首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of dangling ends on duplex yield have been assessed by hybridisation of oligonucleotides to an array of oligonucleotides synthesised on the surface of a solid support. The array consists of decanucleotides and shorter sequences. One of the decanucleotides in the array was fully complementary to the decanucleotide used as solution target. Others were complementary over seven to nine bases, with overhangs of one to three bases. Duplexes involving different decanucleotides had different overhangs at the 3' and 5' ends. Some duplexes involving shorter oligonucleotides had the same regions of complementarity as these decanucleotides, but with fewer overhanging bases. This analysis allows simultaneous assessment of the effects of differing bases at both 5' and 3' ends of the oligonucleotide in duplexes formed under identical reaction conditions. The results indicate that a 5' overhang is more stabilising than a 3' overhang, which is consistent with previous results obtained with DNA overhangs. However, it is not clear whether this is due to the orientation of the overhang or to the effect of specific bases.  相似文献   

2.
Oligonucleotide arrays can be used for the analysis of microbial nucleic acid. The addition of high numbers of dTTP to the 3' ends of oligonucleotides using terminal transferase has been shown to facilitate membrane binding. This paper demonstrates low numbers of thymine bases added to the 3' end of oligonucleotides during synthesis can improve hybridisation signal intensity where the signal seen with the unmodified oligonucleotides is poor. Thus, the addition of variable numbers of thymine bases to different oligonucleotides allows the production of oligonucleotide arrays producing strong interpretable hybridisation signals.  相似文献   

3.
M Septak 《Nucleic acids research》1996,24(15):3053-3058
Fully protected CPG-immobilized monomer, dimer and trimer oligonucleotides were used to study depurination during the chemical synthesis of oligonucleotides. Disappearance of the oligonucleotide during acid exposure time relative to an internal thymidine standard not subject to depurination was monitored by reverse phase HPLC analysis. Depurination half-times obtained for dichloroacetic acid (DCA) and trichloroacetic acid (TCA) in methylene chloride were found to be 3% DCA >> 15% DCA > 3% TCA. In order to understand the implications of depurination during DNA synthesis, the detritylation kinetics of model compounds DMT-dG-pT dimer and DMT-[17mer] mixed-base sequence were also measured. These results improve our ability to properly balance the contradictory goals of obtaining maximum detritylation with minimum depurination in oligonucleotide synthesis.  相似文献   

4.
The synthesis and properties of novel RNA mimetics, oligoribonucleotide N3'-->P5' phosphoramidates, are described. These oligonucleotides contain 3'-aminoribonucleosides connected via N3'-->P5' phosphoramidate linkages, replacing the native RNA O3'-->P5' phosphodiester counterparts. The key monomers 2'-t-butyldimethylsilyl-3'-(monomethoxytrityl)-amino-5'-phospho ramidi tes were synthesized and used to prepare the oligonucleotide phosphoramidates using a solid phase methodology based on the phosphoramidite transfer reaction. Oligoribophosphoramidates are very resistant to enzymatic hydrolysis by snake venom phosphodiesterase. These compounds form stable duplexes with complementary natural phosphodiester DNA and RNA strands, as well as with 2'-deoxy N3'-->P5' phosphoramidates. The increase in melting temperature, Delta T m, was 5-14 degrees C relative to the 2'-deoxy phosphoramidates for decanucleotides. Also, the thermal stability of the ribophosphoramidatehomoduplex was noticeably higher (Delta T m +9.5 degrees C) than that for the isosequential 2'-deoxy phosphoramidate complex. Furthermore, the oligopyrimidine ribo N3'-->P5' phosphoramidate formed an extremely stable triplex with an oligopurine/oligopyrimidine DNA duplex with Delta T m +14.3 degrees C relative to the 2'-deoxy N3'-->P5' phosphoramidate counterpart. The properties of the oligoribonucleotide N3'-->P5' phosphoramidates indicate that these compounds can be used as hydrolytically stable structural and functional RNA mimetics.  相似文献   

5.
Design of antisense oligonucleotides stabilized by locked nucleic acids   总被引:24,自引:14,他引:10  
The design of antisense oligonucleotides containing locked nucleic acids (LNA) was optimized and compared to intensively studied DNA oligonucleotides, phosphorothioates and 2′-O-methyl gapmers. In contradiction to the literature, a stretch of seven or eight DNA monomers in the center of a chimeric DNA/LNA oligonucleotide is necessary for full activation of RNase H to cleave the target RNA. For 2′-O-methyl gapmers a stretch of six DNA monomers is sufficient to recruit RNase H. Compared to the 18mer DNA the oligonucleotides containing LNA have an increased melting temperature of 1.5–4°C per LNA depending on the positions of the modified residues. 2′-O-methyl nucleotides increase the Tm by only <1°C per modification and the Tm of the phosphorothioate is reduced. The efficiency of an oligonucleotide in supporting RNase H cleavage correlates with its affinity for the target RNA, i.e. LNA > 2′-O-methyl > DNA > phosphorothioate. Three LNAs at each end of the oligonucleotide are sufficient to stabilize the oligonucleotide in human serum 10-fold compared to an unmodified oligodeoxynucleotide (from t1/2 = ~1.5 h to t1/2 = ~15 h). These chimeric LNA/DNA oligonucleotides are more stable than isosequential phosphorothioates and 2′-O-methyl gapmers, which have half-lives of 10 and 12 h, respectively.  相似文献   

6.
The synthesis and hybridization properties of novel nucleic acid analogs, alpha-anomeric oligodeoxyribonucleotide N3'-->P5' phosphoramidates, are described. The alpha-3'-aminonucleoside building blocks used for oligonucleotide synthesis were synthesized from 3'-azido-3'-deoxythymidine or 3'-azido-2',3'-dideoxyuridine via acid catalyzed anomerization or transglycosylation reactions. The base-protected alpha-5'-O-DMT-3'-aminonucleosides were assembled into dimers and oligonucleotides on a solid support using the oxidative phosphorylation method.1H NMR analysis of the alpha-N3'-->P5' phosphoramidate dimer structures indicates significant differences in the sugar puckering of these compounds relative to the beta-N3'-->P5' phosphoramidates and to the alpha-phosphodiester counterparts. Additionally, the ability of the alpha-oligonucleotide N3'-->P5' phosphoramidates to form duplexes was studied using thermal denaturation experiments. Thus the N3'-->P5' phosphoramidate decamer containing only alpha-thymidine residues did not bind to poly(A) and exhibited lower duplex thermal stability with poly(dA) than that for the corresponding beta-anomeric phosphoramidate counterpart. A mixed base decamer alpha-CTTCTTCCTT formed duplexes with the RNA and DNA complementary strands only in a parallel orientation. Melting temperatures of these complexes were significantly lower, by 34-47 or 15-25 degrees C, than for the duplexes formed by the isosequential beta-phosphoramidates in antiparallel and parallel orientations respectively. In contrast, the alpha-decaadenylic N3'-->P5' phosphoramidate formed duplexes with both RNA and DNA complementary strands with a stability similar to that of the corresponding beta-anomeric phosphoramidate. Moreover, the self-complementary oligonucleotide alpha-ATATATATAT did not form an alpha:alpha homoduplex. These results demonstrate the effects of 3'-aminonucleoside anomeric configuration on sugar puckering and consequently on stability of the duplexes.  相似文献   

7.
By introducing synthetic oligonucleotides into a lacZ-yeast expression vector a set of 47 plasmids (out of 64 possible) was generated, differing only in the three bases immediately upstream of the AUG initiation codon of the Escherichia coli lacZ gene. Expression of the beta-galactosidase fusion protein encoded by the different plasmids was determined in Saccharomyces cerevisiae by immunogel electrophoresis. Among the clones tested we found a factor 3 difference in expression. A slight nucleotide preference was found in positions -3(A > G > C = U) and -2 (G > C = U > A). The choice of the nucleotide at position -1 immediately 5' of the AUG did not effect translation efficiency. Increasing homology to the yeast consensus sequence (AAAAAAAUGUCU) was not concomitant with an increased translation efficiency. Our results indicate that the choice of nucleotides immediately preceding the initiation codon in yeast does not dramatically influence translation efficiency, as in prokaryotes or higher eukaryotes.  相似文献   

8.
Testa SM  Disney MD  Turner DH  Kierzek R 《Biochemistry》1999,38(50):16655-16662
Antisense compounds are designed to optimize selective hybridization of an exogenous oligonucleotide to a cellular target. Typically, Watson-Crick base pairing between the antisense compound and target provides the key recognition element. Uridine (U), however, not only stably base pairs with adenosine (A) but also with guanosine (G), thus reducing specificity. Studies of duplex formation by oligonucleotides with either an internal or a terminal 2- or 4-thiouridine (s(2)U or s(4)U) show that s(2)U can increase the stability of base pairing with A more than with G, while s(4)U can increase the stability of base pairing with G more than with A. The latter may be useful when binding can be enhanced by tertiary interactions with a s(4)U-G pair. To test the effects of s(2)U and s(4)U substitutions on tertiary interactions, binding to a group I intron ribozyme from mouse-derived Pneumocystis carinii was measured for the hexamers, r(AUGACU), r(AUGACs(2)U), and r(AUGACs(4)U), which mimic the 3' end of the 5' exon. The results suggest that at least one of the carbonyl groups of the 3' terminal U of r(AUGACU) is involved in tertiary interactions with the catalytic core of the ribozyme and/or thio groups change the orientation of a terminal U-G base pair. Thus thio substitutions may affect tertiary interactions. Studies of trans-splicing of 5' exon mimics to a truncated rRNA precursor, however, indicate that thio substitutions have negligible effects on overall reactivity. Therefore, modified bases can enhance the specificity of base pairing while retaining other activities and, thus, increase the specificity of antisense compounds targeting cellular RNA.  相似文献   

9.
The binding of guanosine/thymidine-rich oligodeoxyribonucleotides containing various deletions, extensions, and point mutations to polypurine DNA targets was investigated by DNase I footprinting. Intermolecular purine-purine-pyrimidine triple-helical DNA formation was best achieved using oligonucleotides 12 nucleotides in length. Longer oligonucleotides were slightly weaker in binding affinity, whereas shorter oligonucleotides were considerably weaker. Oligonucleotide extensions had a slight effect on triplex formation, while single point mutations located near the oligonucleotide ends had a greater effect. In the cases of extensions and point mutations, changes to the 3' end of the oligonucleotide had a consistently greater effect on triplex formation than changes to the 5' end. Such differences in triplex-forming ability were not caused by an intrinsic property of these oligonucleotides, since the same point mutated oligonucleotides could bind with high affinity to duplex DNAs containing complementary sites. Taken together, our data suggest that there may be an asymmetry involved in the process of purine-motif triplex formation, with interactions between the 3' end of the oligonucleotide and complementary sequences on the target duplex DNA being dominant.  相似文献   

10.
Precise detection of target DNA and RNA sequences using chemically modified oligonucleotides is of crucial importance in gene analysis and gene silence. The hybridisation and base discrimination abilities of oligonucleotides containing 2'-O-methyl-2-thiouridine (s(2)Um) in homo- and hetero-duplexes composed of DNA and RNA strands have been studied in detail. When s(2)Um was incorporated into RNA or DNA strands, the hybridisation and base discrimination abilities of the modified RNA or DNA oligomers towards the complementary RNA strands were superior to those of the corresponding unmodified oligomers. On the other hand, their base discrimination abilities towards complementary DNA strands were almost the same as those of the unmodified ones. The base discrimination abilities of 2-thiouracil base-containing oligonucleotide probes on slide glass plates were also studied. These modified probes exhibited efficient detection of mismatched base pairing.  相似文献   

11.
G J Freeman  D D Rao  A S Huang 《Gene》1979,5(2):141-157
The single-stranded RNA genome of vesicular stomatitis virus (VSV, Indiana serotype, San Juan strain) yields approx. 75 RNase T1-resistant oligonucleotides ranging in size from 10 to 50 bases. Each of the five structural genes, isolated as duplex RNA molecules hybridized to complementary mRNA, contains two or more of these large oligonucleotides. One of the oligonucleotides is identified as part of the non-coding region near the 3' end of the genome. Comparison of these results with others indicate that the RNA sequence of VSV is apparently stable in the laboratory but not in the wild. RNase T1-resistant oligonucleotides are also shown for all five VSV mRN species. Whether the mRNA for these digestions are are isolated from duplex RNA molecules or as single-stranded RNA species, the oligonucleotide patterns for each mRNA are virtually identical, indicating that each mRNA is transcribed from contiguous sequences on the genome. Comparison with published oligonucleotide patterns obtained from other isolates of VSV or from VSV deletion mutants indicate that identity and changes in their genome structure can be correlated with specific structural genes.  相似文献   

12.
It is widely accepted that most cell types efficiently exclude oligonucleotides in vitro and require specific delivery systems, such as cationic lipids, to enhance uptake and subsequent antisense effects. Oligonucleotides are not readily transfected into leukaemia cell lines using cationic lipid systems and streptolysin O (SLO) is used to effect their delivery. We wished to investigate the optimal oligonucleotide composition for antisense efficacy and specificity following delivery into leukaemia cells using SLO. For this study the well characterised chronic myeloid leukaemia cell line KYO-1 was selected and oligonucleotides (20mers) were targeted to an empirically identified accessible site of c- myc mRNA. The efficiency and specificity of antisense effect was measured 4 and 24 h after SLO-mediated delivery of the oligonucleotides. C5-propyne phosphodiester and phosphorothioate compounds were found to present substantial non-specific effects at 20 microM but were inactive at 0.2 microM. Indeed, no antisense-specific effect was noted at any concentration at either time. All of the other oligonucleotides tested induced some measurable antisense effect, except 7 (chimeric, all-phosphorothioate, 2'-methoxyethoxy termini) which was essentially inactive at 20 microM. The rank efficiency order of the remaining antisense compounds was 4 = 3 >> 9 >> 10 = 8 = 5 = 6 > 11. The efficient antisense effects induced by the chimeric methylphosphonate-phosphodiester compounds were found to be highly specific. Increased phosphorothioate content in the oligonucleotide backbone correlated with reduced antisense activity (efficacy: 2'-methoxyethoxy series 9 >> 8 >> 7, 2'-methoxytriethoxy series 10 > 11). No consistent evidence was obtained for increased activity correlating with increased oligonucleotide-mRNA heteroduplex thermal stability. In conclusion, the chimeric methylphosphonate-phosphodiester oligodeoxynucleotides present the most favourable characteristics of the compounds tested, for efficient and specific antisense suppression of gene expression following SLO-mediated delivery.  相似文献   

13.
Some regions of nucleic acid targets are not accessible to heteroduplex formation with complementary oligonucleotide probes because they are involved in secondary structure through intramolecular Watson–Crick pairing. The secondary conformation of the target may be destabilised to assist its interaction with oligonucleotide probes. To achieve this, we modified a DNA target, which has self-complementary sequence able to form a hairpin loop, by replacing dC with N4-ethyldeoxycytidine (d4EtC), which hybridises specifically with natural dG to give a G:4EtC base pair with reduced stability compared to the natural G:C base pair. Substitution by d4EtC greatly reduced formation of the target secondary structure. The lower level of secondary structure allowed hybridisation with complementary probes made with natural bases. We confirmed that hybridisation could be further enhanced by modifying the probes with intercalating groups which stabilise the duplex.  相似文献   

14.
The success of oligonucleotide ligation assays in probing specific sequences of DNA arises in large part from high enzymatic selectivity against base mismatches at the ligation junction. We describe here a study of the effect of mismatches on a new non-enzymatic, reagent-free method for ligation of oligonucleotides. In this approach, two oligonucleotides bound at adjacent sites on a complementary strand undergo autoligation by displacement of a 5'-end iodide with a 3'-phosphorothioate group. The data show that this ligation proceeds somewhat more slowly than ligation by T4 ligase, but with substantial discrimination against single base mismatches both at either side of the junction and a few nucleotides away within one of the oligonucleotide binding sites. Selectivities of >100-fold against a single mismatch are observed in the latter case. Experiments at varied concentrations and temperatures are carried out both with the autoligation of two adjacent linear oligonucleotides and with intramolecular autoligation to yield circular 'padlock' DNAs. Application of optimized conditions to discrim-ination of an H- ras codon 12 point mutation is demonstrated with a single-stranded short DNA target.  相似文献   

15.
Molecular beacons are stem–loop hairpin oligonucleotide probes labeled with a fluorescent dye at one end and a fluorescence quencher at the other end; they can differentiate between bound and unbound probes in homogeneous hybridization assays with a high signal-to-background ratio and enhanced specificity compared with linear oligonucleotide probes. However, in performing cellular imaging and quantification of gene expression, degradation of unmodified molecular beacons by endogenous nucleases can significantly limit the detection sensitivity, and results in fluorescence signals unrelated to probe/target hybridization. To substantially reduce nuclease degradation of molecular beacons, it is possible to protect the probe by substituting 2′-O-methyl RNA for DNA. Here we report the analysis of the thermodynamic and kinetic properties of 2′-O-methyl and 2′-deoxy molecular beacons in the presence of RNA and DNA targets. We found that in terms of molecular beacon/target duplex stability, 2′-O-methyl/RNA > 2′-deoxy/RNA > 2′-deoxy/DNA > 2′-O-methyl/DNA. The improved stability of the 2′-O-methyl/RNA duplex was accompanied by a slightly reduced specificity compared with the duplex of 2′-deoxy molecular beacons and RNA targets. However, the 2′-O-methyl molecular beacons hybridized to RNA more quickly than 2′-deoxy molecular beacons. For the pairs tested, the 2′-deoxy-beacon/DNA-target duplex showed the fastest hybridization kinetics. These findings have significant implications for the design and application of molecular beacons.  相似文献   

16.
The purification of oligonucleotides by ion-exchange displacement chromatography is demonstrated on the gram-scale. Using a 50 mmD x 100 mmL (203 ml) column operated in the displacement mode, 1.2 g of a 24mer phosphorothioate oligonucleotide was purified. Product yield for this separation was 70% (780 mg) at a purity of 96.4% and the mass balance recovery of all oligonucleotide was 97.5%. The displacement purification of four additional phosphorothioate oligonucleotides ranging in length from 18 to 25 bases is also demonstrated on the semi-preparative (10-50 mg) scale. All of these oligonucleotides were purified using similar displacement conditions and typical results were 60% yield at 96% purity. The displacement portion of these separations required <15 min and total cycle time including equilibration, feed loading and regeneration can be performed in under 30 min. These results seem to indicate that displacement chromatography may be amenable to generalizations in separation protocol that would greatly reduce the effort required to obtain an optimized purification scheme for moderately long oligonucleotides.  相似文献   

17.
2-Methyl-1,4-naphthoquinone (menadione, MQ) was linked to synthetic oligonucleotides and exposed to near-UV light to generate base radical cations in DNA. This model system of electron transfer induced alkali-labile breaks at GG doublets, similar to anthraquinone and metallointercalators systems. In sharp contrast to other systems, the photolysis of MQ–DNA duplexes gave interstrand cross-links and alkali-labile breaks at bases on the complementary strand opposite the MQ moiety. For sequences with an internal MQ, the formation of cross-links with A and C opposite the MQ moiety was 2- to 3-fold greater than that with G and T. The yield of cross-links was more than 10-fold greater than that of breaks opposite MQ, which in turn was more than 2-fold greater than breaks at GG doublets. The yield of damage at GG doublets greatly increased for a sequence with a terminal MQ. The distribution of base damage was measured by enzymatic digestion and HPLC analysis (dAdo > dThd > dGuo > dCyd). The formation of novel products in MQ–DNA duplexes was attributed to the ability of excited MQ to generate the radical cations of all four DNA bases; thus, this photochemical reaction provides an ideal model system to study the effects of ionizing radiation and one-electron oxidants.  相似文献   

18.
The effects of ions (i.e. Na+, Mg2+ and polyamines including spermidine and spermine) on the stability of various DNA oligonucleotides in solution were studied. These synthetic DNA molecules contained sequences that mimic various cellular DNA structures, such as duplexes, bulged loops, hairpins and/or mismatched base pairs. Melting temperature curves obtained from the ultraviolet spectroscopic experiments indicated that the effectiveness of the stabilization of cations on the duplex formation follows the order of spermine > spermidine > Mg2+ > Na+ > Tris–HCl buffer alone at pH 7.3. Circular dichroism spectra showed that salts and polyamines did not change the secondary structures of those DNA molecules under study. Surface plasmon resonance (SPR) observations suggested that the rates of duplex formation are independent of the kind of cations used or the structure of the duplexes. However, the rate constants of DNA duplex dissociation decrease in the same order when those cations are involved. The enhancement of the duplex stability by polyamines, especially spermine, can compensate for the instability caused by abnormal structures (e.g. bulged loops, hairpins or mismatches). The effects can be so great as to make the abnormal DNAs as stable as the perfect duplex, both kinetically and thermodynamically. Our results may suggest that the interconversion of various DNA structures can be accomplished readily in the presence of polyamine. This may be relevant in understanding the role of DNA polymorphism in cells.  相似文献   

19.
Nearest-neighbor thermodynamic parameters of the ‘universal pairing base’ deoxyinosine were determined for the pairs I·C, I·A, I·T, I·G and I·I adjacent to G·C and A·T pairs. Ultraviolet absorbance melting curves were measured and non-linear regression performed on 84 oligonucleotide duplexes with 9 or 12 bp lengths. These data were combined with data for 13 inosine containing duplexes from the literature. Multiple linear regression was used to solve for the 32 nearest-neighbor unknowns. The parameters predict the Tm for all sequences within 1.2°C on average. The general trend in decreasing stability is I·C > I·A > I·T ≈ I· G > I·I. The stability trend for the base pair 5′ of the I·X pair is G·C > C·G > A·T > T·A. The stability trend for the base pair 3′ of I·X is the same. These trends indicate a complex interplay between H-bonding, nearest-neighbor stacking, and mismatch geometry. A survey of 14 tandem inosine pairs and 8 tandem self-complementary inosine pairs is also provided. These results may be used in the design of degenerate PCR primers and for degenerate microarray probes.  相似文献   

20.
The short oligodeoxynucleotide (ODN) probes are suitable for good discrimination of point mutations. However, the probes suffer from low melting temperatures. In this work, the strategy of using acridine-4-carboxamide intercalators to improve thermal stabilisation is investigated. The study of large series of acridines revealed that optimal stabilisation is achieved upon decoration of acridine by secondary carboxamide carrying sterically not demanding basic function bound through a two-carbon linker. Two highly active intercalators were attached to short probes (13 or 18 bases; designed as a part of HFE gene) by click chemistry into positions 7 and/or 13 and proved to increase the melting temperate (Tm) of the duplex by almost 8°C for the best combination. The acridines interact with both single- and double-stranded DNAs with substantially preferred interaction for the latter. The study of interaction suggested higher affinity of the acridines toward the GC- than AT-rich sequences. Good discrimination of two point mutations was shown in practical application with HFE gene (wild type, H63D C > G and S65C A > C mutations). Acridine itself can also serve as a fluorophore and also allows discrimination of the fully matched sequences from those with point mutations in probes labelled only with acridine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号