首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of inhibition of CH(inf4) oxidation by NH(inf4)(sup+), NO(inf2)(sup-), and NO(inf3)(sup-) in a humisol was investigated. Soil slurries exhibited nearly standard Michaelis-Menten kinetics, with half-saturation constant [K(infm(app))] values for CH(inf4) of 50 to 200 parts per million of volume (ppmv) and V(infmax) values of 1.1 to 2.5 nmol of CH(inf4) g of dry soil(sup-1) h(sup-1). With one soil sample, NH(inf4)(sup+) acted as a simple competitive inhibitor, with an estimated K(infi) of 8 (mu)M NH(inf4)(sup+) (18 nM NH(inf3)). With another soil sample, the response to NH(inf4)(sup+) addition was more complex and the inhibitory effect of NH(inf4)(sup+) was greater than predicted by a simple competitive model at low CH(inf4) concentrations (<50 ppmv). This was probably due to NO(inf2)(sup-) produced through NH(inf4)(sup+) oxidation. Added NO(inf2)(sup-) was inherently more inhibitory of CH(inf4) oxidation at low CH(inf4) concentrations, and more NO(inf2)(sup-) was produced as the CH(inf4)-to-NH(inf4)(sup+) ratio decreased and the competitive balance shifted. NaNO(inf3) was a noncompetitive inhibitor of CH(inf4) oxidation, but inhibition was evident only at >10 mM concentrations, which also altered soil pHs. Similar concentrations of NaCl were also inhibitory of CH(inf4) oxidation, so there may be no special inhibitory mechanism of nitrate per se.  相似文献   

2.
Laboratory-scale soil microcosms containing different soils were permeated with CH(inf4) for up to 6 months to investigate their capacity to develop a methanotrophic community. Methane emissions were monitored continuously until steady states were established. The porous, coarse sand soil developed the greatest methanotrophic capacity (10.4 mol of CH(inf4) (middot) m(sup-2) (middot) day(sup-1)), the greatest yet reported in the literature. Vertical profiles of O(inf2), CH(inf4), and methanotrophic potential in the soils were determined at steady state. Methane oxidation potentials were greatest where the vertical profiles of O(inf2) and CH(inf4) overlapped. A significant increase in the organic matter content of the soil, presumably derived from methanotroph biomass, occurred where CH(inf4) oxidation was greatest. Methane oxidation kinetics showed that a soil community with a low methanotrophic capacity (V(infmax) of 258 nmol (middot) g of soil(sup-1) (middot) h(sup-1)) but relatively high affinity (k(infapp) of 1.6 (mu)M) remained in N(inf2)-purged control microcosms, even after 6 months without CH(inf4). We attribute this to a facultative, possibly mixotrophic, methanotrophic microbial community. When purged with CH(inf4), a different methanotrophic community developed which had a lower affinity (k(infapp) of 31.7 (mu)M) for CH(inf4) but a greater capacity (V(infmax) of 998 nmol (middot) g of soil(sup-1) (middot) h(sup-1)) for CH(inf4) oxidation, reflecting the enrichment of an active high-capacity methanotrophic community. Compared with the unamended control soil, amendment of the coarse sand with sewage sludge enhanced CH(inf4) oxidation capacity by 26%; K(inf2)HPO(inf4) amendment had no significant effect, while amendment with NH(inf4)NO(inf3) reduced the CH(inf4) oxidation capacity by 64%. In vitro experiments suggested that NH(inf4)NO(inf3) additions (10 and 71 (mu)mol (middot) g of soil(sup-1)) inhibited CH(inf4) oxidation by a nonspecific ionic effect rather than by specific inhibition by NH(inf4)(sup+).  相似文献   

3.
The metabolism of atmospheric methane in a forest soil was studied by radiotracer techniques. Maximum (sup14)CH(inf4) oxidation (163.5 pmol of C cm(sup-3) h(sup-1)) and (sup14)C assimilation (50.3 pmol of C cm(sup-3) h(sup-1)) occurred at the A(inf2) horizon located 15 to 18 cm below the soil surface. At this depth, 31 to 43% of the atmospheric methane oxidized was assimilated into microbial biomass; the remaining methane was recovered as (sup14)CO(inf2). Methane-derived carbon was incorporated into all major cell macromolecules by the soil microorganisms (50% as proteins, 19% as nucleic acids and polysaccharides, and 5% as lipids). The percentage of methane assimilated (carbon conversion efficiency) remained constant at temperatures between 5 and 20(deg)C, followed by a decrease at 30(deg)C. The carbon conversion efficiency did not increase at methane concentrations between 1.7 and 1,000 ppm. In contrast, the overall methane oxidation activity increased at elevated methane concentrations, with an apparent K(infm) of 21 ppm (31 nM CH(inf4)) and a V(infmax) of 188 pmol of CH(inf4) cm(sup-3) h(sup-1). Methane oxidizers from soil depths with maximum methanotrophic activity respired approximately 1 to 3% of the assimilated methane-derived carbon per day. This apparent endogenous respiration did not change significantly in the absence of methane. Similarly, the potential for oxidation of atmospheric methane was relatively insensitive to methane starvation. Soil samples from depths above and below the zone with maximum atmospheric methane oxidation activity showed a dramatic increase in the turnover of the methane assimilated (>20 times increase). Physical disturbance such as sieving or mixing of soil samples decreased methane oxidation and assimilation by 50 to 58% but did not alter the carbon conversion efficiency. Ammonia addition (0.1 or 1.0 (mu)mol g [fresh weight](sup-1)) decreased both methane oxidation and carbon conversion efficiency. This resulted in a dramatic decrease in methane assimilation (85 to 99%). In addition, ammonia-treated soil showed up to 10 times greater turnover of the assimilated methane-derived carbon (relative to untreated soil). The results suggest a potential for microbial growth on atmospheric methane. However, growth was regulated strongly by soil parameters other than the methane concentration. The pattern observed for metabolism of atmospheric methane in soils was not consistent with the physiology of known methanotrophic bacteria.  相似文献   

4.
The effects of nitrate availability and the presence of Glyceria maxima on the composition and activity of the dissimilatory nitrate-reducing bacterial community were studied in the laboratory. Four different concentrations of NO(inf3)(sup-), 0, 533, 1434, and 2,905 (mu)g of NO(inf3)(sup-)-N g of dry sediment(sup-1), were added to pots containing freshwater sediment, and the pots were then incubated for a period of 69 days. Upon harvest, NH(inf4)(sup+) was not detectable in sediment that received 0 or 533 (mu)g of NO(inf3)(sup-)-N g of dry sediment(sup-1). Nitrate concentrations in these pots ranged from 0 to 8 (mu)g of NO(inf3)(sup-)-N g of dry sediment(sup-1) at harvest. In pots that received 1,434 or 2,905 (mu)g of NO(inf3)(sup-)-N g of dry sediment(sup-1), final concentrations varied between 10 and 48 (mu)g of NH(inf4)(sup+)-N g of dry sediment(sup-1) and between 200 and 1,600 (mu)g of NO(inf3)(sup-)-N g of dry sediment(sup-1), respectively. Higher input levels of NO(inf3)(sup-) resulted in increased numbers of potential nitrate-reducing bacteria and higher potential nitrate-reducing activity in the rhizosphere. In sediment samples from the rhizosphere, the contribution of denitrification to the potential nitrate-reducing capacity varied from 8% under NO(inf3)(sup-)-limiting conditions to 58% when NO(inf3)(sup-) was in ample supply. In bulk sediment with excess NO(inf3)(sup-), this percentage was 44%. The nitrate-reducing community consisted almost entirely of NO(inf2)(sup-)-accumulating or NH(inf4)(sup+)-producing gram-positive species when NO(inf3)(sup-) was not added to the sediment. The addition of NO(inf3)(sup-) resulted in an increase of denitrifying Pseudomonas and Moraxella strains. The factor controlling the composition of the nitrate-reducing community when NO(inf3)(sup-) is limited is the presence of G. maxima. In sediment with excess NO(inf3)(sup-), nitrate availability determines the composition of the nitrate-reducing community.  相似文献   

5.
Tritiated thymidine incorporation (TTI) into DNA was used to examine bacterial production in two soil types from the Robertskollen group of nunataks in northwestern Dronning Maud Land, providing the first estimates of bacterial production in soil habitats on the Antarctic continent. Although estimates of bacterial productivity in soils near to bird nests (344 (plusmn) 422 ng of C g [dry weight](sup-1) h(sup-1)) were higher than those for soils from beneath mosses (175 (plusmn) 90 ng of C g [dry weight](sup-1) h(sup-1); measured by TTI at 10(deg)C), these differences were not significant because of patchiness of bacterial activity (P > 0.05). TTI- and [(sup14)C]leucine ([(sup14)C]Leu)-derived estimates of bacterial production were similar when incubations of 3 h were used, although incubations as short as 1 h were sufficient for measurable uptake of radiolabel. Dual-label incorporation of [(sup3)H]thymidine ([(sup3)H]TdR) into DNA and [(sup14)C]Leu into protein indicated that TTI did not reflect bacterial production of in situ assemblages when incubations were longer than 3 h. Isotope dilution analysis indicated that dilution of the specific activity of exogenously supplied [(sup3)H]TdR by de novo synthesis of TdR precursor could be limited by additions of [(sup3)H]TdR at a concentration of 1 nmol per ca. 115 mg of soil. TTI exhibited a psychrotrophic response to variation in temperature, with a temperature optimum of ca. 15(deg)C and a Q(inf10) value for 0 to 10(deg)C of 2.41.  相似文献   

6.
Growth energetics of the acetic acid bacterium Acetobacter pasteurianus were studied with aerobic, ethanol-limited chemostat cultures. In these cultures, production of acetate was negligible. Carbon limitation and energy limitation were also evident from the observation that biomass concentrations in the cultures were proportional to the concentration of ethanol in the reservoir media. Nevertheless, low concentrations of a few organic metabolites (glycolate, citrate, and mannitol) were detected in culture supernatants. From a series of chemostat cultures grown at different dilution rates, the maintenance energy requirements for ethanol and oxygen were estimated at 4.1 mmol of ethanol (middot) g of biomass(sup-1) (middot) h(sup-1) and 11.7 mmol of O(inf2) (middot) g of biomass(sup-1) (middot) h(sup-1), respectively. When biomass yields were corrected for these maintenance requirements, the Y(infmax) values on ethanol and oxygen were 13.1 g of biomass (middot) mol of ethanol(sup-1) and 5.6 g of biomass (middot) mol of O(inf2)(sup-1), respectively. These biomass yields are very low in comparison with those of other microorganisms grown under comparable conditions. To investigate whether the low growth efficiency of A. pasteurianus might be due to a low gain of metabolic energy from respiratory dissimilation, (symbl)H(sup+)/O stoichiometries were estimated during acetate oxidation by cell suspensions. These experiments indicated an (symbl)H(sup+)/O stoichiometry for acetate oxidation of 1.9 (plusmn) 0.1 mol of H(sup+)/mol of O. Theoretical calculations of growth energetics showed that this low (symbl)H(sup+)/O ratio adequately explained the low biomass yield of A. pasteurianus in ethanol-limited cultures.  相似文献   

7.
The Importance of Hydrogen in Landfill Fermentations   总被引:1,自引:1,他引:0       下载免费PDF全文
Forty-two samples taken from two landfills were monitored for CH(inf4) production and apparent steady-state H(inf2) concentration. The rates of methanogenesis in these samples ranged from below the detection limit to 1,900 (mu)mol kg (dry weight)(sup-1) day(sup-1), and the median steady-state hydrogen concentration was 1.4 (mu)M in one landfill and 5.2 (mu)M in the other. To further investigate the relationship between hydrogen concentration and methanogenesis, a subset of seven landfill samples was selected on basis of their rates of CH(inf4) production, H(inf2) concentrations, sample pHs, and moisture contents. Samples with H(inf2) concentrations of <20 nM had relatively small amounts of volatile fatty acids (VFAs) (undetectable to 18.6 mmol of VFA kg [dry weight](sup-1)), while samples with H(inf2) concentrations of >100 nM had relatively high VFA levels (133 to 389 mmol of VFA kg [dry weight](sup-1)). Samples with high H(inf2) and VFA contents had relatively low pH values (<=6.3). However, methanogenic and syntrophic bacteria were present in all samples, so the lack of methanogenesis in some samples was not due to a lack of suitable inocula. The low rates of methanogenesis in these samples were probably due to inhibitory effects of low pH and VFA accumulation, resulting from a thermodynamic uncoupling of fatty acid oxidation. As in other anaerobic ecosystems, H(inf2) is a critical intermediate that may be used to monitor the status of landfill fermentations.  相似文献   

8.
Recent studies on Northern Ireland rivers have shown that summer nitrite (NO(inf2)(sup-)) concentrations greatly exceed the European Union guideline of 3 (mu)g of N liter(sup-1) for rivers supporting salmonid fisheries. In fast-flowing aerobic small streams, NO(inf2)(sup-) is thought to originate from nitrification, due to the retardation of Nitrobacter strains by the presence of free ammonia. Multiple regression analyses of NO(inf2)(sup-) concentrations against water quality variables of the six major rivers of the Lough Neagh catchment in Northern Ireland, however, suggested that the high NO(inf2)(sup-) concentrations found in the summer under warm, slow-flow conditions may result from the reduction of NO(inf3)(sup-). This hypothesis was supported by field observations of weekly changes in N species. Here, reduction of NO(inf3)(sup-) was observed to occur simultaneously with elevation of NO(inf2)(sup-) levels and subsequently NH(inf4)(sup+) levels, indicating that dissimilatory NO(inf3)(sup-) reduction to NH(inf4)(sup+) (DNRA) performed by fermentative bacteria (e.g., Aeromonas and Vibrio spp.) is responsible for NO(inf2)(sup-) accumulation in these large rivers. Mechanistic studies in which (sup15)N-labelled NO(inf3)(sup-) in sediment extracts was used provided further support for this hypothesis. Maximal concentrations of NO(inf2)(sup-) accumulation (up to 1.4 mg of N liter(sup-1)) were found in sediments deeper than 6 cm associated with a high concentration of metabolizable carbon and anaerobic conditions. The (sup15)N enrichment of the NO(inf2)(sup-) was comparable to that of the NO(inf3)(sup-) pool, indicating that the NO(inf2)(sup-) was predominantly NO(inf3)(sup-) derived. There is evidence which suggests that the high NO(inf2)(sup-) concentrations observed arose from the inhibition of the DNRA NO(inf2)(sup-) reductase system by NO(inf3)(sup-).  相似文献   

9.
Induction of high-affinity iron transport during root colonization by Pseudomonas fluorescens Pf-5 (pvd-inaZ) was examined in lupine and barley growing in microcosms. P. fluorescens Pf-5 (pvd-inaZ) contains a plasmid carrying pvd-inaZ; thus, in this strain, ice nucleation activity is regulated by pyoverdin production. Lupine or barley plants were grown for 18 or 8 days, respectively, in soil amended with 2% calcium carbonate and inoculated with P. fluorescens Pf-5 (pvd-inaZ) at a density of 4 x 10(sup8) CFU g (dry weight) of soil(sup-1). A filter paper blotting technique was used to sample cells from the rhizosphere in different root zones, and then the cells were resuspended for enumeration and measurement of ice nucleation activity. The population density of P. fluorescens Pf-5 (pvd-inaZ) in the rhizosphere decreased by one order of magnitude in both lupine and barley over time. The ice nucleation activity ranged from -3.4 to -3.0 log ice nuclei CFU(sup-1) for lupine and -3.0 to -2.8 log ice nuclei CFU(sup-1) for barley, was similar in all root zones, and did not change over time. An in vitro experiment was conducted to determine the relationship between ice nucleation activity and pyoverdin production in P. fluorescens Pf-5 (pvd-inaZ). An ice nucleation activity of approximately -3.0 log ice nuclei CFU(sup-1) was measured in the in vitro experiment at 25 to 50 (mu)M FeCl(inf3). By using the regression between ice nucleation activity and pyoverdin production determined in vitro and assuming a P. fluorescens Pf-5 (pvd-inaZ) population density of 10(sup8) CFU g of root(sup-1), the maximum possible pyoverdin accumulation by P. fluorescens Pf-5 (pvd-inaZ) in the rhizosphere was estimated to be 0.5 and 0.8 nmol g of root(sup-1) for lupine and barley, respectively. The low ice nucleation activity measured in the rhizosphere suggests that nutritional competition for iron in the rhizosphere may not be a major factor influencing root colonization by P. fluorescens Pf-5 (pvd-inaZ).  相似文献   

10.
In landfill-cover soils, aerobic methane-oxidizing bacteria (MOB) convert CH(4) to CO(2), mitigating emissions of the greenhouse gas CH(4) to the atmosphere. We investigated overall MOB community structure and assessed spatial differences in MOB diversity, abundance and activity in a Swiss landfill-cover soil. Molecular cloning, terminal restriction-fragment length polymorphism (T-RFLP) and quantitative PCR of pmoA genes were applied to soil collected from 16 locations at three different depths to study MOB community structure, diversity and abundance; MOB activity was measured in the field using gas push-pull tests. The MOB community was highly diverse but dominated by Type Ia MOB, with novel pmoA sequences present. Type II MOB were detected mainly in deeper soil with lower nutrient and higher CH(4) concentrations. Substantial differences in MOB community structure were observed between one high- and one low-activity location. MOB abundance was highly variable across the site [4.0 × 10(4) to 1.1 × 10(7) (g soil dry weight)(-1)]. Potential CH(4) oxidation rates were high [1.8-58.2 mmol CH(4) (L soil air)(-1) day(-1) ] but showed significant lateral variation and were positively correlated with mean CH(4) concentrations (P < 0.01), MOB abundance (P < 0.05) and MOB diversity (weak correlation, P < 0.17). Our findings indicate that Methylosarcina and closely related MOB are key players and that MOB abundance and community structure are driving factors in CH(4) oxidation at this landfill.  相似文献   

11.
Plasmid transfer rates for the conjugative plasmid R388::Tn1721 from Pseudomonas cepacia (donor) to Pseudomonas fluorescens (recipient) on agar media, in broth, and in microcosms containing sterile or nonsterile soil, in the presence or absence of germinating pea seeds, were determined. Donors, recipients, and transconjugants were enumerated on selective media after 1 day on agar or in broth culture and over a 7-day period in soil or pea spermosphere microcosms. Donor and recipient growth rates and plasmid transfer rate constants [(gamma), where (gamma) = transconjugants (middot) (donors (middot) recipients)(sup-1) (middot) h(sup-1)] were calculated for three initial parental densities (10(sup4), 10(sup6), or 10(sup8) CFU/g or ml) in each system. For all initial density levels, values of (gamma) in agar and broth matings were higher than those in soil or in the pea spermosphere-rhizosphere microcosms. Values of (gamma) were not influenced by the pea spermosphere or by sterile or nonsterile conditions of the soil. However, (gamma) values in microcosm experiments were inversely related to initial parental density and were directly related to donor growth rates. Values of (gamma) averaged 4 x 10(sup-10), 4 x 10(sup-12), and 3 x 10(sup-14) when initial donor and recipient cell densities were 10(sup4), 10(sup6), and 10(sup8) CFU/g, respectively. These results suggest that the plasmid transfer rate constant is independent of parental cell density only when parental growth is not limited. In a resource-limited environment, intra- or interspecific competition may reduce the transfer rate by limiting parental growth.  相似文献   

12.
As part of the characterization of Yucca Mountain, Nev., as a potential repository for high-level nuclear waste, volcanic tuff was analyzed for microbial abundance and activity. Tuff was collected aseptically from nine sites along a tunnel in Yucca Mountain. Microbial abundance was generally low: direct microscopic cell counts were near detection limits at all sites (3.2 x 10(sup4) to 2.0 x 10(sup5) cells g(sup-1) [dry weight]); plate counts of aerobic heterotrophs ranged from 1.0 x 10(sup1) to 3.2 x 10(sup3) CFU g(sup-1) (dry weight). Phospholipid fatty acid concentrations (0.1 to 3.7 pmol g(sup-1)) also indicated low microbial biomasses; diglyceride fatty acid concentrations, indicative of dead cells, were in a similar range (0.2 to 2.3 pmol g(sup-1)). Potential microbial activity was quantified as (sup14)CO(inf2) production in microcosms containing radiolabeled substrates (glucose, acetate, and glutamic acid); amendments with water and nutrient solutions (N and P) were used to test factors potentially limiting this activity. Similarly, the potential for microbial growth and the factors limiting growth were determined by performing plate counts before and after incubating volcanic tuff samples for 24 h under various conditions: ambient moisture, water-amended, and amended with various nutrient solutions (N, P, and organic C). A high potential for microbial activity was demonstrated by high rates of substrate mineralization (as much as 70% of added organic C in 3 weeks). Water was the major limiting factor to growth and microbial activity, while amendments with N and P resulted in little further stimulation. Organic C amendments stimulated growth more than water alone.  相似文献   

13.
The transformation of 3-chlorobenzoate (3CB) and acetate at initial concentrations in the wide range of 10 nM to 16 mM was studied in batch experiments with Pseudomonas sp. strain B13. Transformation rates of 3CB at millimolar concentrations could be described by Michaelis-Menten kinetics (K(infm), 0.13 mM; V(infmax), 24 nmol (middot) mg of protein(sup-1) (middot) min(sup-1)). Experiments with nanomolar and low micromolar concentrations of 3CB indicated the possible existence of two different transformation systems for 3CB. The first transformation system operated above 1 (mu)M 3CB, with an apparent threshold concentration of 0.50 (plusmn) 0.11 (mu)M. A second transformation system operated below 1 (mu)M 3CB and showed first-order kinetics (rate constant, 0.076 liter (middot) g of protein(sup-1) (middot) min(sup-1)), with no threshold concentration in the nanomolar range. A residual substrate concentration, as has been reported for some other Pseudomonas strains, could not be detected for 3CB (detection limit, 1.0 nM) in batch incubations with Pseudomonas sp. strain B13. The addition of various concentrations of acetate as a second, easily degradable substrate neither affected the transformation kinetics of 3CB nor induced a detectable residual substrate concentration. Acetate alone also showed no residual concentration (detection limit, 0.5 nM). The results presented indicate that the concentration limits for substrate conversion obtained by extrapolation from kinetic data at higher substrate concentrations may underestimate the true conversion capacity of a microbial culture.  相似文献   

14.
Methane-oxidizing bacteria (MOB) in soil are not only controlled by their main substrates, methane and oxygen, but also by nitrogen availability. We compared an unfertilized control with a urea-fertilized treatment and applied RNA-stable-isotope-probing to follow activity changes upon fertilization as closely as possible. Nitrogen fertilization of an Italian rice field soil increased the CH4 oxidation rates sevenfold. In the fertilized treatment, isopycnic separation of 13C-enriched RNA became possible after 7 days when 300 micromol 13CH4 g(dry soil)(-1) had been consumed. Terminal-restriction fragment length polymorphism (T-RFLP) fingerprints and clone libraries documented that the type I methanotrophic genera Methylomicrobium and Methylocaldum assimilated 13CH4 nearly exclusively. Although previous studies had shown that the same soil contains a much larger diversity of MOB, including both type I and type II, nitrogen fertilization apparently activated only a small subset of the overall diversity of MOB, type I MOB in particular.  相似文献   

15.
Reductive dehalogenation of vinyl chloride (VC) was studied in an anaerobic mixed bacterial culture. In growth experiments, ethene formation from VC increased exponentially at a rate of about 0.019 h(sup-1). Reductive VC dehalogenation was measured in vitro by using cell extracts of the mixed culture. The apparent K(infm) for VC was determined to be about 76 (mu)M; the V(infmax) was about 28 nmol (middot) min(sup-1) (middot) mg of protein(sup-1). The VC-dehalogenating activity was membrane associated. Propyl iodide had an inhibitory effect on the VC-dehalogenating activity in the in vitro assay. However, this inhibition could not be reversed by illumination. Cell extracts also catalyzed the reductive dehalogenation of cis-1,2-dichloroethene (cis-DCE) and, at a lower rate, of trichloroethene (TCE). Tetrachloroethene (PCE) was not transformed. The results indicate that the reductive dehalogenation of VC and cis-DCE described here is different from previously reported reductive dehalogenation of PCE and TCE.  相似文献   

16.
A facultative bacterium capable of removing the selenium (Se) oxyanions selenate (SeO(inf4)(sup2-)) and selenite (SeO(inf3)(sup2-)) from solution culture in flasks open to the atmosphere was isolated and studied with the goal of assessing its potential for use in bioremediation of seleniferous agricultural drainage water. Elemental Se (Se(sup0)) was confirmed as a product of the reaction. The organism, identified as Enterobacter cloacae and designated strain SLD1a-1 (ATCC 700258), removed from 61.5 to 94.5% of added SeO(inf4)(sup2-) (the primary species present in agricultural drainage water) at concentrations from 13 to 1,266 (mu)M. Equimolar amounts of nitrate (NO(inf3)(sup-)), which interferes with SeO(inf4)(sup2-) reduction in some organisms, did not influence the reaction in growth experiments but had a slight inhibitory effect in a washed-cell suspension. Washed-cell suspension experiments also showed that (i) SeO(inf3)(sup2-) is a transitory intermediate in reduction of SeO(inf4)(sup2-), being produced and rapidly reduced concomitantly; (ii) NO(inf3)(sup-) is also reduced concomitantly and at a much higher rate than SeO(inf4)(sup2-); and (iii) although enzymatic, reduction of either oxyanion does not appear to be an inducible process. Transmission electron microscopy revealed that precipitate particles are <0.1 (mu)m in diameter, and these particles were observed free in the medium. Evidence indicates that SLD1a-1 uses SeO(inf4)(sup2-) as an alternate electron acceptor and that the reaction occurs via a membrane-associated reductase(s) followed by rapid expulsion of the Se particles.  相似文献   

17.
The DbtS(sup+) phenotype (which confers the ability to oxidize selectively the sulfur atom of dibenzothiophene [DBT] or dibenzothiophene sulfone [DBTO(inf2)]) of Rhodococcus erythropolis N1-36 was quantitatively characterized in batch and fed-batch cultures. In flask cultures, production of the desulfurization product, monohydroxybiphenyl (OH-BP), was maximal at pH 6.0, while specific productivity (OH-BP cell(sup-1)) was maximal at pH 5.5. Quantitative measurements in fermentors (in both batch and fed-batch modes) demonstrated that DBTO(inf2) as the sole sulfur source yielded a greater amount of product than did DBT. Specifically, 100 (mu)M DBT maximally yielded (apprx=)40 (mu)M OH-BP, while 100 (mu)M DBTO(inf2) yielded (apprx=)60 (mu)M OH-BP. Neither maintaining the pH at 6.0 nor adding an additional carbon source increased the yield of OH-BP. The presence of SO(inf4)(sup2-) in growth media repressed expression of desulfurization activity, but SO(inf4)(sup2-) added to suspensions of cells grown in DBT or DBTO(inf2) did not inhibit desulfurization activity.  相似文献   

18.
Transient-state experiments with the obligately autotrophic Thiobacillus sp. strain W5 revealed that sulfide oxidation proceeds in two physiological phases, (i) the sulfate-producing phase and (ii) the sulfur- and sulfate-producing phase, after which sulfide toxicity occurs. Specific sulfur-producing characteristics were independent of the growth rate. Sulfur formation was shown to occur when the maximum oxidative capacity of the culture was approached. In order to be able to oxidize increasing amounts of sulfide, the organism has to convert part of the sulfide to sulfur (HS(sup-)(symbl)S(sup0) + H(sup+) + 2e(sup-)) instead of sulfate (HS(sup-) + 4H(inf2)O(symbl)SO(inf4)(sup2-) + 9 H(sup+) + 8e(sup-)), thereby keeping the electron flux constant. Measurements of the in vivo degree of reduction of the cytochrome pool as a function of increasing sulfide supply suggested a redox-related down-regulation of the sulfur oxidation rate. Comparison of the sulfur-producing properties of Thiobacillus sp. strain W5 and Thiobacillus neapolitanus showed that the former has twice the maximum specific sulfide-oxidizing capacity of the latter (3.6 versus 1.9 (mu)mol/mg of protein/min). Their maximum specific oxygen uptake rates were very similar. Significant mechanistic differences in sulfur production between the high-sulfur-producing Thiobacillus sp. strain W5 and the moderate-sulfur-producing species T. neapolitanus were not observed. The limited sulfide-oxidizing capacity of T. neapolitanus appears to be the reason that it can convert only 50% of the incoming sulfide to elemental sulfur.  相似文献   

19.
R. Roy  R. Knowles 《Applied microbiology》1995,61(12):4278-4283
Addition of nitrapyrin, allylthiourea, C(inf2)H(inf2), and CH(inf3)F to freshwater sediment slurries inhibited CH(inf4) oxidation and nitrification to similar extents. Dicyandiamide and allylsulfide were less inhibitory for CH(inf4) oxidation than for nitrification. Allylsulfide was the most potent inhibitor of nitrification, and the estimated 50% inhibitory concentrations for this process and CH(inf4) oxidation were 0.2 and 121 (mu)M, respectively. At a concentration of 2 (mu)M allylsulfide, growth and CH(inf4) oxidation activity of Methylosinus trichosporium OB3b were not inhibited. Allylsulfide at 200 (mu)M inhibited the growth of M. trichosporium by approximately 50% but did not inhibit CH(inf4) oxidation activity. Nitrite production by cells of M. trichosporium was not significantly affected by allylsulfide, except at a concentration of 2 mM, when growth and CH(inf4) oxidation were also inhibited by about 50%. Methane monooxygenase activity present in soluble fractions of M. trichosporium was not inhibited significantly by allylsulfide at either 200 (mu)M or 2 mM. These results suggest that the partial inhibition of CH(inf4) oxidation in sediment slurries by high allylsulfide concentrations may be caused by an inhibition of the growth of methanotrophs rather than an inhibition of methane monooxygenase activity specifically. We conclude that allylsulfide is a promising tool for the study of interactions of methanotrophs and nitrifiers in N cycling and CH(inf4) turnover in natural systems.  相似文献   

20.
The effect of water infiltration rate (IR) on nitrogen cycling in a saturated wetland soil was investigated by applying a (sup15)N isotope dilution and pairing method. Water containing [(sup15)N]nitrate was infiltrated through 10-cm-long cores of sieved and homogenized soil at rates of 72, 168, 267, and 638 mm day(sup-1). Then the frequencies of (sup30)N(inf2), (sup29)N(inf2), (sup15)NO(inf3)(sup-), and (sup15)NH(inf4)(sup+) in the outflow water were measured. This method allowed simultaneous determination of nitrification, coupled and uncoupled denitrification, and nitrate assimilation rates. From 3% (at the highest IR) to 95% (at the lowest IR) of nitrate was removed from the water, mainly by denitrification. The nitrate removal was compensated for by the net release of ammonium and dissolved organic nitrogen. Lower oxygen concentrations in the soil at lower IRs led to a sharper decrease in the nitrification rate than in the ammonification rate, and, consequently, more ammonium leaked from the soil. The decreasing organic-carbon-to-nitrogen ratio (from 12.8 to 5.1) and the increasing light A(inf250)/A(inf365) ratio (from 4.5 to 5.2) indicated an increasing bioavailability of the outflowing dissolved organic matter with increasing IR. The efflux of nitrous oxide was also very sensitive to IR and increased severalfold when a zone of low oxygen concentration was close to the outlet of the soil cores. N(inf2)O then constituted 8% of the total gaseous N lost from the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号