首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stochastic matrix models are used to predict population viability and the risk of extinction. Different stochastic methods require different amounts of estimation effort and may lead to divergent estimates. We used 16 transition matrices collected from ten populations of the perennial herb Primula veris to compare population estimates produced by different stochastic methods, such as selection of matrices, selection of vital rates, selection of matrix elements, and Tuljapurkar's approximation. Specifically, we tested the reliability of the methods using different numbers of transition matrices, and examined the importance of correlations among matrix entries. When correlations among matrix entries were included in the models, selection of vital rates produced the lowest and Tuljapurkar's approximation produced the highest estimates of mean population growth rates. Selection of matrices and matrix elements often produced nearly similar population estimates. Simulations based on incompletely estimated correlations among matrix entries considerably differed from those based on all correlations estimated, particularly when correlations were strong. The magnitude of correlations among matrix entries depended on the number of matrices, which made it difficult to generalize correlations within a species. Given that selection of vital rates or matrix elements is used, correlations among matrix entries should usually be included in the model, and they should preferably be estimated from the present data rather than according to other information of the species.  相似文献   

2.
1. Under the hypothesis of environmental buffering, populations are expected to minimize the variance of the most influential vital rates; however, this may not be a universal principle. Species with a life span <1 year may be less likely to exhibit buffering because of temporal or seasonal variability in vital rate sensitivities. Further, plasticity in vital rates may be adaptive for species in a variable environment with reliable cues. 2. We tested for environmental buffering and plasticity in vital rates using stage-structured matrix models from long-term data sets in four species of grassland rodents. We used periodic matrices to estimate stochastic elasticity for each vital rate and then tested for correlations with a standardized coefficient of variation for each rate. 3. We calculated stochastic elasticities for individual months to test for an association between increased reproduction and the influence of reproduction, relative to survival, on the population growth rate. 4. All species showed some evidence of buffering. The elasticity of vital rates of Peromyscus leucopus (Rafinesque, 1818), Sigmodon hispidus Say & Ord, 1825 and Microtus ochrogaster (Wagner, 1842) was negatively related to vital rate CV. Elasticity and vital rate CV were negatively related in Peromyscus maniculatus (Wagner, 1845), but the relationship was not statistically significant. Peromyscus leucopus and M. ochrogaster showed plasticity in vital rates; reproduction was higher following months where elasticity for reproduction exceeded that of survival. 5. Our results suggest that buffering is common in species with fast life histories; however, some populations that exhibit buffering are capable of responding to short-term variability in environmental conditions through reproductive plasticity.  相似文献   

3.
1. Matrix population models are widely used to describe population dynamics, conduct population viability analyses and derive management recommendations for plant populations. For endangered or invasive species, management decisions are often based on small demographic data sets. Hence, there is a need for population models which accurately assess population performance from such small data sets.
2. We used demographic data on two perennial herbs with different life histories to compare the accuracy and precision of the traditional matrix population model and the recently developed integral projection model (IPM) in relation to the amount of data.
3. For large data sets both matrix models and IPMs produced identical estimates of population growth rate (λ). However, for small data sets containing fewer than 300 individuals, IPMs often produced smaller bias and variance for λ than matrix models despite different matrix structures and sampling techniques used to construct the matrix population models.
4. Synthesis and applications . Our results suggest that the smaller bias and variance of λ estimates make IPMs preferable to matrix population models for small demographic data sets with a few hundred individuals. These results are likely to be applicable to a wide range of herbaceous, perennial plant species where demographic fate can be modelled as a function of a continuous state variable such as size. We recommend the use of IPMs to assess population performance and management strategies particularly for endangered or invasive perennial herbs where little demographic data are available.  相似文献   

4.
Predicting population dynamics for rare species is of paramount importance in order to evaluate the likelihood of extinction and planning conservation strategies. However, evaluating and predicting population viability can be hindered from a lack of data. Rare species frequently have small populations, so estimates of vital rates are often very uncertain due to lack of data. We evaluated the vital rates of seven small populations from two watersheds with varying light environment of a common epiphytic orchid using Bayesian methods of parameter estimation. From the Lefkovitch matrices we predicted the deterministic population growth rates, elasticities, stable stage distributions and the credible intervals of the statistics. Populations were surveyed on a monthly basis between 18–34 months. In some of the populations few or no transitions in some of the vital rates were observed throughout the sampling period, however, we were able to predict the most likely vital rates using a Bayesian model that incorporated the transitions rates from the other populations. Asymptotic population growth rate varied among the seven orchid populations. There was little difference in population growth rate among watersheds even though it was expected because of physical differences as a result of differing canopy cover and watershed width. Elasticity analyses of Lepanthes rupestris suggest that growth rate is more sensitive to survival followed by growth, shrinking and the reproductive rates. The Bayesian approach helped to estimate transition probabilities that were uncommon or variable in some populations. Moreover, it increased the precision of the parameter estimates as compared to traditional approaches.  相似文献   

5.
Minimum complementary sets of sites that represent each species at least once have been argued to provide a nominal core reserve network and the starting point for regional conservation programs. However, this approach may be inadequate if there is a tendency to represent several species at marginal areas within their ranges, which may occur if high efficiency results from preferential selection of sites in areas of ecological transition. Here we use data on the distributions of birds in South Africa and Lesotho to explore this idea. We found that for five measures that are expected to reflect the location of areas of ecological transition, complementary sets tend to select higher values of these measures than expected by chance. We recommend that methods for the identification of priority areas for conservation that incorporate viability concerns be preferred to minimum representation sets, even if this results in more costly reserve networks.  相似文献   

6.
Life-history theory predicts vital rates that on average make large contributions to the annual multiplication rate of a lineage should be highly buffered against environmental variability. This prediction has been tested by looking for a negative correlation between the sensitivities (or elasticities) of the elements in a projection matrix and their variances (or coefficients of variation). Here, we show by constructing random matrices that a spurious negative correlation exists between the sensitivities and variances, and between the elasticities and coefficients of variation, of matrix elements. This spurious correlation arises in part because size transition probabilities, which are bounded by 0 and 1, have a limit to their variability that often does not apply to matrix elements representing reproduction. We advocate an alternative analysis based on the underlying vital rates (not the matrix elements) that accounts for the inherent limit to the variability of zero-to-one vital rates, corrects for sampling variation, and tests for a declining upper limit to variability as a vital rate's fitness contribution increases. Applying this analysis to demographic data from five populations of the alpine cushion plant Silene acaulis, we provide evidence of stronger buffering in the vital rates that most influence fitness.  相似文献   

7.
Long-term demographic surveys, needed to obtain accurate information on population dynamics and efficiently manage rare species, are still very scarce. Matrix population models are useful tools to identify key demographic transitions and thus help setting up conservation actions. Furthermore, the combination of ecological, demographic and genetic data is likely to improve the identification of the threats acting upon populations and help conservation decisions. In this paper we illustrate the power of this approach on Brassica insularis, a Mediterranean endemic plant species, rare and endangered in Corsica (France). In four populations of this species, a long-term demographic survey (2000–2009), genetic analyses (in 2000 and 2009) and survey of ecological variables (climatic variables, competition and herbivory) were performed. By using both deterministic and stochastic matrix model analyses, we assessed the viability of each population and tested for both spatial and temporal variations in demographic vital rates. Populations exhibited differing demographic behaviours and environmental stochasticity occurred in populations. Significant correlations between climatic variables and vital rates were detected. Stochastic simulations suggested that three out of the four populations studied might present a high risk of extinction on the short-term and should actively be managed, or at least surveyed. It could be, however, that two of these populations are experiencing density-dependent regulation, rather than being declining. Microsatellite diversity was slightly reduced in a single population and similar in the three others, consistently with expectations based on population census size and geographic area, as well as with diversity at the S-locus observed in 2000. The combination of all data led to specific recommendations for managing each population. We discuss the implications for conservation of such a general approach.  相似文献   

8.
Stochastic matrix projection models are widely used to model age- or stage-structured populations with vital rates that fluctuate randomly over time. Practical applications of these models rest on qualitative properties such as the existence of a long term population growth rate, asymptotic log-normality of total population size, and weak ergodicity of population structure. We show here that these properties are shared by a general stochastic integral projection model, by using results in (Eveson in D. Phil. Thesis, University of Sussex, 1991, Eveson in Proc. Lond. Math. Soc. 70, 411-440, 1993) to extend the approach in (Lange and Holmes in J. Appl. Prob. 18, 325-344, 1981). Integral projection models allow individuals to be cross-classified by multiple attributes, either discrete or continuous, and allow the classification to change during the life cycle. These features are present in plant populations with size and age as important predictors of individual fate, populations with a persistent bank of dormant seeds or eggs, and animal species with complex life cycles. We also present a case-study based on a 6-year field study of the Illyrian thistle, Onopordum illyricum, to demonstrate how easily a stochastic integral model can be parameterized from field data and then applied using familiar matrix software and methods. Thistle demography is affected by multiple traits (size, age and a latent "quality" variable), which would be difficult to accommodate in a classical matrix model. We use the model to explore the evolution of size- and age-dependent flowering using an evolutionarily stable strategy (ESS) approach. We find close agreement between the observed flowering behavior and the predicted ESS from the stochastic model, whereas the ESS predicted from a deterministic version of the model is very different from observed flowering behavior. These results strongly suggest that the flowering strategy in O. illyricum is an adaptation to random between-year variation in vital rates.  相似文献   

9.
Analyses of species diversity and endemism patterns provide vital inputs for conservation planning. Therefore, it is an important dilemma of biodiversity conservation that in very diverse but poorly studied tropical countries those patterns can hardly be considered. Consequently, there is an urgent need to develop prediction models that make the best use of existing data on species distribution and that can give hints on spatial conservation priorities. This paper presents the results of a pilot study on the diversity of the orchid subtribe Pleurothallidinae (331 mapped species) in the Andean rain forests of Bolivia. Results of a taxon-based mapping methodology, using abiotic (humidity and temperature, the latter indicated by altitude) and historical factors (taken into account as distance from collection localities) that determine species ranges, are compared with outcomes of an inventory-based mapping approach. The patterns of taxon-based diversity and endemism show a strong correlation with the distribution of sample localities. The inventory-based approach is more reliable, but it is interesting to apply both mapping methods in order to make a critical interpretation and comparison that facilitates some valuable conservation recommendations. We end with concrete conclusions for conservation planning and action.  相似文献   

10.
植物种群生存力分析研究进展   总被引:6,自引:2,他引:4  
彭少麟  汪殿蓓  李勤奋 《生态学报》2002,22(12):2175-2185
对十多年来国外植物PVA的研究进行了综合评述;具体分析了影响植物种群生存力的各种随机性因子及确定性因子;总结了植物PVA研究的方法步骤及采用的模拟模型;探讨了植物PVA的难点,PVA对管理措施的评价效果;并提出对今后植物PVA的研究展望,认为PVA是研究濒危植物种群灭绝及评价管理或保护措施的有力工具;发展描述复杂种间关系的多种种的PVA模型以及包含多个影响因素的PVA应用模型是未来植物PVA的研究方向。  相似文献   

11.
种群生存力分析研究进展和趋势   总被引:13,自引:0,他引:13  
种群生存力分析(PVA)是正在迅速发展的新方法,已成为保护生物学研究的热点。它主要研究随机干扰对小种群绝灭的影响,其目的是制定最小可存活种群(MVP),把绝灭减少到可接受的水平。随机干扰可分四类;统计随机性,环境随机性,自然灾害和遗传随机性。确定MVP的方法有三种:理论模型,模拟模型,模拟模型和岛屿生物地理学方法。理论模型主要研究理想或特定条件下随机因素对种群的影响;模拟模型是利用计算机模拟种群绝灭过程;岛屿生物地理学方法主要分析岛屿物种的分布和存活,证实分析模型和模拟模型。已有大量的文献研究统计随机性,环境随机性和自然灾害的行为特征,但遗传因素与种群生存力之间的关系还不清楚。建立包括四种随机性的综合性模型,广泛地检验PVA模型,系统地研制目标种的遗传和生态特性以及MVP的实际应用是PVA的发展趋势。  相似文献   

12.
The population of eastern hellbenders (Cryptobranchus alleganiensis alleganiensis) in the Blue River, Indiana has undergone a dramatic decline over the last decade. Recruitment in these declining populations has been negligible, and populations are now composed almost entirely of older age classes (upwards of 20 years old). Given this dramatic decline, it is imperative to assess the impacts of these demographic patterns on population growth and long-term stability. Therefore, we developed a stage-structured, life-history model to examine the effects of varying levels of egg, juvenile, and adult survivorship on abundance, recruitment, and long-term population projections. We performed a sensitivity analysis of the model and determine which life-history parameters have the greatest potential to increase/stabilise hellbender population growth. Finally, we conducted a population viability analysis to determine the probability of extinction associated with varying management strategies. For eastern hellbender populations in Indiana, adults (especially females) are the most important component of long-term population viability. Sensitivity and elasticity analyses of the Lefkovitch matrix revealed that survival of adult and egg/larvae life-history stages are the most important for focused management efforts. Indeed, adults had the highest elasticity and reproductive value in the matrix model. Increasing survival by as little as 20% corresponded to the turning point at which the population ceased to decline and increased abundance (28% survival of egg/larvae). The importance of the transition from subadult to adult (transitional matrix element) was identified as an additional factor in maintaining abundance based on the relatively long period spent in this life-history stage (seven years for females). A population viability analysis was conducted to assess the likelihood and projected time frame of extinction for this population under no management (~25 years to complete extirpation; probability of extinction = 1) and if management efforts such as captive rearing and headstarting are undertaken (probability of extinction <0.2 at 25–30% survival of egg/larvae). Adult females had the greatest effect in reducing growth rate and population abundance when removed in exploitation simulations (91.3% versus 51.8% reduction in population growth rate), indicating translocation efforts should be designed to maintain females in the breeding pool. These models indicated that conservation management strategies aimed at ensuring the presence of adult females while concomitantly ameliorating survival at early life stages (population augmentation, translocations, introduction of artificial nest structures) are needed to stabilise the Indiana population of eastern hellbenders. This stage-structured model is the first to model eastern hellbenders and has broad implications for use across the geographic range where populations of eastern hellbenders are monitored and vital rates can be estimated.  相似文献   

13.
Orchids (Orchidaceae) are a family of flowering plants with a high proportion of threatened taxa making them an important focus of plant conservation. Orchid conservation efforts are most effective when informed by reliable demographic research. We utilized transition matrix models to examine the population dynamics and demography within sympatric populations of a species pair of terrestrial round-leaved orchids, Platanthera macrophylla and P. orbiculata. The models were parameterized from a large data set spanning 9 years from field observations of over 1,000 orchids. Life table response experiments (LTRE) were used to identify which life history transitions, and which vital rates within those transitions, most contributed to observed differences between the two species and most contributed to interannual variation within each species. Results from mean transition matrices projected finite rates of population growth that were not significantly different between the two species, with P. macrophylla near the replacement rate and P. orbiculata below it. LTRE revealed that the difference in population growth rates between the two species was mostly due to differences in fecundity (flowering adult to protocorm transition) driven by differences in fruit set and seed germination into protocorm, which were much greater for P. macrophylla. The two primary contributors to interannual variation in population growth rates for both orchids were adult survival and fruit set, respectively. These findings indicate that any environmental disturbances harming adult survival or fecundity will have a disproportionately negative effect on the orchid populations.  相似文献   

14.
In conservation management, there is an urgent need for estimates of population viability and for knowledge of the contributions of different life-history stages to population growth rates. Collection of long-term demographic data from a study population is time-consuming and may considerably delay the start of proper management actions. We examined the possibility of replacing a long-term temporal data set (demographic data from several years within a population) with a short-term spatial data set (demographic data from different populations for the same subset of two continuous years) for stochastic estimates of population viability. Using matrix population models for ten perennial plant species, we found that the matrix elements of spatial data sets often deviated from those of temporal data sets and that matrix elements generally varied more spatially than temporally. The appropriateness of replacing temporal data with spatial data depended on the subset of years and populations used to estimate stochastic population growth rates (log λs). Still, the precision of log λs estimates measured as variation in the yearly change of logarithmic population size rarely differed significantly between the spatial and temporal data sets. Since a spatiotemporal comparison of matrix elements and their variation cannot be used to assess whether spatial and temporal data sets are interchangeable, we recommend further research on the topic.  相似文献   

15.
Frequently, vital rates are driven by directional, long‐term environmental changes. Many of these are of great importance, such as land degradation, climate change, and succession. Traditional demographic methods assume a constant or stationary environment, and thus are inappropriate to analyze populations subject to these changes. They also require repeat surveys of the individuals as change unfolds. Methods for reconstructing such lengthy processes are needed. We present a model that, based on a time series of population size structures and densities, reconstructs the impact of directional environmental changes on vital rates. The model uses integral projection models and maximum likelihood to identify the rates that best reconstructs the time series. The procedure was validated with artificial and real data. The former involved simulated species with widely different demographic behaviors. The latter used a chronosequence of populations of an endangered cactus subject to increasing anthropogenic disturbance. In our simulations, the vital rates and their change were always reconstructed accurately. Nevertheless, the model frequently produced alternative results. The use of coarse knowledge of the species' biology (whether vital rates increase or decrease with size or their plausible values) allowed the correct rates to be identified with a 90% success rate. With real data, the model correctly reconstructed the effects of disturbance on vital rates. These effects were previously known from two populations for which demographic data were available. Our procedure seems robust, as the data violated several of the model's assumptions. Thus, time series of size structures and densities contain the necessary information to reconstruct changing vital rates. However, additional biological knowledge may be required to provide reliable results. Because time series of size structures and densities are available for many species or can be rapidly generated, our model can contribute to understand populations that face highly pressing environmental problems.  相似文献   

16.
Reliable data necessary to parameterize population models are seldom available for imperiled species. As an alternative, data from populations of the same species or from ecologically similar species have been used to construct models. In this study, we evaluated the use of demographic data collected at one California sea lion colony (Los Islotes) to predict the population dynamics of the same species from two other colonies (San Jorge and Granito) in the Gulf of California, Mexico, for which demographic data are lacking. To do so, we developed a stochastic demographic age-structured matrix model and conducted a population viability analysis for each colony. For the Los Islotes colony we used site-specific pup, juvenile, and adult survival probabilities, as well as birth rates for older females. For the other colonies, we used site-specific pup and juvenile survival probabilities, but used surrogate data from Los Islotes for adult survival probabilities and birth rates. We assessed these models by comparing simulated retrospective population trajectories to observed population trends based on count data. The projected population trajectories approximated the observed trends when surrogate data were used for one colony but failed to match for a second colony. Our results indicate that species-specific and even region-specific surrogate data may lead to erroneous conservation decisions. These results highlight the importance of using population-specific demographic data in assessing extinction risk. When vital rates are not available and immediate management actions must be taken, in particular for imperiled species, we recommend the use of surrogate data only when the populations appear to have similar population trends.  相似文献   

17.
Knowledge of species' geographic distributions is critical for understanding and forecasting population dynamics, responses to environmental change, biodiversity patterns, and conservation planning. While many suggestive correlative occurrence models have been used to these ends, progress lies in understanding the underlying population biology that generates patterns of range dynamics. Here, we show how to use a limited quantity of demographic data to produce demographic distribution models (DDMs) using integral projection models for size‐structured populations. By modeling survival, growth, and fecundity using regression, integral projection models can interpolate across missing size data and environmental conditions to compensate for limited data. To accommodate the uncertainty associated with limited data and model assumptions, we use Bayesian models to propagate uncertainty through all stages of model development to predictions. DDMs have a number of strengths: 1) DDMs allow a mechanistic understanding of spatial occurrence patterns; 2) DDMs can predict spatial and temporal variation in local population dynamics; 3) DDMs can facilitate extrapolation under altered environmental conditions because one can evaluate the consequences for individual vital rates. To illustrate these features, we construct DDMs for an overstory perennial shrub in the Proteaceae family in the Cape Floristic Region of South Africa. We find that the species' population growth rate is limited most strongly by adult survival throughout the range and by individual growth in higher rainfall regions. While the models predict higher population growth rates in the core of the range under projected climates for 2050, they also suggest that the species faces a threat along arid range margins from the interaction of more frequent fire and drying climate. The results (and uncertainties) are helpful for prioritizing additional sampling of particular demographic parameters along these gradients to iteratively refine projections. In the appendices, we provide fully functional R code to perform all analyses.  相似文献   

18.
Species distribution models are used for numerous purposes such as predicting changes in species’ ranges and identifying biodiversity hotspots. Although implications of distribution models for conservation are often implicit, few studies use these tools explicitly to inform conservation efforts. Herein, we illustrate how multiple distribution models developed using distinct sets of environmental variables can be integrated to aid in identification sites for use in conservation. We focus on the endangered arroyo toad (Anaxyrus californicus), which relies on open, sandy streams and surrounding floodplains in southern California, USA, and northern Baja California, Mexico. Declines of the species are largely attributed to habitat degradation associated with vegetation encroachment, invasive predators, and altered hydrologic regimes. We had three main goals: 1) develop a model of potential habitat for arroyo toads, based on long-term environmental variables and all available locality data; 2) develop a model of the species’ current habitat by incorporating recent remotely-sensed variables and only using recent locality data; and 3) integrate results of both models to identify sites that may be employed in conservation efforts. We used a machine learning technique, Random Forests, to develop the models, focused on riparian zones in southern California. We identified 14.37% and 10.50% of our study area as potential and current habitat for the arroyo toad, respectively. Generally, inclusion of remotely-sensed variables reduced modeled suitability of sites, thus many areas modeled as potential habitat were not modeled as current habitat. We propose such sites could be made suitable for arroyo toads through active management, increasing current habitat by up to 67.02%. Our general approach can be employed to guide conservation efforts of virtually any species with sufficient data necessary to develop appropriate distribution models.  相似文献   

19.
Among-individual variation in vital parameters such as birth and death rates that is unrelated to age, stage, sex, or environmental fluctuations is referred to as demographic heterogeneity. This kind of heterogeneity is prevalent in ecological populations, but is almost always left out of models. Demographic heterogeneity has been shown to affect demographic stochasticity in small populations and to increase growth rates for density-independent populations. The latter is due to ??cohort selection,?? where the most frail individuals die out first, lowering the cohort??s average mortality as it ages. The importance of cohort selection to population dynamics has only recently been recognized. We use a continuous-time model with density dependence, based on the logistic equation, to study the effects of demographic heterogeneity in mortality and reproduction. Reproductive heterogeneity is introduced in three ways: parent fertility, offspring viability, and parent?Coffspring correlation. We find that both the low-density growth rate and the equilibrium population size increase as the magnitude of mortality heterogeneity increases or as parent?Coffspring phenotypic correlation increases. Population dynamics are affected by complex interactions among the different types of heterogeneity, and trade-off scenarios are examined which can sometimes reverse the effect of increased heterogeneity. We show that there are a number of different homogeneous approximations to heterogeneous models, but all fail to capture important parts of the dynamics of the full model.  相似文献   

20.
Measuring and characterizing the area utilized by a population or species is essential for assessment of conservation status and for effective allocation of habitat to ensure population persistence. Yet population-level range delineation is complicated by the variety of available techniques coupled with a lack of empirical methods to compare the relative value of these techniques. This study assesses the effect of model choice on resulting subpopulation range estimation for the critically endangered and patchily distributed Cross River gorilla, and evaluates the conservation conclusions that can be drawn from each model. Models considered range from basic traditional approaches (e.g. minimum convex polygon) to newer home range techniques such as local convex hull (LoCoH). Overlap analysis comparing sub-sampled to complete data sets are used to evaluate the robustness of various modeling techniques to data limitations. Likelihood cross validation criterion is employed to compare core range model performance. Results suggest that differing LoCoH models produce similar range estimates, are robust to data requirements, provide a good fit for core habitat estimation, and are best able to detect unused habitat within the subpopulation range. LoCoH methods may thus be useful for studies into habitat selection and factors limiting endangered species distributions. However, LoCoH models tend to over-fit data, and kernel methods may provide similar information about animal space use while supporting protection of larger swaths of critical habitat. Subpopulation range analyses for conservation/management planning should therefore explore multiple modeling techniques, and employ both qualitative and quantitative assessments to select the best models to inform decision making for species of conservation concern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号