首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wood is almost as important to humanity as food, and the natural forests from which most of it is harvested from are of enormous environmental value. However, these slow-growing forests are unable to meet current demand, resulting in the loss and degradation of forest. Plantation forests have the potential to supply the bulk of humanity's wood needs on a long-term basis, and so reduce to acceptable limits the harvest pressures on natural forests. However, if they are to be successful, plantation forests must have a far higher yield of timber than their natural counterparts, on much shorter rotation times. To achieve this in reasonable time, biotechnology must be applied to the tree-improvement process, for which large increases in public and private capital investment are needed. However, additional obstacles exist in the form of opposition to plantations, some forest ecocertification schemes, and concerns about aspects of forest biotechnology, especially genetic engineering. It is the intention of this article to explain, in detail, why plantation forests are needed to sustainably meet the world's demand for wood, why they are not being developed fast enough, and why the application of biotechnology to tree improvement is essential to speeding up this process.  相似文献   

2.
Climate change induces multiple abiotic and biotic risks to forests and forestry. Risks in different spatial and temporal scales must be considered to ensure preconditions for sustainable multifunctional management of forests for different ecosystem services. For this purpose, the present review article summarizes the most recent findings on major abiotic and biotic risks to boreal forests in Finland under the current and changing climate, with the focus on windstorms, heavy snow loading, drought and forest fires and major insect pests and pathogens of trees. In general, the forest growth is projected to increase mainly in northern Finland. In the south, the growing conditions may become suboptimal, particularly for Norway spruce. Although the wind climate does not change remarkably, wind damage risk will increase especially in the south, because of the shortening of the soil frost period. The risk of snow damage is anticipated to increase in the north and decrease in the south. Increasing drought in summer will boost the risk of large‐scale forest fires. Also, the warmer climate increases the risk of bark beetle outbreaks and the wood decay by Heterobasidion root rot in coniferous forests. The probability of detrimental cascading events, such as those caused by a large‐scale wind damage followed by a widespread bark beetle outbreak, will increase remarkably in the future. Therefore, the simultaneous consideration of the biotic and abiotic risks is essential.  相似文献   

3.
The Austrian Forest Biodiversity Index: All in one   总被引:1,自引:0,他引:1  
Forest biodiversity cannot be measured and monitored directly. Indicators are needed to tackle this task and must be based on scientifically valid relationships concerning different levels of biodiversity. In addition, indicators must provide tangible goals for forest policy and other relevant stakeholders. Here, we propose a single aggregated measure – the Austrian Forest Biodiversity Index (AFBI) – which is composed of different indicator values being weighed depending on their significance for the maintenance of forest species richness and genetic diversity. The AFBI consists of nine state and four response indicators. Selection of state indicators was based on the general hypothesis that forests which mimic natural conditions or are characterised by structural elements of old-growth forests maintain a high number of forest dependent species and a high genetic richness therein. Among the response indicators we considered the establishment of natural forest reserves, genetic reserve forests, seed stands and seed orchards as most relevant. Proposed operational tools, especially for state indicators, are mainly based on the Austrian forest inventory. The sum of all weighted indicator measures is rescaled as a total score that may vary from 0 to 100, so that the AFBI is simple to communicate and straightforward to apply. The AFBI gives certain weight to genetic parameters which are often neglected in previous approaches.  相似文献   

4.
In the future, a significant proportion of Northern forests may become intensively managed through the planting of monospecific stands of native or introduced trees, and the use of multiple silvicultural treatments such as forest fertilization. Such an intensification of management in selected parts of the landscape is suggested by different zoning models, for example the Triad approach, which is under evaluation in some regions of North America. In this study, based on Fennoscandian conditions, we predicted landscape-scale extinction risks of five hypothetical model insect species dependent on fresh dead wood from Norway spruce (Picea abies), by simulating colonizations and local extinctions in forest stands. Intensified forestry applied to 50% of the spruce stands led to strongly increased extinction risks of all species during the following 150 years. For one species—the sun-exposure specialist—there were strong effects already after 50 years. The negative effects of intensive plantation forestry could be compensated for by taking greater biodiversity conservation measures in other managed forests or by setting aside more forests. This is consistent with the Triad model, which is according to our analyzes an effective way to decrease extinction risks, especially for the short-dispersing species and the species associated with closed forest. A zoning of forest land into intensive forestry, conventional forestry, and set asides may be better at combining increased timber production and maintenance of biodiversity in comparison to landscapes where all production forests are managed in the same way.  相似文献   

5.
Forests are vital to the world's ecological, social, cultural and economic well‐being yet sustainable provision of goods and services from forests is increasingly challenged by pressures such as growing demand for wood and other forest products, land conversion and degradation, and climate change. Intensively managed, highly productive forestry incorporating the most advanced methods for tree breeding, including the application of genetic engineering (GE), has tremendous potential for producing more wood on less land. However, the deployment of GE trees in plantation forests is a controversial topic and concerns have been particularly expressed about potential harms to the environment. This paper, prepared by an international group of experts in silviculture, forest tree breeding, forest biotechnology and environmental risk assessment (ERA) that met in April 2012, examines how the ERA paradigm used for GE crop plants may be applied to GE trees for use in plantation forests. It emphasizes the importance of differentiating between ERA for confined field trials of GE trees, and ERA for unconfined or commercial‐scale releases. In the case of the latter, particular attention is paid to characteristics of forest trees that distinguish them from shorter‐lived plant species, the temporal and spatial scale of forests, and the biodiversity of the plantation forest as a receiving environment.  相似文献   

6.
Forest biotechnology has been increasingly associated with wood production using plantation forestry, and has stressed applications that use pedigreed material and transgenic trees. Reasons for this emphasis include limitations of available technologies to conform to underlying genetic features of undomesticated forest tree populations. More recently, genomic technologies have rapidly begun to expand the scope of forest biotechnology. Genomic technologies are well suited to describe and make use of the abundant genetic variation present in undomesticated forest tree populations. Genomics thus enables new research and applications for conservation and management of natural forests, and is a primary technological driver for new research addressing the use of forests trees for carbon sequestration, biofuels feedstocks, and other 'green' applications.  相似文献   

7.
Global change exposes forest ecosystems to many risks including novel climatic conditions, increased frequency of climatic extremes and sudden emergence and spread of pests and pathogens. At the same time, forest landscape restoration has regained global attention as an integral strategy for climate change mitigation. Owing to unpredictable future risks and the need for new forests that provide multiple ecosystem services, mixed-species forests have been advocated for this purpose. However, the successful establishment of mixed forests requires intrinsic knowledge of biodiversity's role for forest ecosystem functioning. In this respect, a better understanding of tree-tree interactions and how they contribute to observed positive tree species richness effects on key ecosystem functions is critical. Here, we review the current knowledge of the underlying mechanisms of tree-tree interactions and argue that positive net biodiversity effects at the community scale may emerge from the dominance of positive over negative interactions at the local neighbourhood scale. In a second step, we demonstrate how tree-tree interactions and the immediate tree neighbourhood's role can be systematically assessed in a tree diversity experiment. The expected results will improve predictions about the effects of tree interactions on ecosystem functioning based on general principles. We argue that this knowledge is urgently required to guide the design of tree species mixtures for the successful establishment of newly planted forests.  相似文献   

8.
Plantation forests,climate change and biodiversity   总被引:1,自引:0,他引:1  
Nearly 4 % of the world’s forests are plantations, established to provide a variety of ecosystem services, principally timber and other wood products. In addition to such services, plantation forests provide direct and indirect benefits to biodiversity via the provision of forest habitat for a wide range of species, and by reducing negative impacts on natural forests by offsetting the need to extract resources. There is compelling evidence that climate change is directly affecting biodiversity in forests throughout the world. These impacts occur as a result of changes in temperature, rainfall, storm frequency and magnitude, fire frequency, and the frequency and magnitude of pest and disease outbreaks. However, in plantation forests it is not only the direct effects of climate change that will impact on biodiversity. Climate change will have strong indirect effects on biodiversity in plantation forests via changes in forest management actions that have been proposed to mitigate the effects of climate change on the productive capacity of plantations. These include changes in species selection (including use of species mixtures), rotation length, thinning, pruning, extraction of bioenergy feedstocks, and large scale climate change driven afforestation, reforestation, and, potentially deforestation. By bringing together the potential direct and indirect impacts of climate change we conclude that in the short to medium term changes in plantation management designed to mitigate or adapt to climate change could have a significantly greater impact on biodiversity in such plantation forests than the direct effects of climate change. Although this hypothesis remains to be formally tested, forest managers worldwide are already considering new approaches to plantation forestry in an effort to create forests that are more resilient to the effects of changing climatic conditions. Such change presents significant risks to existing biodiversity values in plantation forests, however it also provides new opportunities to improve biodiversity values within existing and new plantation forests. We conclude by suggesting future options, such as functional zoning and species mixtures applied at either the stand level or as fine-scale mosaics of single-species stands as options to improve biodiversity whilst increasing resilience to climate change.  相似文献   

9.
10.
The forests of North America provide a variety of benefits including water, recreation, wildlife habitat, timber, and other forest products. However, they continue to face many biotic and abiotic stressors including fires, native and invasive pests, fragmentation, and air pollution. Forest health specialists have been monitoring the health of forests for many years. This paper highlights some of the most damaging forest stressors affecting North American forests in recent years and provides some projections of future risks.  相似文献   

11.
Opinions about public lands and the actions of private non-industrial forest owners in the western United States play important roles in forested landscape management as both public and private forests face increasing risks from large wildfires, pests and disease. This work presents the responses from two surveys, a random-sample telephone survey of more than 1500 residents and a mail survey targeting owners of parcels with 10 or more acres of forest. These surveys were conducted in three counties (Wallowa, Union, and Baker) in northeast Oregon, USA. We analyze these survey data using structural equation models in order to assess how individual characteristics and understanding of forest management issues affect perceptions about forest conditions and risks associated with declining forest health on public lands. We test whether forest understanding is informed by background, beliefs, and experiences, and whether as an intervening variable it is associated with views about forest conditions on publicly managed forests. Individual background characteristics such as age, gender and county of residence have significant direct or indirect effects on our measurement of understanding. Controlling for background factors, we found that forest owners with higher self-assessed understanding, and more education about forest management, tend to hold more pessimistic views about forest conditions. Based on our results we argue that self-assessed understanding, interest in learning, and willingness to engage in extension activities together have leverage to affect perceptions about the risks posed by declining forest conditions on public lands, influence land owner actions, and affect support for public policies. These results also have broader implications for management of forested landscapes on public and private lands amidst changing demographics in rural communities across the Inland Northwest where migration may significantly alter the composition of forest owner goals, understanding, and support for various management actions.  相似文献   

12.
The fixation and storage of C by tropical forests, which contain close to half of the globe's biomass C, may be affected by elevated atmospheric CO2 concentration. Classical theoretical approaches assume a uniform stimulation of photosynthesis and growth across taxa. Direct assessments of the C balance either by flux studies or by repeated forest inventories also suggest a current net uptake, although magnitudes sometimes exceed those missing required to balance the global C cycle. Reasons for such discrepancies may lie in the nature of forest dynamics and in differential responses of taxa or plant functional types. In this contribution I argue that CO2 enrichment may cause forests to become more dynamic and that faster tree turnover may in fact convert a stimulatory effect of elevated CO2 on photosynthesis and growth into a long-term net biomass C loss by favouring shorter-lived trees of lower wood density. At the least, this is a scenario that deserves inclusion into long-term projections of the C relations of tropical forests. Species and plant functional type specific responses ('biodiversity effects') and forest dynamics need to be accounted for in projections of future C storage and cycling in tropical forests.  相似文献   

13.
本文系笔者通过1973年5—8月对云南东北部三江口林区的全面调查后而写成的。文中主要以本区的包石栎,三脉水丝群落为对象,着重讨论了森林群落的生态条件、森林的性质和现状、演替动态及其利用方向等问题,为合理开发该区的森林和植物资源,提出了科学根据,供有关部门和单位参考。  相似文献   

14.
Human disturbance threatens and modifies forest ecosystems worldwide. Previous studies have investigated the effects of human impact on local bird communities in disturbed forests, but we still lack information on how bird species richness and ecological processes respond to different forest modifications present at a landscape scale. In a heterogeneous South African landscape, we chose six types of indigenous scarp forest, differing in the intensity of human disturbance: continuous natural forests and natural forest fragments in nature reserves, forest fragments in eucalyptus plantations, fragments in the agricultural matrix, forest gardens and secondary forests in game reserves. In 36 study sites, we investigated the bird community using point counts and observed the seed removal of birds at the native tree species Celtis africana. Species richness did not differ among the forest types, but abundance varied significantly with most birds observed in fragments in the agricultural matrix, forest gardens, and secondary forests. The higher bird abundance in these forests was mainly due to forest generalists, shrubland and open country species whereas forest specialists were rarely present. Changes in species composition were also confirmed by multivariate analysis which clearly separated bird communities by forest type. Frugivore abundance in C. africana was highest in natural forest fragments, fragments in the agricultural matrix, forest gardens and secondary forests. The same trend was found for the estimated total number of fruits removed per C. africana tree, though the differences among forest types were not significant. Consequently, modified forests seem to maintain important ecological functions as they provide food sources for generalist species which may, due to their mobility, enhance natural plant regeneration. However, we could show that protected forest habitats are important refugees for specialist species sensitive to human disturbance.  相似文献   

15.
Biotechnology is at the intersection of science and ethics. Technological developments are shaped by an ethical vision, which in turn is shaped by available technology. Much in biotechnology can be celebrated for how it benefits humanity. But technology can have a darker side. Biotechnology can produce unanticipated consequences that cause harm or dehumanise people. The ethical implications of proposed developments must be carefully examined. The ethical assessment of new technologies, including biotechnology, requires a different approach to ethics. Changes are necessary because new technology can have a more profound impact on the world; because of limitations with a rights-based approach to ethics; because of the importance and difficulty of predicting consequences; and because biotechnology now manipulates humans themselves. The ethical questions raised by biotechnology are of a very different nature. Given the potential to profoundly change the future course of humanity, such questions require careful consideration. Rather than focussing on rights and freedoms, wisdom is needed to articulate our responsibilities towards nature and others, including future generations. The power and potential of biotechnology demands caution to ensure ethical progress.  相似文献   

16.
Tropical forests are global epicentres of biodiversity and important modulators of the rate of climate change. Recent research on deforestation rates and ecological changes within intact forests, both areas of recent research and debate, are reviewed, and the implications for biodiversity (species loss) and climate change (via the global carbon cycle) addressed. Recent impacts have most likely been: (i) a large source of carbon to the atmosphere, and major loss of species, from deforestation and (ii) a large carbon sink within remaining intact forest, accompanied by accelerating forest dynamism and widespread biodiversity changes. Finally, I look to the future, suggesting that the current carbon sink in intact forests is unlikely to continue, and that the tropical forest biome may even become a large net source of carbon, via one or more of four plausible routes: changing photosynthesis and respiration rates, biodiversity changes in intact forest, widespread forest collapse via drought, and widespread forest collapse via fire. Each of these scenarios risks potentially dangerous positive feedbacks with the climate system that could dramatically accelerate and intensify climate change. Given that continued land-use change alone is already thought to be causing the sixth mass extinction event in Earth's history, should such feedbacks occur, the resulting biodiversity and societal consequences would be even more severe.  相似文献   

17.
次生林概念与生态干扰度   总被引:12,自引:0,他引:12  
朱教君  刘世荣 《生态学杂志》2007,26(7):1085-1093
近一个世纪强烈的人为干扰使世界范围内的原始林面积锐减,次生林已成为中国乃至世界森林资源的主体.虽然在文献与现实中"次生林(Secondary forest)"被广泛使用,但次生林的概念在各个国家,甚至同一国家或地区以及各种不同文献中存在相互矛盾的情况,这给次生林研究与经营实践带来诸多不便;而不准确的次生林定义也为与各个层次的决策制定者及公众之间的交流带来了障碍.本文在查阅大量国内外关于次生林概念文献的基础上,结合近年来关于次生林生态与经营研究实践,综合分析了次生林概念的不确定性,同意以往次生林定义中的基本内涵,并认为:次生林是由于人为破坏性干扰或异常自然干扰使原始林固有的林分结构、物种组成或基本功能发生了显著变化,经过天然更新或人工诱导天然更新恢复形成的林分.但该定义中仍存在着很多不确定性, 如:怎样的干扰为"人为破坏性干扰"和"异常自然干扰";"林分结构、物种组成或基本功能"发生了怎样的变化为"显著变化";"人工诱导天然更新"中"人工"参与的成分比例如何等.次生林概念是在20世纪初由植物演替学家提出,当时未考虑干扰的持续性;而实际上,无论是次生林还是原始林,均是森林生态系统演替过程中的某一状态,在现代森林生态系统研究中,应重新规范"次生林"的概念.考虑到"次生林"定义的不确定性或困难性,建议使用"森林自然度"或"森林生态系统成熟度"或"森林干扰度"来表达现实森林所处的状态,但该方面的研究与实践尚需加强.  相似文献   

18.
森林退化/衰退的研究与实践   总被引:7,自引:3,他引:4  
森林退化可以理解为森林面积减少、结构丧失、质量降低、功能下降;森林衰退则是森林退化的一种形式,指森林(树木)在生长发育过程中出现的生理机能下降、生长发育滞缓、生产力降低甚至死亡,以及地力衰退等状态.国内外研究表明,森林采伐/毁林是造成森林面积减少的最主要原因,有关森林采伐/毁林引起的森林退化研究主要集中在森林退化的后果、国家/国际政策的影响、加强全球性合作以及寻求解决途径等方面.森林衰退原因可归纳为:工、农业污染,自然胁迫/致衰因子,林分动态发生变化,森林衰退病或生态病,人工纯林以及纯林连栽导致的地力、生产力衰退等.中国的森林退化/衰退现状与世界各地森林退化基本一致,但由于历史原因,中国森林退化又有其自身特点:近一个世纪的强烈人为干扰,使大部分原始天然林退化为次生林;中国拥有世界上最多的人工林,且多数人工林均具有质量差、功能低等衰退特征.本文在综述森林退化/衰退研究与实践基础上,提出中国现代森林退化/衰退的的主要原因,给出中国森林退化/衰退的基本对策.  相似文献   

19.
Craig Loehle 《Plant Ecology》1988,79(3):109-115
Stability analysis of whole forests is proposed as a qualitative tool for the study of forest responses to partial or patchy harvests or mortality. Instead of modeling every tree or stand, aggregate tree biomass is modeled. In order to aggregate stands, spatial effects must be incorporated. It is shown that depensation growth responses (reduced growth at low biomass) are common because forests often modify harch environments to be more suitable for their growth. Depensation can result from thinning, partial mortality, patchy cutting, or clearcutting, depending on forest type and abiotic factors. Examples of these types of behaviors are given. Stability analysis of different growth regimes under exploitation are related to catastrophe theory and to optimal harvesting policies. Such qualitative analysis is shown to be applicable to data-poor regions such as the tropics where there is great concern over responses of forests to exploitation.  相似文献   

20.
Old‐growth tropical forests are being extensively deforested and fragmented worldwide. Yet forest recovery through succession has led to an expansion of secondary forests in human‐modified tropical landscapes (HMTLs). Secondary forests thus emerge as a potential repository for tropical biodiversity, and also as a source of essential ecosystem functions and services in HMTLs. Such critical roles are controversial, however, as they depend on successional, landscape and socio‐economic dynamics, which can vary widely within and across landscapes and regions. Understanding the main drivers of successional pathways of disturbed tropical forests is critically needed for improving management, conservation, and restoration strategies. Here, we combine emerging knowledge from tropical forest succession, forest fragmentation and landscape ecology research to identify the main driving forces shaping successional pathways at different spatial scales. We also explore causal connections between land‐use dynamics and the level of predictability of successional pathways, and examine potential implications of such connections to determine the importance of secondary forests for biodiversity conservation in HMTLs. We show that secondary succession (SS) in tropical landscapes is a multifactorial phenomenon affected by a myriad of forces operating at multiple spatio‐temporal scales. SS is relatively fast and more predictable in recently modified landscapes and where well‐preserved biodiversity‐rich native forests are still present in the landscape. Yet the increasing variation in landscape spatial configuration and matrix heterogeneity in landscapes with intermediate levels of disturbance increases the uncertainty of successional pathways. In landscapes that have suffered extensive and intensive human disturbances, however, succession can be slow or arrested, with impoverished assemblages and reduced potential to deliver ecosystem functions and services. We conclude that: (i) succession must be examined using more comprehensive explanatory models, providing information about the forces affecting not only the presence but also the persistence of species and ecological groups, particularly of those taxa expected to be extirpated from HMTLs; (ii) SS research should integrate new aspects from forest fragmentation and landscape ecology research to address accurately the potential of secondary forests to serve as biodiversity repositories; and (iii) secondary forest stands, as a dynamic component of HMTLs, must be incorporated as key elements of conservation planning; i.e. secondary forest stands must be actively managed (e.g. using assisted forest restoration) according to conservation goals at broad spatial scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号