首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Delta(9)-Tetrahydrocannabinol (delta(9)-THC), the primary psychoactive constituent of marijuana (Cannabis sativa), is known to bind to two cannabinoid receptors: CB(1) receptors, located primarily in the brain, and CB(2) receptors, located primarily in the periphery. Recent research has suggested that other cannabinoids, including anandamide and WIN 55212-2, may also act at novel non-CB(1), non-CB(2) cannabinoid receptor(s). Anandamide produces a number of in vivo pharmacological effects in CB(1) knockout mice that are not produced by delta(9)-THC and cannot be explained by anandamide's rapid metabolism. In addition, in vitro anandamide and WIN 55212-2 stimulate [35S]GTPgammaS binding in both CB(1) knockout and wildtype mice while delta(9)-THC stimulates this binding only in wildtype mice. Although anandamide and vanilloid agonists share pharmacological effects, anandamide's actions in CB(1) knockout mice do not appear to be mediated by vanilloid VR(1) receptors. While not yet conclusive, these results suggest the possibility of additional cannabinoid receptors in the brain and periphery.  相似文献   

2.
Anandamide (N -arachidonoylethanolamine) was the first ligand to be identified as an endogenous ligand of the G-protein coupled cannabinoid CB1 receptor. Subsequently, two other fatty acid ethanolamides, N -homo- gamma -linolenylethanolamine and N -7,10,13,16-docosatetraenylethanolamine were identified as endogenous cannabinoid ligands. A fatty acid ester, 2-arachidonoylglycerol (2-AG), and a fatty acid ether, 2-arachidonyl glyceryl ether also have been isolated and shown to be endogenous cannabinoid ligands. Recent studies have postulated the existence of carrier-mediated anandamide transport that is essential for termination of the biological effects of anandamide. A membrane bound amidohydrolase (fatty acid amide hydrolase, FAAH), located intracellularly, hydrolyzes and inactivates anandamide and other endogenous cannabinoids such as 2-AG. 2-AG has also been proposed to be an endogenous CB2 ligand. Structure-activity relationships (SARs) for endocannabinoid interaction with the CB receptors are currently emerging in the literature. This review considers cannabinoid receptor SAR developed to date for the endocannabinoids with emphasis upon the conformational implications for endocannabinoid recognition at the cannabinoid receptors.  相似文献   

3.
Cannabinergic ligands   总被引:4,自引:0,他引:4  
The understanding of the pharmacology surrounding the cannabinergic system has seen many advances since the discovery of the CB1 receptor in the mammalian brain and the CB2 receptor in the periphery. Among these advances is the discovery of the endogenous ligands arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol amide (2-AG), which are selective agonists for the CB1 and CB2 receptors, respectively. These endogenous neuromodulators involved in the cannabinergic system are thought to be produced on demand and are metabolized by the enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAG lipase). Recently, we characterized a reuptake system that facilitates the transport of anandamide across the cell membrane and subsequently developed selective inhibitors of this transport, which have been found to have therapeutic potential as analgesic and peripheral vasodilators. The cannabinergic proteins currently being explored, which include the CB1 and CB2 receptors, FAAH and the anandamide transporter, are excellent targets for the development of therapeutically useful drugs for a range of conditions including pain, loss of appetite, immunosuppression, peripheral vascular disease and motor disorders. As cannabinoid research has progressed, various potent and selective cannabimimetic ligands, targeting these four cannabinoid proteins, have been designed and synthesized. Many of these ligands serve as important molecular probes, providing structural information regarding the binding sites of the cannabinergic proteins, as well as pharmacological tools, which have been playing pivotal roles in research aimed at understanding the biochemical and physiological aspects of the endocannabinoid system. This review will focus on some of the current cannabinergic ligands and probes and their pharmacological and therapeutic potential.  相似文献   

4.
Several chiral, analogues of the endogenous cannabinoid receptor ligand, arachidonylethanolamide (anandamide), methylated at the 2,1' and 2' positions using asymmetric synthesis were evaluated in order to study (a) stereoselectivity of binding to CB1 and CB2 cannabinoid receptors; and (b) metabolic stability with regard to anandamide amidase. Enantiomerically pure 2-methyl arachidonic acids were synthesized through diastereoselective methylation of the respective chiral 2-oxazolidinone enolate derivatives and CB1 and CB2 receptor affinities of the resulting chiral anandamides were evaluated using a standard receptor binding assay. Introduction of a single 2-methyl group increased affinity for CB1, led to limited enantioselectivity and only modestly improved metabolic stability. However, a high degree of enantio- and diastereoselectivity was observed for the 2,1'-dimethyl analogues. (R)-N-(1-methyl-2-hydroxyethyl)-2-(R)-methyl-arachidonamide (4) exhibited the highest CB1 receptor affinity in this series with a K(i) of 7.42 nM, an at least 10-fold improvement on anandamide (K(i)=78.2 nM). The introduction of two methyl groups at the 2-position of anandamide led to no change in affinity for CB1 but somewhat enhanced metabolic stability. Conversely, chiral headgroup methylation in the 2-gem-dimethyl series led to chiral analogues possessing a wide range of CB1 affinities. Of these the (S)-2,2,2'-trimethyl analogue (12) had the highest affinity for CB1 almost equal to that of anandamide. In agreement with our previous anandamide structure-activity relationship work, the analogues in this study showed high selectivity for the CB1 receptor over CB2. The results are evaluated in terms of stereochemical factors affecting the ligand's affinity for CB1 using receptor-essential volume mapping as an aid. Based on the results, a partial CB1 receptor site model is proposed, that bears two hydrophobic pockets capable of accommodating 1'- and 2-methyl groups  相似文献   

5.
Low-voltage-activated or T-type Ca(2+) channels (T-channels) are widely expressed, especially in the central nervous system where they contribute to pacemaker activities and are involved in the pathogenesis of epilepsy. Proper elucidation of their cellular functions has been hampered by the lack of selective pharmacology as well as the absence of generic endogenous regulations. We report here that both cloned (alpha(1G), alpha(1H) and alpha(1I) subunits) and native T-channels are blocked by the endogenous cannabinoid, anandamide. Anandamide, known to exert its physiological effects through cannabinoid receptors, inhibits T-currents independently from the activation of CB1/CB2 receptors, G-proteins, phospholipases and protein kinase pathways. Anandamide appears to be the first endogenous ligand acting directly on T-channels at submicromolar concentrations. Block of anandamide membrane transport by AM404 prevents T-current inhibition, suggesting that anandamide acts intracellularly. Anandamide preferentially binds and stabilizes T-channels in the inactivated state and is responsible for a significant decrease of T-currents associated with neuronal firing activities. Our data demonstrate that anandamide inhibition of T-channels can regulate neuronal excitability and account for CB receptor-independent effects of this signaling molecule.  相似文献   

6.
Cardiovascular pharmacology of anandamide   总被引:6,自引:0,他引:6  
The fatty acid amide anandamide produces hypotension and a decrease in systemic vascular resistance in vivo. A drop in blood pressure is also seen with synthetic cannabinoid (CB) receptor agonists. The hypotensive responses to anandamide and synthetic cannabinoids are absent in CB1 receptor gene knockout mice. In isolated arteries and perfused vascular beds, anandamide induces vasodilator responses, which cannot be mimicked by synthetic cannabinoids. Instead, vanilloid receptors on perivascular sensory nerves play a key role in these effects of anandamide. Activation of vanilloid receptors by anandamide triggers the release of sensory neuropeptides such as the vasodilator calcitonin gene-related peptide (CGRP). Anandamide is detected in blood and in many cells of the cardiovascular system, and macrophage-derived anandamide may be involved in several hypotensive clinical conditions. Interestingly, cannabinoid and vanilloid receptors display an overlap in ligand recognition properties, and the frequently used CB1 receptor antagonist SR141716A also inhibits vanilloid receptor-mediated responses. The presence of anandamide in endothelial cells, neurones and activated macrophages (monocytes), and its ability to activate CB and vanilloid receptors make this lipid a potential bioregulator in the cardiovascular system.  相似文献   

7.
Abstract: Anandamide is an endogenous ligand of cannabinoid receptors that induces pharmacological responses in animals similar to those of cannabinoids such as Δ9-tetrahydrocannabinol (THC). Typical pharmacological effects of cannabinoids include disruption of pain, memory formation, and motor coordination, systems that all depend on NMDA receptor mediated neurotransmission. We investigated whether anandamide can influence NMDA receptor activity by examining NMDA-induced calcium flux (ΔCa2+NMDA) in rat brain slices. The presence of anandamide reduced ΔCa2+NMDA and the inhibition was disrupted by cannabinoid receptor antagonist, pertussis toxin treatment, and agatoxin (a calcium channel inhibitor). Whereas these treatments prevented anandamide inhibiting ΔCa2+NMDA, they also revealed another, underlying mechanism by which anandamide influences ΔCa2+NMDA. In the presence of cannabinoid receptor antagonist, anandamide potentiated ΔCa2+NMDA in cortical, cerebellar, and hippocampal slices. Anandamide (but not THC) also augmented NMDA-stimulated currents in Xenopus oocytes expressing cloned NMDA receptors, suggesting a capacity to directly modulate NMDA receptor activity. In a similar manner, anandamide enhanced neurotransmission across NMDA receptor-dependent synapses in hippocampus in a manner that was not mimicked by THC and was unaffected by cannabinoid receptor antagonist. These data demonstrate that anandamide can modulate NMDA receptor activity in addition to its role as a cannabinoid receptor ligand.  相似文献   

8.
Anandamide (N-arachidonoylethanolamine) has been identified as an endogenous ligand of the G-protein coupled cannabinoid CB(1) receptor. Recent studies have postulated the existence of carrier-mediated anandamide transport which is involved in the termination of the biological effects of anandamide. A membrane bound amidohydrolase (fatty acid amide hydrolase, FAAH), located intracellulary, hydrolyzes and inactivates anandamide and other endogenous cannabinoids such as 2-arachidonoylglycerol (2-AG). Structure-activity relationships (SARs) for endocannabinoid interaction with the CB receptors, the anandamide transporter and FAAH are currently emerging in the literature. This review considers the divergences between these SARs and focuses upon the conformational implications for endocannabinoid recognition at each of these biological targets.  相似文献   

9.
Anandamide is an endocannabinoid that has antiarrhythmic effects through inhibition of L-type Ca(2+) channels in cardiomyocytes. In this study, we investigated the electrophysiological effects of anandamide on K(+) channels in rat ventricular myocytes. Whole cell patch-clamp technique was used to record K(+) currents, including transient outward potassium current (I(to)), steady-state outward potassium current (I(ss)), inward rectifier potassium current (I(K1)), and ATP-sensitive potassium current (I(KATP)) in isolated rat cardiac ventricular myocytes. Anandamide decreased I(to) while increasing I(KATP) in a concentration-dependent manner but had no effect on I(ss) and I(K1) in isolated ventricular myocytes. Furthermore, anandamide shifted steady-state inactivation curve of I(to) to the left and shifted the recovery curve of I(to) to the right. However, neither cannabinoid 1 (CB(1)) receptor antagonist AM251 nor CB(2) receptor antagonist AM630 eliminated the inhibitory effect of anandamide on I(to). In addition, blockade of CB(2) receptors, but not CB(1) receptors, eliminated the augmentation effect of anandamide on I(KATP). These data suggest that anandamide suppresses I(to) through a non-CB(1) and non-CB(2) receptor-mediated pathway while augmenting I(KATP) through CB(2) receptors in ventricular myocytes.  相似文献   

10.
We investigated the structure-activity relationships for the interactions of fatty acid amide analogs of the endocannabinoid anandamide with human recombinant cannabinoid receptors. Thirty-five novel fatty acid amides were synthesized using five different types of acyl chains and 11 different aromatic amine 'heads.' Although none of the new compounds was a more potent ligand than anandamide, we identified three amine groups capable of improving the metabolic stability of arachidonoylamides and their CB(1)/CB(2) selectivity ratio to over 20-fold, and several aromatic amines capable of improving the affinity of short chain or monosaturated fatty acids for cannabinoid CB(1) receptors. For the first time a tertiary amide of arachidonic acid was found to possess moderate affinity (K(i)=300 nM) for cannabinoid CB(1), but not CB(2), receptors.  相似文献   

11.
Anandamide and the metabolically stabler analogs, (R)-1'-methyl-2'-hydroxy-ethyl-arachidonamide (Met-AEA) and N-(3-methoxy-4-hydroxy-benzyl)-arachidonamide (arvanil), are CB(1) cannabinoid and VR(1) vanilloid receptors agonists. We synthesized 1',1'-dimethylheptyl-arvanil (O-1839) and six other AEA analogs obtained by addition of either a hydroxy, cyano, or bromo group on the C-20 atom of 1,1'-dimethylpentyl-Met-AEA (O-1811, O-1812 and O-1860, respectively) or 1,1'-dimethylpentyl-arvanil (O-1856, O-1895 and O-1861, respectively). The compounds were tested for their (i) affinity for CB(1) and CB(2) receptors, (ii) capability to activate VR1 receptors, (iii) inhibitory effect on the anandamide hydrolysis and on the anandamide membrane transporter, and (iv) cannabimimetic activity in the mouse 'tetrad' of in vivo assays. O-1812 is the first ligand ever proven to be highly (500- to 1000-fold) selective for CB(1) vs both VR(1) and CB(2) receptors, while O-1861 is the first true "hybrid" agonist of CB(1)/VR(1) receptors and a compound with potential therapeutic importance. The activities of the seven compounds in vivo did not correlate with their activities at either CB(1) or VR(1) receptors, thus suggesting the existence of other brain sites of action mediating some of their neurobehavioral actions in mice.  相似文献   

12.
Investigation of cannabinoid pharmacology in a vertebrate with a phylogenetic history distinct from that of mammals may allow better understanding of the physiological significance of cannabinoid neurochemistry. Taricha granulosa, the roughskin newt, was used here to characterize an amphibian cannabinoid receptor. Behavioral experiments demonstrated that the cannabinoid agonist levonantradol inhibits both newt spontaneous locomotor activity and courtship clasping behavior. Inhibition of clasping was dose-dependent and potent (IC(50) = 1.2 microgram per animal). Radioligand binding studies using [(3)H]CP-55940 allowed identification of a specific binding site (K(D) = 6.5 nM, B(max) = 1,853 fmol/mg of protein) in brain membranes. Rank order of affinity of several ligands was consistent with that reported for mammalian species (K(D), nM) : CP-55940 (3.8) > levonantradol (13.0) > WIN55212-2 (25.7) > anandamide (1,665) approximately anandamide 100 microM phenylmethylsulfonyl fluoride (2,398). The cDNA encoding the newt CB1 cannabinoid receptor was cloned, and the corresponding mRNA of 5.9 kb was found to be highly expressed in brain. A nonclonal Chinese hamster ovary cell line stably expressing the newt CB1 cannabinoid receptor was prepared that allowed demonstration of cannabinoid-mediated inhibition of adenylate cyclase (EC 4.6.1.1) activity. This inhibition was dose-dependent and occurred at concentrations consistent with affinities determined through radioligand binding experiments. The behavioral, pharmacological, and molecular cloning results demonstrate that a CB1 cannabinoid receptor is expressed in the CNS of the roughskin newt. This amphibian CB1 is very similar in density, ligand binding affinity, ligand binding specificity, and amino acid sequence to mammalian CB1. The high degree of evolutionary conservation of cannabinoid signaling systems implies an important physiological role in vertebrate brain function.  相似文献   

13.
The endogenous C18 N-acylethanolamines (NAEs) N-linolenoylethanolamine (18:3 NAE), N-linoleoylethanolamine (18:2 NAE), N-oleoylethanolamine (18:1 NAE), and N-stearoylethanolamine (18:0 NAE) are structurally related to the endocannabinoid anandamide (20:4 NAE), but these lipids are poor ligands at cannabinoid CB(1) receptors. Anandamide is also an activator of the transient receptor potential (TRP) vanilloid 1 (TRPV(1)) on primary sensory neurons. Here we show that C18 NAEs are present in rat sensory ganglia and vascular tissue. With the exception of 18:3 NAE in rat sensory ganglia, the levels of C18 NAEs are equal to or substantially exceed those of anandamide. At submicromolar concentrations, 18:3 NAE, 18:2 NAE, and 18:1 NAE, but not 18:0 NAE and oleic acid, activate native rTRPV(1) on perivascular sensory nerves. 18:1 NAE does not activate these nerves in TRPV(1) gene knock-out mice. Only the unsaturated C18 NAEs elicit whole cell currents and fluorometric calcium responses in HEK293 cells expressing hTRPV(1). Molecular modeling revealed a low energy cluster of U-shaped unsaturated NAE conformers, sharing several pharmacophoric elements with capsaicin. Furthermore, one of the two major low energy conformational families of anandamide also overlaps with the cannabinoid CB(1) receptor ligand HU210, which is in line with anandamide being a dual activator of TRPV(1) and the cannabinoid CB(1) receptor. This study shows that several endogenous non-cannabinoid NAEs, many of which are more abundant than anandamide in rat tissues, activate TRPV(1) and thus may play a role as endogenous TRPV(1) modulators.  相似文献   

14.
Anandamide (arachidonylethanolamide) and 2-arachidonoylglycerol mediate many of their actions via either CB(1) or CB(2) cannabinoid receptor subtypes. These agonist-receptor interactions result in activation of G proteins, particularly those of the G(i/o) family. Signal transduction pathways that are regulated by these G proteins include inhibition of adenylyl cyclase, regulation of ion currents (inhibition of voltage-gated L, N and P/Q Ca(2+)-currents; activation of K(+) currents); activation of focal adhesion kinase (FAK), mitogen activated protein kinase (MAPK) and induction of immediate early genes; and stimulation of nitric oxide synthase (NOS). Other effects of anandamide and/or 2-arachidonoylglycerol that are not mediated via cannabinoid receptors include inhibition of L-type Ca(2+) channels, stimulation of VR(1) vanilloid receptors, transient changes in intracellular Ca(2+), and disruption of gap junction function. Cardiovascular regulation by anandamide appears to occur by a variety of receptor-mediated and non-receptor-mediated mechanisms. This review will describe and evaluate each of these signal transduction pathways and mechanisms.  相似文献   

15.
Although adverse effects of cannabinoids on pregnancy have been indicated for many years, the mechanisms by which they exert their actions were not clearly understood. Only recently, molecular and biochemical approaches have led to the identification of two types of cannabinoid receptors, brain-type receptors (CB1-R) and spleen-type receptors (CB2-R), which mediate cannabinoid effects. These findings were followed by the discovery of endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG). The natural cannabinoids and endocannabinoids exert their effects via cannabinoid receptors and share similar pharmacological and physiological properties. Recent demonstration of expression of functional CB1-R in the preimplantation embryo and synthesis of anandamide in the pregnant uterus of mice suggests that cannabinoid ligand-receptor signaling is operative in the regulation of preimplantation embryo development and implantation. This review describes recent observations and their significance in embryo-uterine interactions during implantation and future research directions in this emerging area of interest.  相似文献   

16.
Although endogenous cannabinoid systems have been implicated in the modulation of the rewarding effects of abused drugs and food, little is known about the direct effects of endogenous ligands for cannabinoid receptors on brain reward processes. Here we show for the first time that the intravenous administration of anandamide, an endogenous ligand for cannabinoid receptors, and its longer-lasting synthetic analog methanandamide, increase the extracellular dopamine levels in the nucleus accumbens shell of awake, freely moving rats, an effect characteristic of most drugs abused by humans. Anandamide produced two distinctly different effects on dopamine levels: (1) a rapid, transient increase that was blocked by the cannabinoid CB1 receptor antagonist rimonabant, but not by the vanilloid VR1 receptor antagonist capsazepine, and was magnified and prolonged by the fatty acid amide hydrolase (FAAH) enzyme inhibitor, URB597; (2) a smaller delayed and long-lasting increase, not sensitive to CB1, VR1 or FAAH blockade. Both effects were blocked by infusing either tetrodotoxin (TTX, 1 microm) or calcium-free Ringer's solution through the microdialysis probe, demonstrating that they were dependent on the physiologic activation of dopaminergic neurotransmission. Thus, these results indicate that anandamide, through the activation of the mesolimbic dopaminergic system, participates in the signaling of brain reward processes.  相似文献   

17.
Cannabinoid receptors and their ligands   总被引:12,自引:0,他引:12  
There are at least two types of cannabinoid receptors, CB(1) and CB(2), both coupled to G proteins. CB(1) receptors exist primarily on central and peripheral neurons, one of their functions being to modulate neurotransmitter release. CB(2) receptors are present mainly on immune cells. Their roles are proving more difficult to establish but seem to include the modulation of cytokine release. Endogenous agonists for cannabinoid receptors (endocannabinoids) have also been discovered, the most important being arachidonoyl ethanolamide (anandamide), 2-arachidonoyl glycerol and 2-arachidonyl glyceryl ether. Other endocannabinoids and cannabinoid receptor types may also exist. Although anandamide can act through CB(1) and CB(2) receptors, it is also a vanilloid receptor agonist and some of its metabolites may possess yet other important modes of action. The discovery of the system of cannabinoid receptors and endocannabinoids that constitutes the "endocannabinoid system" has prompted the development of CB(1)- and CB(2)-selective agonists and antagonists/inverse agonists. CB(1)/CB(2) agonists are already used clinically, as anti-emetics or to stimulate appetite. Potential therapeutic uses of cannabinoid receptor agonists include the management of multiple sclerosis/spinal cord injury, pain, inflammatory disorders, glaucoma, bronchial asthma, vasodilation that accompanies advanced cirrhosis, and cancer. Following their release onto cannabinoid receptors, endocannabinoids are removed from the extracellular space by membrane transport and then degraded by intracellular enzymic hydrolysis. Inhibitors of both these processes have been developed. Such inhibitors have therapeutic potential as animal data suggest that released endocannabinoids mediate reductions both in inflammatory pain and in the spasticity and tremor of multiple sclerosis. So too have CB(1) receptor antagonists, for example for the suppression of appetite and the management of cognitive dysfunction or schizophrenia.  相似文献   

18.
Martin BR 《Life sciences》2005,77(14):1543-1558
Cannabinoid agonists such as Delta9-tetrahydrocannabinol (THC) produce a wide range of pharmacological effects both in the central nervous system and in the periphery. One of the most striking features of cannabinoids such as THC is the magnitude to tolerance that can be produced upon repetitive administration of this substance to animals. Relatively modest dosing regimens are capable of producing significant tolerance, whereas greater than 100-fold tolerance can be obtained with aggressive treatments. While cannabinoid tolerance has been studied quite extensively to establish its relevance to the health consequences of marijuana use, it has also proven to be a valuable strategy in understanding the mechanism of action of cannabinoids. The discovery of the endocannabinoid system that contains two receptor subtypes, CB1 and CB2, associated signaling pathways, endocannabinoids (anandamide and 2-arachidonoylglycerol) and their synthetic and degradative pathways has provided a means of systematically evaluating the mechanism of cannabinoid tolerance. It is well known that the CB1 cannabinoid receptor is down-regulated in states of cannabinoid tolerance along with uncoupling from its second messenger systems. Endocannabinoid levels are also altered in selected brain regions during the development of tolerance. While it is reasonable to speculate that a likely relationship exists between receptor and endocannabinoid levels, at present, little is known regarding the biological signal that leads to alterations in endocannabinoid levels. It is also unknown to what degree synthetic and degradative pathways for the endocannabinoids are altered in states of tolerance. The discovery that the brain is abundant in fatty acid amides and glycerols raises the question as to what roles these lipids contribute to the endocannabinoid system. Some of these lipids also utilize the endocannabinoid metabolic pathways, produce similar pharmacological effects, and are capable of modulating the actions of anandamide and 2-arachidonoylglycerol. In addition, there are dopamine, glycine, and serotonin conjugates of arachidonic acid that may also contribute to the actions of endocannabinoids. A systematic examination of these lipids in cannabinoid tolerance might shed light on their physiological relevance to the endocannabinoid system.  相似文献   

19.
20.
Anandamide (N-arachidonoylethanolamine), an arachidonic acid derivative, is an endogenous ligand for both the brain-type (CB1-R) and spleen-type (CB2-R) cannabinoid receptors. We have previously demonstrated that preimplantation mouse embryos express mRNA for these receptors and that the periimplantation uterus contains the highest level of anandamide yet discovered in a mammalian tissue. We further demonstrated that 2-cell mouse embryos exposed to low levels of anandamide (7 nM) or other known cannabinoid agonists in culture exhibit markedly compromised embryonic development to blastocysts and that this effect is mediated by CB1-R. In contrast, the present study demonstrates that blastocysts exposed in culture to the same low levels of cannabinoid agonists exhibited accelerated trophoblast differentiation with respect to fibronectin-binding activity and trophoblast outgrowth. Again, these effects resulted from activation of embryonic CB1-R. There was a differential concentration-dependent effect of cannabinoids on the trophoblast, with an observed inhibition of differentiation at higher doses. These results provide evidence for the first time that cannabinoid effects are differentially executed depending on the embryonic stage and cannabinoid levels in the environment. Since uterine anandamide levels are lowest at the sites of implantation and highest at the interimplantation sites, the new findings imply that site-specific levels of anandamide and/or other endogenous ligands in the uterus may regulate implantation spatially by promoting trophoblast differentiation at the sites of blastocyst implantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号