTGER4 (EP4) protein was not detected in monkey granulosa cells. Granulosa cell response to PGE2 receptor agonists was examined 24 h and 36 h after hCG administration, when elevated PGE2 levels present in periovulatory follicles initiate ovulatory events. PGE2 acts via PTGER1 to increase intracellular calcium. PGE2 increased intracellular calcium in granulosa cells obtained 36 h, but not 24 h, after hCG; this effect of PGE2 was blocked by a PTGER1 antagonist. A PTGER2-specific agonist and a PTGER3-specific agonist each elevated cAMP in granulosa cells obtained 36 h, but not 24 h, after hCG. Therefore, the granulosa cells of primate periovulatory follicles express multiple receptors for PGE2. Granulosa cells respond to agonist stimulation of each of these receptors 36 h, but not 24 h, after hCG, supporting the hypothesis that granulosa cells are most sensitive to PGE2 as follicular PGE2 levels peak, leading to maximal PGE2-mediated periovulatory effects just before ovulation.  相似文献   

4.
Metabolism of PGE-2 and PGF-2 alpha by cytosolic fractions (100 000 g supernatant) of rabbit uterus, oviduct and lung was measured in vitro. Metabolism of PGE-2 was greater than that of PGF-2 alpha for oviduct and uterus. After an ovulating injection of hCG metabolism of both PGE-2 and PGF-2 alpha by lung and uterus declined linearly up to 72 h (during the time of ovum transport). The amount of PG metabolism by the oviduct did not change significantly during this period, but the percentage changes of PGE-2 and PGF-2 alpha metabolism from oestrous values did differ, and perhaps indicated a change in the ratio of intracellular PGs. No change of metabolism of either PG by lung, uterus or oviduct occurred at 24 or 72 h after an injection of 250 micrograms oestradiol cyclopentylpropionate given concomitantly with the hCG (a treatment regimen which causes 'tube-locking' of ova). However, progesterone treatment, in a regimen known to cause accelerated transport of ova through the oviduct, caused significantly enhanced metabolism of both PGE-2 and PGF-2 alpha by uterus and oviduct, but not lung, 30 and 48 h later except for PGE-2 by uterus at 30 h. These results suggest that changes in metabolism of PGE-2 and PGF-2 alpha by the oviduct may be involved in the mechanisms controlling ovum transport.  相似文献   

5.
Prostaglandin production in vitro by theca and granulosa cells isolated from prepubertal pig ovaries was quantified in order to investigate the role of prostaglandins in intrafollicular function. Prepubertal gilts were slaughtered without treatment (O h, control) or treated with 1000 IU pregnant mare's serum gonadotropin (PMSG) and slaughtered at 36 or 72 h, or at 75 h following treatment with 500 IU of hCG at 72 h. Theca and granulosa cells were isolated from preovulatory follicles and cultured for 24 h alone or with follicle-stimulating hormone (FSH) or luteinizing hormone (LH). In vitro accumulation of 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha), prostaglandin E2 (PGE2) and prostaglandin F2 alpha (PGF2 alpha) was measured by radioimmunoassay. On a per follicle basis theca produced more of each prostaglandin (approx. 10-fold) than granulosa at each stage of follicular development; production by each tissue type increased with development of the follicle, responding to administration of gonadotropin (PMSG) in vivo. Neither tissue type was generally responsive to further gonadotropin stimulation in vitro. However, production of PGE2 by granulosa cells was increased by addition of gonadotropin, particularly LH, in vitro, with the greatest response observed in tissue obtained at 36 and 72 h after PMSG. There were no functional correlates between prostaglandin production and steroidogenesis by either tissue type and we conclude that prostaglandins do not have an obligatory role in follicular steroidogenesis. However, these data provide additional circumstantial evidence for a role of PGE2 in granulosa cell luteinization, and possibly in ovulation. The data also indicate that prostaglandins derived from thecal tissue in relatively large quantities may play an important role in ovulation.  相似文献   

6.
In immature, diethylstilboestrol-treated chicks, ligation of the oviduct caused local avidin synthesis in the immediate vicinity of the ligature. PGF-2alpha injected directly into the oviduct also induced avidin synthesis, whereas saline or PGE-2 had no effect. PGE and PGF-2alpha concentrations increased in the oviduct within 24 h of ligation: the PGE increase could be partly inhibited by indomethacin, whereas that of PGF-2alpha was less inhibited. An LD50 dose of indomethacin alone and with ligation had a clear stimulatory effect on avidin synthesis, whereas aspirin alone, or with ligation, was not effective. Ligation alone and with indomethacin appeared to alter the PGF-2alpha/PGE ratio. These results suggest that PGF-2alpha may be involved in the regulation of avidin synthesis in the chick oviduct.  相似文献   

7.
Immature rats were treated with PMSG followed 56 h later by 10 i.u. hCG. Follicles were removed at intervals after hCG injection. Transient increases in progesterone, testosterone and oestradiol synthesis were first evident 1 h after hCG, but values peaked at 3-5 h and returned to control levels by 10 h. Increased synthesis of PGE-2 and PGF-2 alpha was not evident until 3 h and peaked at more than 10 h after hCG. Ovulation began between 8 and 10 h after hCG and 83% of animals had ovulated within 12 h. Doses of 90 or 1800 micrograms indomethacin given together with hCG substantially inhibited ovulation and PG synthesis, but only the higher dose inhibited the hCG-induced elevation of progesterone and testosterone synthesis; hCG-induced oestradiol synthesis was not affected by either dose of indomethacin. We conclude that the peak of PG synthesis after hCG treatment related closely to the timing of ovulation; the steroidogenic response to hCG was not blocked by doses of indomethacin sufficient to inhibit synthesis of PGE-2 and PGF-2 alpha by more than 80%.  相似文献   

8.
Pregnant rats were injected with mifepristone (RU 486) on Day 15 of pregnancy. The force and frequency of uterine contractions, recorded by a microballoon technique, were significantly greater at 12, 24 and 36 h in treated than in control rats (11.9 +/- 1.9 vs. 8.9 +/- 1.2 units, 17.7 +/- 3.0 vs. 10.5 +/- 2.3 units and 16.8 +/- 2.9 vs. 8.8 +/- 1.8 units for force and 51.3 +/- 9.1 vs. 29.4 +/- 3.8/h, 35.4 +/- 6.4 vs. 22.1 +/- 4.9/h and 35.6 +/- 3.2 vs. 24.6 +/- 4.6/h for frequency, respectively). There was no significant difference in concentrations of prostaglandin (PG) E-2 or PGF-2 alpha between treated and control rats at 12 h and 24 h after injection. At 36 h, 7 of 12 rats were aborting and uterine PG concentrations in these were significantly greater than in the others (1.5 +/- 0.2 vs. 0.9 +/- 0.2 ng PGE-2/g and 38.6 +/- 19.2 vs. 16.9 +/- 5.4 ng PGF-2 alpha/g), but there was no significant difference between control and treated rats that were not aborting. Concentrations of PGE-2 and PGF-2 alpha were significantly higher at 48 h when abortion had occurred in all animals (6.5 +/- 2.6 vs. 2.4 +/- 1.7 ng PGE-2/g and 30.4 +/- 8.9 vs. 9.3 +/- 5.6 ng PGF-2 alpha/g). Thus, the increase in uterine contractile activity induced by mifepristone preceded significant changes in concentrations of PGE-2 and PGF-2 alpha in the uterus and so could not have been caused by these changes.  相似文献   

9.
10.
Prostaglandin E2 (PGE2) mediates many effects of the midcycle luteinizing hormone (LH) surge within the periovulatory follicle. Differential expression of the four PGE2 (EP) receptors may contribute to the specialized functions of each granulosa cell subpopulation. To determine if EP receptors are differentially expressed in granulosa cells, monkeys received gonadotropins to stimulate ovarian follicular development. Periovulatory events were initiated with human chorionic gonadotropin (hCG); granulosa cells and whole ovaries were collected before (0 h) and after (24-36 h) hCG to span the 40-h primate periovulatory interval. EP receptor mRNA and protein levels were quantified in granulosa cell subpopulations. Cumulus cells expressed higher levels of EP2 and EP3 mRNA compared with mural cells 36 h after hCG. Cumulus cell EP2 and EP3 protein levels also increased between 0 and 36 h after hCG. Overall, mural granulosa cells expressed low levels of EP1 protein at 0 h and higher levels 24-36 h after hCG. However, EP1 protein levels were higher in granulosa cells away from the follicle apex compared with apex cells 36 h after hCG. Higher levels of PAI-1 protein were measured in nonapex cells, consistent with a previous study showing EP1-stimulated PAI-1 protein expression in monkey granulosa cells. EP4 protein levels were low in all subpopulations. In summary, cumulus cells likely respond to PGE2 via EP2 and EP3, whereas PGE2 controls rupture of a specific region of the follicle via EP1. Therefore, differential expression of EP receptors may permit each granulosa cell subpopulation to generate a unique response to PGE2 during the process of ovulation.  相似文献   

11.
The role of PGF-2 alpha in determining the lifespan of corpora lutea in the post-partum beef cow was investigated. In control cows (N = 5) induced to ovulate at Day 28 to 36 post partum by injection of 1000 i.u. hCG, corpora lutea had an average lifespan of only 8 days. In cows pretreated with 6 mg implants of a progestagen (norgestomet, N = 4) for 9 days, with implant removal 2 days before injection of hCG, luteal lifespan averaged 17.5 days. Concentrations of PGF-2 alpha in 9 hourly samples of plasma collected from the posterior vena cava via indwelling catheters were higher on Days 4 through 9 after injection of hCG (P less than 0.05) in the cows with short-lived corpora lutea. Greater release of PGF-2 alpha could therefore be a major factor in premature luteal regression. Concentrations of PGFM and oxytocin did not differ between cows with corpora lutea of short or normal lifespan. In a second experiment, concentrations of PGF-2 alpha in plasma from the posterior vena cava were examined during treatment with norgestomet (N = 8) or in contemporary controls (N = 7). In progestagen-treated cows, PGF-2 alpha was higher than in control cows (P less than 0.05), beginning on Day 3 of treatment and peaking on Day 5. It is concluded that the post-partum uterus increases secretion of PGF-2 alpha very early after first exposure to endogenous or exogenous progestagen.  相似文献   

12.
Flunixin meglumine (FM), a prostaglandin synthetase inhibitor, causes ovulatory failure in the mare. However, the effect of the FM treatment relative to the time of hCG administration on the ovulation failure has not been determined nor has its effect on the luteal function of treated mares. Estrous mares with a follicle ≥32 mm (range of 32-38 mm) were treated with 1.7 mg/kg b.w. of FM iv at zero, 12, 24 and 36 h (n=6), at 24 and 36 h (n=6), at 28 and 36 h (n=6), at 24h (n=6) or at 30 h (n=6) after treatment with 1500 IU hCG. One group received no FM (control, n=6). Progesterone concentrations were determined using RIA. Mares treated with FM 0-36 h and 24-36 h had higher (P<0.05) incidence of ovulatory failure (83 and 80%, respectively) than mares treated twice at 28 and 36 h, or once at 24 or at 30 h after hCG (16.7, 0 and 0%, respectively). The anovulatory follicles of FM treated mares luteinized and produced progesterone (>2 ng/ml). The progesterone concentration was lower in mares treated with FM at zero to 36 h and at 24-36 h after hCG than in the other groups. In conclusion, the FM administration was effective in blocking ovulation only when the treatment began ≤24 h after hCG and was continued every 12 h until ≥36 h. In addition, the FM-induced anovulatory follicles underwent luteinization of follicular cells with active production of progesterone.  相似文献   

13.
Interrelationships between production of progesterone (P4), prostaglandin (PG) E2 and PGF2 alpha, and collagenase by periovulatory ovine follicles and their possible involvements in the ovulatory process were investigated. Follicles were isolated from ovaries at intervals (0 to 24 h) after the initiation of the preovulatory surge of luteinizing hormone (LH). Progesterone and PGs within follicles were determined by radioimmunoassay. Digestion of radioactive collagen during coincubation with tissue homogenates was used to assess the production of a bioactive follicular collagenase(s). Follicular accumulation of PGs and P4 increased at 12 and 16 h, respectively, after the onset of the surge of LH; PGE2 then decreased at 20 h. Collagenolytic activity of follicular tissue increased at 20 h and was maximal at 24 h (during the time of follicular rupture). An inhibitor of synthesis of P4 (isoxazol) or PGs (indomethacin) was injected into the follicular antrum at 8 h. Isoxazol did not prevent the initial rise in PGs, but inhibited synthesis of PGF2 alpha at 16 h and therafter. Isoxazol negated the decline in PGE2 and increase in collagenolysis. Indomethacin did not influence synthesis of P4; however, it suppressed collagenolytic activity of follicular tissue. Ovaries with treated follicles were left in situ and observed for an ovulation point at 30 h. Isoxazol or indomethacin was a potent inhibitor of ovulation. The blockade of ovulation by isoxazol was reversed by systemic administration of P4 or PGF2 alpha, but not by PGE2. Reversal of the blockade by indomethacin was accomplished with PGE2 or PGF2 alpha. Collagenolytic activity of follicular tissue was likewise restored by such treatments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Nitric oxide (NO) is synthesized by the rat ovary and a role in the follicular development, the ovulation, and the luteal formation has been postulated. The aims this study were to determine the activity of nitric oxide synthase (NOs) enzyme during the ovulatory process and to demonstrate the existence of a relationship between the ovarian NO production and the synthesis of prostaglandins (PGs) involved in the follicular rupture. Prepuberal rats treated with PMSG/hCG to induce ovulation were used. The NOs activity, measured by [(14)C]citrulline formation, showed an increase after PMSG administration and reached a maximum at 10 h after hCG injection. NOs activity remained high up to 24 h post ovulation. At 10 h after the hCG injection, the activity of Ca(2+)-dependent NOs (constitutive NOs) was similar to that seen at 0 h, and the activity of Ca(2+)-independent NOs (inducible NOs) increased from 14.4 to 51% of total activity. The in vitro ovarian production of PGE and PGF(2alpha) was inhibited by L-NAME and stimulated by 3-morpho-linosydnonimine (SIN-1), a NO donor. The in vivo production of ovarian prostaglandins was also inhibited by the intrabursal administration of two NOs inhibitors, N(G)-nitro-L-arginine methyl ester (L-NAME) and N(G)-monomethyl-L-arginine (L-NMMA). Our results suggest that the inducible NOs (iNOs) is the main isoform involved in the ovulatory process and that the NO produced stimulates the synthesis of both PGE and PGF(2alpha) from the cyclooxygenase pathway, to enhance the process of follicle rupture.  相似文献   

15.
Prepubertal gilts were treated with 750 IU pregnant mares' serum gonadotropin (PMSG) and 72 h later with 500 IU human chorionic gonadotropin (hCG) to induce follicular growth and ovulation. Dispersed granulosa (GC) and theca interna (TIC) cells were prepared by microdissection and enzymatic digestion from follicles obtained 36, 72 and 108 h after PMSG treatment and incubated for up to 6 h in a chemically defined medium in the presence or absence of arachidonic acid, follicle-stimulating hormone (FSH), luteinizing hormone (LH) and indomethacin. Production of prostaglandin E2 (PGE) and prostaglandin F2 alpha (PGF) was measured by radioimmunoassay. Both GC and TIC had the capacity to produce prostaglandins, with production by each cell type increasing markedly with follicular maturation. PGE was the major prostaglandin produced by both cellular compartments. Only PGE production by GC was consistently enhanced by addition of arachidonic acid to the incubation medium. Neither cell type was responsive to FSH and LH in vitro. Indomethacin inhibited the production of PGE and PGF by both cell types. These results provide convincing evidence for an intrafollicular source of prostaglandins and indicate that both cellular compartments contribute significantly to the increased production of prostaglandins associated with follicular rupture.  相似文献   

16.
An increase in the plasma concentrations of prostaglandins (PGs) is associated with uterine contractile activity and with oviposition in the hen. In order to assess the contribution of potential sources of prostaglandins to the increase in prostaglandin levels observed at oviposition, prostaglandins E2, F2 alpha, and 13,14-dihydro-15-keto PGF2 alpha (PGFM, the stable but biologically less active metabolite of PGF2 alpha) were measured in plasma from the brachial vein, ovarian follicular vein and uterine vein, and in tissues from ovarian follicles and the uterus 12 h before and at midsequence oviposition or a terminal oviposition. These two ovipositions differ in that a midsequence oviposition is followed within 0.25-1.0 h by the next ovulation of the sequence, whereas the terminal oviposition is followed by an ovulation 14 h later. The concentration of PGFM in plasma from the brachial vein increased at midsequence oviposition, while the levels of PGE2 were unchanged. Prostaglandin E2, F2 alpha, and FM levels were each similar in the plasma from the brachial and uterine veins at the time of midsequence oviposition. In plasma from the largest preovulatory follicle, the concentration of PGF2 alpha and PGFM increased 19- and 7-fold, respectively, from 12 h before midsequence oviposition to midsequence oviposition, although no changes were observed in the concentrations of PGE2 during this interval. The levels of PGF2 alpha increased in the tissues of the two largest preovulatory follicles and the two most recently ruptured follicles during the 12-h period before a midsequence oviposition, while there was no change or a decrease in PGE2 levels in these tissues during the same interval. In contrast, the concentration of PGF2 alpha did not increase during the 12-h period preceding the terminal oviposition of the sequence in plasma from the brachial, uterine, or follicular veins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Administration of oestradiol-17 beta benzoate on Days 9 and 10 of the oestrous cycle resulted in episodic secretion of PGF-2 alpha (as indicated by elevated circulating concentrations of 13,14-dihydro-15-ketoprostaglandin F-2 alpha) and a decline in circulating progesterone. Release of PGF-2 alpha began 35 +/- 3 h after first injection of oestrogen and progesterone concentrations declined from 42 +/- 3 h. Secretion of oxytocin, which was first observed 26 +/- 3 h after oestrogen treatment, preceded secretion of PGF-2 alpha; 69% of pulses of oxytocin coincided with episodes of PGF-2 alpha secretion. Uterine oxytocin receptor concentrations were raised in ewes treated with oestrogen, increases occurring in caruncular endometrium and myometrium by 12 h after treatment and in intercaruncular endometrium by 24 h. Raised receptor concentrations were followed at 24 h by increases in the incorporation of [3H]inositol into phosphatidylinositol and in the hydrolysis of labelled tissue phosphoinositides in response to oxytocin in slices of caruncular endometrium incubated in vitro. The following sequence of events is therefore suggested to occur at oestrogen-induced luteolysis: induction of the oxytocin receptor; increased turnover of phosphoinositides; onset of episodic secretion of PGF-2 alpha; and functional luteolysis.  相似文献   

18.
Two studies were performed to determine effects of prostaglandin F2alpha (PGF2alpha) on continued development of pre-compacted (in vitro-produced) and compacted (in vivo-derived) bovine embryos. In Experiment 1, pre-compacted embryos were placed in KSOM media supplemented with polyvinyl alcohol (0.3%) and assigned to the following treatments: (1) control; (2) PGF-1 (1 ng/mL PGF2alpha); (3) PGF-10 (10 ng/mL PGF2alpha); (4) PGF-100 (l00 ng/mL PGF2alpha); or (5) PGE-5 (5 ng/mL PGE2). Following 4 days of incubation in assigned treatments, continued development of pre-compacted embryos to blastocysts was reduced by addition of PGF2alpha in culture medium (P = 0.002). Development did not differ between control and PGE2 treatments (P > 0.10). In Experiment 2, compacted morula' s were placed in KSOM-PVA supplemented media and assigned to one of four treatments: (1) control; (2) PGF-0.1 (0.1 ng/mL PGF2alpha); (3) PGF-1 (1 ng/mL PGF2alpha); and (4) PGF-10 (10 ng/mL PGF2alpha). After 24h in culture, embryos were washed and placed in KSOM-BSA (0.5%) without PGF2alpha for an additional 48 h until assessment for development. Continued development of compacted morula to blastocyst was not affected by addition of PGF2alpha to the culture medium (P > 0.10). However, hatching rates of embryos cultured with PGF2alpha were lower (P = 0.05). In conclusion, it is suggested that PGF2alpha has a direct negative effect on continued embryonic development of pre-compacted and compacted bovine embryos.  相似文献   

19.
In bovines characterization of biochemical and molecular determinants of the dominant follicle before and during different time intervals after gonadotrophin surge requires precise identification of the dominant follicle from a follicular wave. The objectives of the present study were to standardize an experimental model in buffalo cows for accurately identifying the dominant follicle of the first wave of follicular growth and characterize changes in follicular fluid hormone concentrations as well as expression patterns of various genes associated with the process of ovulation. From the day of estrus (day 0), animals were subjected to blood sampling and ultrasonography for monitoring circulating progesterone levels and follicular growth. On day 7 of the cycle, animals were administered a PGF(2alpha) analogue (Tiaprost Trometamol, 750 microg i.m.) followed by an injection of hCG (2000 IU i.m.) 36 h later. Circulating progesterone levels progressively increased from day 1 of the cycle to 2.26+/-0.17 ng/ml on day 7 of the cycle, but declined significantly after PGF(2alpha) injection. A progressive increase in the size of the dominant follicle was observed by ultrasonography. The follicular fluid estradiol and progesterone concentrations in the dominant follicle were 600+/-16.7 and 38+/-7.6 ng/ml, respectively, before hCG injection and the concentration of estradiol decreased to 125.8+/-25.26 ng/ml, but concentration of progesterone increased to 195+/-24.6 ng/ml, 24h post-hCG injection. Inh-alpha and Cyp19A1 expressions in granulosa cells were maximal in the dominant follicle and declined in response to hCG treatment. Progesterone receptor, oxytocin and cycloxygenase-2 expressions in granulosa cells, regarded as markers of ovulation, were maximal at 24h post-hCG. The expressions of genes belonging to the super family of proteases were also examined; Cathepsin L expression decreased, while ADAMTS 3 and 5 expressions increased 24h post-hCG treatment. The results of the current study indicate that sequential treatments of PGF(2alpha) and hCG during early estrous cycle in the buffalo cow leads to follicular growth that culminates in ovulation. The model system reported in the present study would be valuable for examining temporo-spatial changes in the periovulatory follicle immediately before and after the onset of gonadotrophin surge.  相似文献   

20.
Membrane preparations from endometria of rats in different physiological states (e.g. pseudopregnancy, ovariectomized animals receiving progesterone + oestradiol or oestradiol alone) were studied for [3H]PGF-2 alpha binding by methods which detected PGF-2 alpha binding in ovary preparations and PGE binding in the same endometrial preparations. There was no evidence of high-affinity binding sites for [3H]PGF-2 alpha. Saturable [3H]PGF-2 alpha binding that increased with the onset of uterine sensitivity was detected but this binding does not fulfil all the criteria required for a PGF-2 alpha receptor and is probably due to binding to PG metabolizing enzymes in our preparations, or to binding of [3H]PGF-2 alpha to PGE binding sites. The failure to detect specific PGF-2 alpha binding sites seems to reflect a true absence of these sites in the rat endometrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号