首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background  

Normalization is the process of removing non-biological sources of variation between array experiments. Recent investigations of data in gene expression databases for varying organisms and tissues have shown that the majority of expressed genes exhibit a power-law distribution with an exponent close to -1 (i.e. obey Zipf's law). Based on the observation that our single channel and two channel microarray data sets also followed a power-law distribution, we were motivated to develop a normalization method based on this law, and examine how it compares with existing published techniques. A computationally simple and intuitively appealing technique based on this observation is presented.  相似文献   

3.

Background  

In microarray gene expression profiling experiments, differentially expressed genes (DEGs) are detected from among tens of thousands of genes on an array using statistical tests. It is important to control the number of false positives or errors that are present in the resultant DEG list. To date, more than 20 different multiple test methods have been reported that compute overall Type I error rates in microarray experiments. However, these methods share the following dilemma: they have low power in cases where only a small number of DEGs exist among a large number of total genes on the array.  相似文献   

4.

Background  

The biomedical community is rapidly developing new methods of data analysis for microarray experiments, with the goal of establishing new standards to objectively process the massive datasets produced from functional genomic experiments. Each microarray experiment measures thousands of genes simultaneously producing an unprecedented amount of biological information across increasingly numerous experiments; however, in general, only a very small percentage of the genes present on any given array are identified as differentially regulated. The challenge then is to process this information objectively and efficiently in order to obtain knowledge of the biological system under study and by which to compare information gained across multiple experiments. In this context, systematic and objective mathematical approaches, which are simple to apply across a large number of experimental designs, become fundamental to correctly handle the mass of data and to understand the true complexity of the biological systems under study.  相似文献   

5.

Background  

Although homeobox genes have been the subject of many studies, little is known about the main amino acid changes that occurred early in the evolution of genes belonging to different classes.  相似文献   

6.

Background  

Multiple gene expression signatures derived from microarray experiments have been published in the field of leukemia research. A comparison of these signatures with results from new experiments is useful for verification as well as for interpretation of the results obtained. Currently, the percentage of overlapping genes is frequently used to compare published gene signatures against a signature derived from a new experiment. However, it has been shown that the percentage of overlapping genes is of limited use for comparing two experiments due to the variability of gene signatures caused by different array platforms or assay-specific influencing parameters. Here, we present a robust approach for a systematic and quantitative comparison of published gene expression signatures with an exemplary query dataset.  相似文献   

7.

Background  

Given the epidemic proportions of obesity worldwide and the concurrent prevalence of metabolic syndrome, there is an urgent need for better understanding the underlying mechanisms of metabolic syndrome, in particular, the gene expression differences which may participate in obesity, insulin resistance and the associated series of chronic liver conditions. Real-time PCR (qRT-PCR) is the standard method for studying changes in relative gene expression in different tissues and experimental conditions. However, variations in amount of starting material, enzymatic efficiency and presence of inhibitors can lead to quantification errors. Hence the need for accurate data normalization is vital. Among several known strategies for data normalization, the use of reference genes as an internal control is the most common approach. Recent studies have shown that both obesity and presence of insulin resistance influence an expression of commonly used reference genes in omental fat. In this study we validated candidate reference genes suitable for qRT-PCR profiling experiments using visceral adipose samples from obese and lean individuals.  相似文献   

8.
9.

Background  

The choice of probe set algorithms for expression summary in a GeneChip study has a great impact on subsequent gene expression data analysis. Spiked-in cRNAs with known concentration are often used to assess the relative performance of probe set algorithms. Given the fact that the spiked-in cRNAs do not represent endogenously expressed genes in experiments, it becomes increasingly important to have methods to study whether a particular probe set algorithm is more appropriate for a specific dataset, without using such external reference data.  相似文献   

10.
11.

Background  

A central task in contemporary biosciences is the identification of biological processes showing response in genome-wide differential gene expression experiments. Two types of analysis are common. Either, one generates an ordered list based on the differential expression values of the probed genes and examines the tail areas of the list for over-representation of various functional classes. Alternatively, one monitors the average differential expression level of genes belonging to a given functional class. So far these two types of method have not been combined.  相似文献   

12.

Background  

A major goal of the analysis of high-dimensional RNA expression data from tumor tissue is to identify prognostic signatures for discriminating patient subgroups. For this purpose genome-wide identification of bimodally expressed genes from gene array data is relevant because distinguishability of high and low expression groups is easier compared to genes with unimodal expression distributions.  相似文献   

13.

Background  

A variety of diseases are caused by chromosomal abnormalities such as aneuploidies (having an abnormal number of chromosomes), microdeletions, microduplications, and uniparental disomy. High density single nucleotide polymorphism (SNP) microarrays provide information on chromosomal copy number changes, as well as genotype (heterozygosity and homozygosity). SNP array studies generate multiple types of data for each SNP site, some with more than 100,000 SNPs represented on each array. The identification of different classes of anomalies within SNP data has been challenging.  相似文献   

14.

Background  

Cluster analysis, and in particular hierarchical clustering, is widely used to extract information from gene expression data. The aim is to discover new classes, or sub-classes, of either individuals or genes. Performing a cluster analysis commonly involve decisions on how to; handle missing values, standardize the data and select genes. In addition, pre-processing, involving various types of filtration and normalization procedures, can have an effect on the ability to discover biologically relevant classes. Here we consider cluster analysis in a broad sense and perform a comprehensive evaluation that covers several aspects of cluster analyses, including normalization.  相似文献   

15.

Background  

We are interested in understanding the locational distribution of genes and their functions in genomes, as this distribution has both functional and evolutionary significance. Gene locational distribution is known to be affected by various evolutionary processes, with tandem duplication thought to be the main process producing clustering of homologous sequences. Recent research has found clustering of protein structural families in the human genome, even when genes identified as tandem duplicates have been removed from the data. However, this previous research was hindered as they were unable to analyse small sample sizes. This is a challenge for bioinformatics as more specific functional classes have fewer examples and conventional statistical analyses of these small data sets often produces unsatisfactory results.  相似文献   

16.

Background  

Assessment of array quality is an essential step in the analysis of data from microarray experiments. Once detected, less reliable arrays are typically excluded or "filtered" from further analysis to avoid misleading results.  相似文献   

17.

Background  

Differentially expressed genes are typically identified by analyzing the variation between replicate measurements. These procedures implicitly assume that there are no systematic errors in the data even though several sources of systematic error are known.  相似文献   

18.

Background

Microarray technology provides an efficient means for globally exploring physiological processes governed by the coordinated expression of multiple genes. However, identification of genes differentially expressed in microarray experiments is challenging because of their potentially high type I error rate. Methods for large-scale statistical analyses have been developed but most of them are applicable to two-sample or two-condition data.

Results

We developed a large-scale multiple-group F-test based method, named ranking analysis of F-statistics (RAF), which is an extension of ranking analysis of microarray data (RAM) for two-sample t-test. In this method, we proposed a novel random splitting approach to generate the null distribution instead of using permutation, which may not be appropriate for microarray data. We also implemented a two-simulation strategy to estimate the false discovery rate. Simulation results suggested that it has higher efficiency in finding differentially expressed genes among multiple classes at a lower false discovery rate than some commonly used methods. By applying our method to the experimental data, we found 107 genes having significantly differential expressions among 4 treatments at <0.7% FDR, of which 31 belong to the expressed sequence tags (ESTs), 76 are unique genes who have known functions in the brain or central nervous system and belong to six major functional groups.

Conclusion

Our method is suitable to identify differentially expressed genes among multiple groups, in particular, when sample size is small.  相似文献   

19.
20.

Background  

Riboswitches are RNA elements in the 5' untranslated leaders of bacterial mRNAs that directly sense the levels of specific metabolites with a structurally conserved aptamer domain to regulate expression of downstream genes. Riboswitches are most common in the genomes of low GC Gram-positive bacteria (for example, Bacillus subtilis contains examples of all known riboswitches), and some riboswitch classes seem to be restricted to this group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号