首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HIV-1 enters target cells by virtue of envelope glycoprotein trimers that are incorporated at low density in the viral membrane. How many trimers are required to interact with target cell receptors to mediate virus entry, the HIV entry stoichiometry, still awaits clarification. Here, we provide estimates of the HIV entry stoichiometry utilizing a combined approach of experimental analyses and mathematical modeling. We demonstrate that divergent HIV strains differ in their stoichiometry of entry and require between 1 to 7 trimers, with most strains depending on 2 to 3 trimers to complete infection. Envelope modifications that perturb trimer structure lead to an increase in the entry stoichiometry, as did naturally occurring antibody or entry inhibitor escape mutations. Highlighting the physiological relevance of our findings, a high entry stoichiometry correlated with low virus infectivity and slow virus entry kinetics. The entry stoichiometry therefore directly influences HIV transmission, as trimer number requirements will dictate the infectivity of virus populations and efficacy of neutralizing antibodies. Thereby our results render consideration of stoichiometric concepts relevant for developing antibody-based vaccines and therapeutics against HIV.  相似文献   

2.
Yang X  Kurteva S  Ren X  Lee S  Sodroski J 《Journal of virology》2005,79(19):12132-12147
The human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Envs) function as a trimer, mediating virus entry by promoting the fusion of the viral and target cell membranes. HIV-1 Env trimers induce membrane fusion through a pH-independent pathway driven by the interaction between an Env trimer and its cellular receptors, CD4 and CCR5/CXCR4. We studied viruses with mixed heterotrimers of wild-type and dominant-negative Envs to determine the number (T) of Env trimers required for HIV-1 entry. To our surprise, we found that a single Env trimer is capable of supporting HIV-1 entry; i.e., T = 1. A similar approach was applied to investigate the entry stoichiometry of envelope glycoproteins from amphotropic murine leukemia virus (A-MLV), avian sarcoma/leukosis virus type A (ASLV-A), and influenza A virus. When pseudotyped on HIV-1 virions, the A-MLV and ASLV-A Envs also exhibit a T = 1 entry stoichiometry. In contrast, eight to nine influenza A virus hemagglutinin trimers function cooperatively to achieve membrane fusion and virus entry, using a pH-dependent pathway. The different entry requirements for cooperativity among Env trimers for retroviruses and influenza A virus may influence viral strategies for replication and evasion of the immune system.  相似文献   

3.
HIV-1 virions infect target cells by first establishing contact between envelope glycoprotein trimers on the virion''s surface and CD4 receptors on a target cell, recruiting co-receptors, fusing with the cell membrane and finally releasing the genetic material into the target cell. Specific experimental setups allow the study of the number of trimer-receptor-interactions needed for infection, i.e., the stoichiometry of entry and also the number of antibodies needed to prevent one trimer from engaging successfully in the entry process, i.e., the stoichiometry of (trimer) neutralization. Mathematical models are required to infer the stoichiometric parameters from these experimental data. Recently, we developed mathematical models for the estimations of the stoichiometry of entry [1]. In this article, we show how our models can be extended to investigate the stoichiometry of trimer neutralization. We study how various biological parameters affect the estimate of the stoichiometry of neutralization. We find that the distribution of trimer numbers—which is also an important determinant of the stoichiometry of entry—influences the estimated value of the stoichiometry of neutralization. In contrast, other parameters, which characterize the experimental system, diminish the information we can extract from the data about the stoichiometry of neutralization, and thus reduce our confidence in the estimate. We illustrate the use of our models by re-analyzing previously published data on the neutralization sensitivity [2], which contains measurements of neutralization sensitivity of viruses with different envelope proteins to antibodies with various specificities. Our mathematical framework represents the formal basis for the estimation of the stoichiometry of neutralization. Together with the stoichiometry of entry, the stoichiometry of trimer neutralization will allow one to calculate how many antibodies are required to neutralize a virion or even an entire population of virions.  相似文献   

4.
HIV virions infect cells by attaching to target cell receptors, fusing membranes with the cell and by finally releasing their genetic material into the target cells. Antibodies can hinder the infection by attaching to the HIV envelope glycoprotein trimers before or during attachment. The exact mechanisms and the quantitative requirements of antibody neutralization are still debated. Recently, the number of antibodies rendering one trimer non-functional, called stoichiometry of (trimer) neutralization, was studied with mathematical models. Here we extend this theoretical framework to calculate the stoichiometries of neutralizing a single virion and a whole virion population. We derive mathematical equations for antibody neutralization based on restricted occupancy theory. Additionally we simulate these processes when a direct calculation is not possible. We find that the number of trimers needed for cell entry and the number of antibodies neutralizing one trimer strongly influence the mean number of antibodies needed for virion and population neutralization. Further we show that the mean number of antibodies needed to neutralize a virion population exceeds the product of the number of virions in the population and the mean number of antibodies needed to neutralize one virion.  相似文献   

5.
The human immunodeficiency virus (HIV) envelope glycoprotein forms trimers on the virion surface, with each monomer consisting of two subunits, gp120 and gp41. The gp120 envelope component binds to CD4 on target cells and undergoes conformational changes that allow gp120 to interact with certain G-protein-coupled receptors (GPCRs) on the same target membranes. The GPCRs that function as HIV coreceptors were found to be chemokine receptors. The primary coreceptors are CCR5 and CXCR4, but several other chemokine receptors were identified as "minor coreceptors", indicating their ability support entry of some HIV strains in tissue cultures. Formation of the tri-molecular complexes stabilizes virus binding and triggers a series of conformational changes in gp41 that facilitate membrane fusion and viral cell entry. Concerted efforts are underway to decipher the specific interactions between gp120/CD4, gp120/coreceptors, and their contributions to the subsequent membrane fusion process. It is hoped that some of the transient conformational intermediates in gp120 and gp41 would serve as targets for entry inhibitors. In addition, the CD4 and coreceptors are primary targets for several classes of inhibitors currently under testing. Our review summarizes the current knowledge on the interactions of HIV gp120 with its receptor and coreceptors, and the important properties of the chemokine receptors and their regulation in primary target cells. We also summarize the classes of coreceptor inhibitors under development.  相似文献   

6.
The human immunodeficiency virus (HIV) envelope glycoprotein forms trimers on the virion surface, with each monomer consisting of two subunits, gp120 and gp41. The gp120 envelope component binds to CD4 on target cells and undergoes conformational changes that allow gp120 to interact with certain G-protein-coupled receptors (GPCRs) on the same target membranes. The GPCRs that function as HIV coreceptors were found to be chemokine receptors. The primary coreceptors are CCR5 and CXCR4, but several other chemokine receptors were identified as “minor coreceptors”, indicating their ability support entry of some HIV strains in tissue cultures. Formation of the tri-molecular complexes stabilizes virus binding and triggers a series of conformational changes in gp41 that facilitate membrane fusion and viral cell entry. Concerted efforts are underway to decipher the specific interactions between gp120/CD4, gp120/coreceptors, and their contributions to the subsequent membrane fusion process. It is hoped that some of the transient conformational intermediates in gp120 and gp41 would serve as targets for entry inhibitors. In addition, the CD4 and coreceptors are primary targets for several classes of inhibitors currently under testing. Our review summarizes the current knowledge on the interactions of HIV gp120 with its receptor and coreceptors, and the important properties of the chemokine receptors and their regulation in primary target cells. We also summarize the classes of coreceptor inhibitors under development.  相似文献   

7.
The envelope glycoproteins of primate lentiviruses, including human and simian immunodeficiency viruses (HIV and SIV), are heterodimers of a transmembrane glycoprotein (usually gp41), and a surface glycoprotein (gp120), which binds CD4 on target cells to initiate viral entry. We have used electron tomography to determine the three-dimensional architectures of purified SIV virions in isolation and in contact with CD4+ target cells. The trimeric viral envelope glycoprotein surface spikes are heterogeneous in appearance and typically approximately 120 A long and approximately 120 A wide at the distal end. Docking of SIV or HIV-1 on the T cell surface occurs via a neck-shaped contact region that is approximately 400 A wide and consistently consists of a closely spaced cluster of five to seven rod-shaped features, each approximately 100 A long and approximately 100 A wide. This distinctive structure is not observed when viruses are incubated with T lymphocytes in the presence of anti-CD4 antibodies, the CCR5 antagonist TAK779, or the peptide entry inhibitor SIVmac251 C34. For virions bound to cells, few trimers were observed away from this cluster at the virion-cell interface, even in cases where virus preparations showing as many as 70 envelope glycoprotein trimers per virus particle were used. This contact zone, which we term the "entry claw", provides a spatial context to understand the molecular mechanisms of viral entry. Determination of the molecular composition and structure of the entry claw may facilitate the identification of improved drugs for the inhibition of HIV-1 entry.  相似文献   

8.
Magnus C  Regoes RR 《PloS one》2012,7(3):e33441
Virions of the Human Immunodeficiency Virus (HIV) infect cells by first attaching with their surface spikes to the CD4 receptor on target cells. This leads to conformational changes in the viral spikes, enabling the virus to engage a coreceptor, commonly CCR5 or CXCR4, and consecutively to insert the fusion peptide into the cellular membrane. Finally, the viral and the cellular membranes fuse. The HIV spike is a trimer consisting of three identical heterodimers composed of the gp120 and gp41 envelope proteins. Each of the gp120 proteins in the trimer is capable of attaching to the CD4 receptor and the coreceptor, and each of the three gp41 units harbors a fusion domain. It is still under debate how many of the envelope subunits within a given trimer have to bind to the CD4 receptors and to the coreceptors, and how many gp41 protein fusion domains are required for fusion. These numbers are referred to as subunit stoichiometries. We present a mathematical framework for estimating these parameters individually by analyzing infectivity assays with pseudotyped viruses. We find that the number of spikes that are engaged in mediating cell entry and the distribution of the spike number play important roles for the estimation of the subunit stoichiometries. Our model framework also shows why it is important to subdivide the question of the number of functional subunits within one trimer into the three different subunit stoichiometries. In a second step, we extend our models to study whether the subunits within one trimer cooperate during receptor binding and fusion. As an example for how our models can be applied, we reanalyze a data set on subunit stoichiometries. We find that two envelope proteins have to engage with CD4-receptors and coreceptors and that two fusion proteins must be revealed within one trimer for viral entry. Our study is motivated by the mechanism of HIV entry but the experimental technique and the model framework can be extended to other viral systems as well.  相似文献   

9.
HIV infection does not require endocytosis of its receptor, CD4   总被引:36,自引:0,他引:36  
The T cell surface molecule CD4 interacts with class II MHC molecules on the surface of target cells as well as with the envelope glycoprotein of human immunodeficiency virus (HIV). Internalization of CD4 molecules is observed after exposure of CD4+ T cells to either phorbol esters or appropriate antigen-bearing target cells. To determine whether HIV entry proceeds via receptor-mediated endocytosis or direct viral fusion with the cell membrane, we have constructed two mutants in the cytoplasmic domain of the CD4 protein that severely impair the ability of CD4 molecules to undergo endocytosis. Quantitative infectivity studies reveal that HeLa cell lines expressing wild-type or mutant CD4 molecules are equally susceptible to HIV infection. In addition, HIV binding does not lead to CD4 endocytosis. These studies indicate that although the CD4 molecule can be internalized, HIV entry proceeds via direct fusion of the viral envelope with the cell membrane.  相似文献   

10.
Human immunodeficiency virus (HIV) envelope binds CD4 and a chemokine receptor in sequence, releasing hydrophobic viral gp41 residues into the target membrane. HIV entry required actin-dependent concentration of coreceptors, which could be disrupted by cytochalasin D (CytoD) without an effect on cell viability or mitosis. Pretreatment of peripheral blood mononuclear cells, but not virus, inhibited entry and infection. Immunofluorescent confocal microscopy of activated cells revealed CD4 and CXCR4 in nonoverlapping patterns. Addition of gp120 caused polarized cocapping of both molecules with subsequent pseudopod formation, while CytoD pretreatment blocked these membrane changes completely.  相似文献   

11.
T-tropic (X4) and dualtropic (R5X4) human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins kill primary and immortalized CD4(+) CXCR4(+) T cells by mechanisms involving membrane fusion. However, because much of HIV-1 infection in vivo is mediated by M-tropic (R5) viruses whose envelope glycoproteins use CCR5 as a coreceptor, we tested a panel of R5 and R5X4 envelope glycoproteins for their ability to lyse CCR5(+) target cells. As is the case for CXCR4(+) target cells, HIV-1 envelope glycoproteins expressed by single-round HIV-1 vectors killed transduced CD4(+) CCR5(+) cells in a membrane fusion-dependent manner. Furthermore, a CD4-independent R5 HIV-1 envelope glycoprotein was able to kill CD4-negative target cells expressing CCR5, demonstrating that CD4 is not intrinsically required for the induction of death. Interestingly, high levels of CD4 expression protected cells from lysis and syncytium formation mediated by the HIV-1 envelope glycoproteins. Immunoprecipitation experiments showed that high levels of CD4 coexpression inhibited proteolytic processing of the HIV-1 envelope glycoprotein precursor gp160. This inhibition could be overcome by decreasing the CD4 binding ability of gp120. Studies were also undertaken to investigate the ability of virion-bound HIV-1 envelope glycoproteins to kill primary CD4(+) T cells. However, neither X4 nor R5X4 envelope glycoproteins on noninfectious virions caused death in primary CD4(+) T cells. These results demonstrate that the interaction of CCR5 with R5 HIV-1 envelope glycoproteins capable of inducing membrane fusion leads to cell lysis; overexpression of CD4 can inhibit cell killing by limiting envelope glycoprotein processing.  相似文献   

12.
Interaction between the hepatitis C virus (HCV) envelope protein E2 and the host receptor CD81 is essential for HCV entry into target cells. The number of E2-CD81 complexes necessary for HCV entry has remained difficult to estimate experimentally. Using the recently developed cell culture systems that allow persistent HCV infection in vitro, the dependence of HCV entry and kinetics on CD81 expression has been measured. We reasoned that analysis of the latter experiments using a mathematical model of viral kinetics may yield estimates of the number of E2-CD81 complexes necessary for HCV entry. Here, we constructed a mathematical model of HCV viral kinetics in vitro, in which we accounted explicitly for the dependence of HCV entry on CD81 expression. Model predictions of viral kinetics are in quantitative agreement with experimental observations. Specifically, our model predicts triphasic viral kinetics in vitro, where the first phase is characterized by cell proliferation, the second by the infection of susceptible cells and the third by the growth of cells refractory to infection. By fitting model predictions to the above data, we were able to estimate the threshold number of E2-CD81 complexes necessary for HCV entry into human hepatoma-derived cells. We found that depending on the E2-CD81 binding affinity, between 1 and 13 E2-CD81 complexes are necessary for HCV entry. With this estimate, our model captured data from independent experiments that employed different HCV clones and cells with distinct CD81 expression levels, indicating that the estimate is robust. Our study thus quantifies the molecular requirements of HCV entry and suggests guidelines for intervention strategies that target the E2-CD81 interaction. Further, our model presents a framework for quantitative analyses of cell culture studies now extensively employed to investigate HCV infection.  相似文献   

13.
HIV entry is determined by one or more chemokine receptors. T cell-tropic viruses bind CXCR4, whereas macrophage-tropic viruses use CCR5 and other CCRs. Infection with CXCR4 and CCR5-tropic HIV requires initial binding to CD4, and chemotaxis induced by the CCR5-tropic envelope has been reported to be strictly dependent on CD4 binding. We demonstrate that, in contrast to CD4-dependent gp120 signaling via CCR5, envelope signaling through CXCR4 is CD4 independent, inducing chemotaxis of both CD4 and CD8 T cells. Signaling by virus or soluble envelope through CXCR4 may affect pathogenesis by attracting and activating target and effector cells.  相似文献   

14.
The CD4 protein is required for the entry of human immunodeficiency virus (HIV) into target cells. Upon expression of the viral genome, three HIV-1 gene products participate in the removal of the primary viral receptor from the cell surface. To investigate the role of surface-CD4 in HIV replication, we have created a set of Jurkat cell lines which constitutively express surface levels of CD4 comparable to those found in peripheral blood lymphocytes and monocytes. Expression of low levels of CD4 on the surface of producer cells exerted an inhibitory effect on the infectivity of HIV-1 particles, whereas no differences in the amount of cell-free p24 antigen were observed. Higher levels of cell surface CD4 exerted a stronger inhibitory effect on infectivity, and also affected the release of free virus in experiments where the viral genomes were delivered by electrotransfection. The CD4-mediated inhibition of HIV-1 infectivity was not observed in experiments where the vesicular stomatitis virus G protein was used to pseudotype viruses, suggesting that an interaction between CD4 and gp120 is required for interference. In contrast, inhibition of particle release by high levels of cell-surface CD4 was not overcome by pseudotyping HIV-1 with foreign envelope proteins. Protein analysis of viral particles released from HIV-infected Jurkat-T cells revealed a CD4-dependent reduction in the incorporation of gp120. These results demonstrate that physiological levels of cell-surface CD4 interfere with HIV-1 replication in T cells by a mechanism that inhibits envelope incorporation into viral membranes, and therefore provide an explanation for the need to down-modulate the viral receptor in infected cells. Our findings have important implications for the spread of HIV in vivo and suggest that the CD4 down-modulation function may be an alternative target for therapeutic intervention.  相似文献   

15.
The entry of human immunodeficiency virus type 1 (HIV-1) into target cells involves binding to the viral receptor (CD4) and membrane fusion events, the latter influenced by target cell factors other than CD4. The third variable (V3) region of the HIV-1 gp120 exterior envelope glycoprotein and the amino terminus of the HIV-1 gp41 transmembrane envelope glycoprotein have been shown to be important for the membrane fusion process. Here we demonstrate that some HIV-1 envelope glycoproteins containing an altered V3 region or gp41 amino terminus exhibit qualitatively different abilities to mediate syncytium formation and virus entry when different target cells are used. These results demonstrate that the structure of these HIV-1 envelope glycoprotein regions determines the efficiency of membrane fusion in a target cell-specific manner and support a model in which the gp41 amino terminus interacts directly or indirectly with the target cell during virus entry.  相似文献   

16.
BMS-488043 is a small-molecule human immunodeficiency virus type 1 (HIV-1) CD4 attachment inhibitor with demonstrated clinical efficacy. The compound inhibits soluble CD4 (sCD4) binding to the 11 distinct HIV envelope gp120 proteins surveyed. Binding of BMS-488043 and that of sCD4 to gp120 are mutually exclusive, since increased concentrations of one can completely block the binding of the other without affecting the maximal gp120 binding capacity. Similarly, BMS-488043 inhibited virion envelope trimers from binding to sCD4-immunoglobulin G (IgG), with decreasing inhibition as the sCD4-IgG concentration increased, and BMS-488043 blocked the sCD4-induced exposure of the gp41 groove in virions. In both virion binding assays, BMS-488043 was active only when added prior to sCD4. Collectively, these results indicate that obstruction of gp120-sCD4 interactions is the primary inhibition mechanism of this compound and that compound interaction with envelope must precede CD4 binding. By three independent approaches, BMS-488043 was further shown to induce conformational changes within gp120 in both the CD4 and CCR5 binding regions. These changes likely prevent gp120-CD4 interactions and downstream entry events. However, BMS-488043 could only partially inhibit CD4 binding to an HIV variant containing a specific envelope truncation and altered gp120 conformation, despite effectively inhibiting the pseudotyped virus infection. Taken together, BMS-488043 inhibits viral entry primarily through altering the envelope conformation and preventing CD4 binding, and other downstream entry events could also be inhibited as a result of these induced conformational changes.  相似文献   

17.
Various roles for the viral receptor, CD4, have been proposed in facilitating human immunodeficiency virus type 1 (HIV-1) entry, including virion binding to the target cell and the induction of conformational changes in the viral envelope glycoproteins required for the membrane fusion reaction. Here, we compare the structural requirements in the CDR2-like loop of CD4 domain 1, the major contact site of the gp120 envelope glycoprotein, for gp120 binding and virus entry. For every CD4 mutant examined, the level of cell surface expression and the gp120 binding affinity were sufficient to explain the relative ability to function as a viral receptor. The decrease in relative infectibility associated with decreased gp120 binding affinity was more pronounced at lower cell surface CD4 concentrations. These results imply that both receptor density and affinity determine the efficiency of HIV-1 entry and that specific structures in the CD4 residues examined are probably not required for HIV-1 entry functions other than gp120 binding.  相似文献   

18.

Background

Human immunodeficiency virus (HIV) enters target cells by a membrane fusion process that involves a series of sequential interactions between its envelope glycoproteins, the CD4 receptor and CXCR4/CCR5 coreceptors. CD4 molecules are expressed at the cell surface of lymphocytes and monocytes mainly as monomers, but basal levels of CD4 dimers are also present at the cell surface of these cells. Previous evidence indicates that the membrane distal and proximal extracellular domains of CD4, respectively D1 and D4, are involved in receptor dimerization.

Results

Here, we have used A201 cell lines expressing two CD4 mutants, CD4-E91K, E92K (D1 mutant) and CD4-Q344E (D4 mutant), harboring dimerization defects to analyze the role of CD4 dimerization in HIV-1 entry. Using entry assays based on β-lactamase-Vpr or luciferase reporter activities, as well as virus encoding envelope glycoproteins derived from primary or laboratory-adapted strains, we obtained evidence suggesting an association between disruption of CD4 dimerization and increased viral entry efficiency.

Conclusion

Taken together, our results suggest that monomeric forms of CD4 are preferentially used by HIV-1 to gain entry into target cells, thus implying that the dimer/monomer ratio at the cell surface of HIV-1 target cells may modulate the efficiency of HIV-1 entry.  相似文献   

19.
DC-SIGN is a C-type lectin expressed on dendritic cells and restricted macrophage populations in vivo that binds gp120 and acts in trans to enable efficient infection of T cells by human immunodeficiency virus type 1 (HIV-1). We report here that DC-SIGN, when expressed in cis with CD4 and coreceptors, allowed more efficient infection by both HIV and simian immunodeficiency virus (SIV) strains, although the extent varied from 2- to 40-fold, depending on the virus strain. Expression of DC-SIGN on target cells did not alleviate the requirement for CD4 or coreceptor for viral entry. Stable expression of DC-SIGN on multiple lymphoid lines enabled more efficient entry and replication of R5X4 and X4 viruses. Thus, 10- and 100-fold less 89.6 (R5/X4) and NL4-3 (X4), respectively, were required to achieve productive replication in DC-SIGN-transduced Jurkat cells when compared to the parental cell line. In addition, DC-SIGN expression on T-cell lines that express very low levels of CCR5 enabled entry and replication of R5 viruses in a CCR5-dependent manner, a property not exhibited by the parental cell lines. Therefore, DC-SIGN expression can boost virus infection in cis and can expand viral tropism without affecting coreceptor preference. In addition, coexpression of DC-SIGN enabled some viruses to use alternate coreceptors like STRL33 to infect cells, whereas in its absence, infection was not observed. Immunohistochemical and confocal microscopy data indicated that DC-SIGN was coexpressed and colocalized with CD4 and CCR5 on alveolar macrophages, underscoring the physiological significance of these cis enhancement effects.  相似文献   

20.
被膜蛋白糖基化在HIV感染中的作用   总被引:1,自引:1,他引:0  
在HIV感染过程中,病毒被膜蛋白糖基化起着重要作用。它使病毒粒子具有高度糖基化的表面,帮助HIV逃避人体免疫细胞识别和攻击。在病毒入侵时,被膜糖蛋白与宿主细胞表面的受体结合,并进行一系列构象变化,使病毒粒子顺利地与宿主细胞膜融合。介绍近年来对被膜蛋白糖基化过程与HIV成熟、感染和逃避免疫应答等方面分子水平作用机理的深入了解,这些作用机理将会有助于艾滋病疫苗的研制和以“糖链为靶”药物的开发。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号