首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alagille syndrome (AGS, MIM 118450) is an autosomal dominant inherited disease. Paucity of interlobular bile ducts is one of the major abnormalities. To explore the molecular mechanism by which mutation in the human Jagged 1 gene (JAG1, MIM 601920) causes liver defects, we investigated the gene regulation of JAG1 to hepatocyte growth factor gene (HGF). By transfecting wild-type and mutant JAG1 into COS-7 cells in vitro, we found that HGF is a target gene of JAG1 downstream. Wild-type JAG1 is inhibitory for HGF expression and mutant JAG1s relieve the inhibition. Several domain disruptions in mutant JAG1 protein reveal a reduced inhibition to HGF expression at different levels. JAG1 mutations actually result in HGF overexpression. Furthermore, JAG1 controls HGF expression by a dosage-dependent regulation and Notch2 signaling seems to mediate JAG1 function. Given that HGF plays a critical role in differentiation of hepatic stem cells, overexpression of HGF acts on off-balanced cell fate determination in AGS patients. Hepatic stem cells may differentiate towards more hepatocytes but less biliary cells, thus causing the paucity of interlobular bile ducts in liver development of AGS. Our novel findings demonstrated that dosage-dependent regulation by mutations of JAG1 is a fundamental mechanism for liver abnormality in AGS.  相似文献   

2.
Biliary fibrosis is an important pathological indicator of hepatobiliary damage. Cholangiocyte is the key cell type involved in this process. To reveal the pathogenesis of biliary fibrosis, it is essential to understand the normal development as well as the aberrant generation and proliferation of cholangiocytes. Numerous reports suggest that the Wnt signaling pathway is implicated in the physiological and pathological processes of cholangiocyte development and ductular reaction. In this review, we summarize the effects of Wnt pathway in cholangiocyte development from embryonic stem cells, as well as the underlying mechanisms of cholangiocyte responses to adult ductal damage. Wnt signaling pathway is regulated in a step-wise manner during each of the liver differentiation stages from embryonic stem cells to functional mature cholangiocytes. With the modulation of Wnt pathway, cholangiocytes can also be generated from adult liver progenitor cells and mature hepatocytes to repair liver damage. Non-canonical Wnt signaling is triggered in the active ductal cells during biliary fibrosis. Targeted control of the Wnt signaling may hold the great potential to reduce and/or reverse the biliary fibrogenic process.  相似文献   

3.
Bone marrow-derived mesenchymal stem cells (BMSCs) have been demonstrated to be able to differentiate into hepatocytes, but the precise mechanisms controlling this process are unclear. Our aim is try to explore the role of Wnt signaling on the differentiation of BMSCs into hepatocytes. Our study demonstrated that BMSCs could successfully differentiate into hepatocytes under in vitro induction of the tissue extract of damaged liver. The mRNA level of Wnt-1, Wnt-5a, Frizzled1, DSH (disheveled), GSK-3β (glycogen synthase kinase 3 beta) and β-catenin on day 21 when the differentiation direction was determined, was lower than that on days 0, 7, and 11. Furthermore, blocking Wnt-1 signaling by treating BMSCs with Dkk1 could induce BMSCs to express albumin earlier and up-regulation of Wnt signaling by treating BMSCs with Wnt-1 could inhibit BMSCs to differentiate into hepatocytes. Above results indicated that inhibition on Wnt signaling can promote BMSCs to differentiate into hepatocytes.  相似文献   

4.
Whether hepatocytes can convert into biliary epithelial cells (BECs) during biliary injury is much debated. To test this concept, we traced the fate of genetically labeled [dipeptidyl peptidase IV (DPPIV)-positive] hepatocytes in hepatocyte transplantation model following acute hepato-biliary injury induced by 4,4’-methylene-dianiline (DAPM) and D-galactosamine (DAPM+D-gal) and in DPPIV-chimeric liver model subjected to acute (DAPM+D-gal) or chronic biliary injury caused by DAPM and bile duct ligation (DAPM+BDL). In both models before biliary injury, BECs are uniformly DPPIV-deficient and proliferation of DPPIV-deficient hepatocytes is restricted by retrorsine. We found that mature hepatocytes underwent a stepwise conversion into BECs after biliary injury. In the hepatocyte transplantation model, DPPIV-positive hepatocytes entrapped periportally proliferated, and formed two-layered plates along portal veins. Within the two-layered plates, the hepatocytes gradually lost their hepatocytic identity, proceeded through an intermediate state, acquired a biliary phenotype, and subsequently formed bile ducts along the hilum-to-periphery axis. In DPPIV-chimeric liver model, periportal hepatocytes expressing hepatocyte nuclear factor-1β (HNF-1β) were exclusively DPPIV-positive and were in continuity to DPPIV-positives bile ducts. Inhibition of hepatocyte proliferation by additional doses of retrorsine in DPPIV-chimeric livers prevented the appearance of DPPIV-positive BECs after biliary injury. Moreover, enriched DPPIV-positive BEC/hepatic oval cell transplantation produced DPPIV-positive BECs or bile ducts in unexpectedly low frequency and in mid-lobular regions. These results together suggest that mature hepatocytes but not contaminating BECs/hepatic oval cells are the sources of periportal DPPIV-positive BECs. We conclude that mature hepatocytes contribute to biliary regeneration in the environment of acute and chronic biliary injury through a ductal plate configuration without the need of exogenously genetic or epigenetic manipulation.  相似文献   

5.
骨髓干细胞包括造血干细胞(HSCs)和间充质干细胞(MSCs),骨髓间充质干细胞(BMSCs)是一类具有自我更新、增殖和多向分化能力的细胞,具有不对称分裂和无限增殖的特点。在肝细胞生长因子(HGF)的作用下,BMSCs可以分化为肝细胞,参与诱导这一分化过程的相关信号通路包括NF-kB信号通路、Notch信号通路、MAPK信号通路、Wnt信号通路和STAT3信号通路。文章主要就BMSCs分化为肝细胞的相关信号通路进行了综述。  相似文献   

6.
Previous studies suggested endotoxin, derived from the intestine through the portal blood to the liver, was predominantly metabolized by Kupffer cells. In the present study, fluorescent-labeled endotoxin injected into the rat portal vein was demonstrated not only in Kupffer cells but also in hepatocytes. Furthermore a great amount of labeled endotoxin was recovered in bile. In the livers of patients with primary biliary cirrhosis (PBC), immunohistochemistry demonstrated significant retention of endotoxin in the biliary epithelial cells, and treatment with ursodeoxycholic acid significantly reduced the retention in those cells. The study for detection of apoptosis demonstrated increased rates of apoptosis in hepatocytes and biliary epithelial cells in PBC liver, and the rate of apoptosis in biliary epithelial cells was significantly reduced after treatment with ursodeoxycholic acid. Immunohistochemistry in PBC liver demonstrated significant reduction of fluorescence intensity for a 7H6 antigen in biliary epithelial cells, indicating the increased paracellular permeability of bile ducts, because cellular immunolocalization of that antigen has been shown to be inversely correlated with the paracellular permeability of the tight junction. These results suggest that, in biliary epithelial cells, retention of endotoxin, increased apoptosis, and increased permeability of tight junctions may be involved in the pathogenesis of PBC.  相似文献   

7.
Mechanisms of mitochondrial and lysosomal pathways of natural death of lamprey hepatocytes are described at the spring period of the prespawn migration. The mitochondrial pathway (release of cytochrome c from mitochondria into cytosol and activation of caspases) is realized by the classic scheme of apoptosis. Comparatively recently, the lysosomal pathway of cell death associated with cathepsin B activation has been revealed in cells in pathologies, specifically in obstruction of gallbladder and bile ducts. A peculiarity of lamprey hepatocytes consists in that in the adult animal liver there takes place biliary atresia (the absence of gallbladder and bile ducts. Thereby, the lamprey hepatocytes are an excellent object for study of this new pathway of cell death. We have revealed development of the mitochondrial and the lysosomal pathways of cell death of lamprey hepatocytes.  相似文献   

8.
9.
Stem cell factor and its receptorc-kitconstitute an important signal transduction system implicated in survival, proliferation, and differentiation of stem cells in hematopoiesis, gametogenesis, and melanogenesis. In the present study we used both immunocytochemical methods and Western analysis to demonstrate the presence of this cytokine/receptor system in both embryonic and adult rat liver. Stem cell factor was present in the ductular cells around the portal vein during the late embryonic stage of the liver. In the adult liver both bile ducts and bile ductules were positive for stem cell factor andc-kit.When the activation of the liver stem cell compartment was induced by combining administration of acetylaminofluorene and partial hepatectomy, both stem cell factor andc-kitwere expressed in the infiltrating oval cell population, but absent in the newly formed basophilic hepatocytes. Activation of oval cell proliferation following administration ofD-galactosamine also produced a similar but less prominent increase in the level of the stem cell factor. Our data suggest that the stem cell factor/c-kitsignal transduction system is involved in the development of bile ducts and that it may also be an important member of the growth factor/receptor systems associated with the biology of liver stem cells.  相似文献   

10.
The PICM-19 pig liver stem cell line was cultured in space for nearly 16 d on the STS-126 mission to assess the effects of spaceflight on the liver’s parenchymal cells—PICM-19 cells to differentiate into either monolayers of fetal hepatocytes or 3-dimensional bile ductules (cholangiocytes). Semi-quantitative data included light microscopic assessments of final cell density, cell morphology, and response to glucagon stimulation and electron microscopic assessment of the cells’ ultrastructural features and cell-to-cell connections and physical relationships. Quantitative assessments included assays of hepatocyte detoxification functions, i.e., inducible P450 activities and urea production and quantitation of the mRNA levels of several liver-related genes. Three post-passage age groups were included: 4-d-, 10-d-, and 14-d-old cultures. In comparing flight vs. ground-control cultures 17 h after the space shuttle’s return to earth, no differences were found between the cultures with the exception being that some genes were differentially expressed. By light microscopy both young and older cultures, flight and ground, had grown and differentiated normally in the Opticell culture vessels. The PICM-19 cells had grown to approximately 75% confluency, had few signs of apoptosis or necrosis, and had either differentiated into monolayer patches of hepatocytes with biliary canaliculi visible between the cells or into 3-dimensional bile ductules with well-defined lumens. Ultrastructural features between flight and ground were similar with the PICM-19 cells displaying numerous mitochondria, Golgi apparatus, smooth and rough endoplasmic reticulum, vesicular bodies, and occasional lipid vacuoles. Cell-to-cell arrangements were typical in both flight and ground-control samples; biliary canaliculi were well-formed between the PICM-19 cells, and the cells were sandwiched between the STO feeder cells. PICM-19 cells displayed inducible P450 activities. They produced urea in a glutamine-free medium and produced more urea in response to ammonia. The experiment’s aim to gather preliminary data on the PICM-19 cell line’s suitability as an in vitro model for assessments of liver function in microgravity was demonstrated, and differences between flight and ground-control cultures were minor.  相似文献   

11.
In the liver, neural cell adhesion molecule (NCAM) is a marker of immature cells committed to the biliary lineage and is expressed by reactive bile ductules in human liver diseases. We investigated the possible role of NCAM in the development of intrahepatic bile ducts and aimed at determining whether immature biliary cells can contribute to the repair of damaged bile ducts in chronic liver diseases. Therefore, we performed immunohistochemistry for NCAM and bile duct cell markers cytokeratin 7 and cytokeratin 19 on frozen sections of 85 liver specimens taken from 14 fetuses, 10 donor livers, 18 patients with congenital liver diseases characterized by ductal plate malformations (DPMs), and 43 cirrhotic explant livers. Duplicated ductal plates and incorporating bile ducts during development showed a patchy immunoreactivity for NCAM, while DPMs were continuously positive for NCAM. Bile ducts showing complete or patchy immunoreactivity for NCAM were found in cirrhotic livers, with higher frequency in biliary than in posthepatitic cirrhosis. Our results suggest that NCAM may have a function in the development of the intrahepatic bile ducts and that NCAM-positive immature biliary cells can contribute to the repair of damaged bile ducts in chronic liver diseases.  相似文献   

12.
Biliary epithelia express high levels of CD44 in hepatobiliary diseases. The role of CD44-hyaluronic acid interaction in biliary pathology, however, is unclear. A rat model of hepatic cholestasis induced by bile duct ligation was employed for characterization of hepatic CD44 expression and extracellular hyaluronan distribution. Cell culture experiments were employed to determine whether hyaluronan can regulate cholangiocyte growth through interacting with adhesion molecule CD44. Biliary epithelial cells were found to express the highest level of CD44 mRNA among four major types of nonparenchymal liver cells, including Kupffer, hepatic stellate, and liver sinusoidal endothelial cells isolated from cholestatic livers. CD44-positive biliary epithelia lining the intrahepatic bile ducts were geographically associated with extracellular hyaluronan accumulated in the portal tracts of the livers, suggesting a role for CD44 and hyaluronan in the development of biliary proliferation. Cellular proliferation assays demonstrated that cholangiocyte propagation was accelerated by hyaluronan treatment and antagonized by small interfering RNA CD44 or anti-CD44 antibody. The study provides compelling evidence to suggest that proliferative biliary epithelia lining the intrahepatic bile ducts are a prime source of hepatic CD44. CD44-hyaluronan interaction, by enhancing biliary proliferation, may play a pathogenic role in the development of cholestatic liver diseases.  相似文献   

13.
C2.8 mouse embryo hepatocytic cells, acutely required exogenous hepatocyte growth factor (HGF) to survive and proliferate in serum-free Dulbecco's modified Eagle's medium supplemented with insulin, transferrin and Na-selenite. Greater than 90% of cultured C2.8 cells died within 48 hours from plating in the absence of HGF. Conversely, HGF prolonged maintenance of life and stimulated cell proliferation. Removal of HGF from the medium of cultures that had grown to confluency, also resulted in a rapid decreased cell survival. In the last circumstance, light microscopic observations revealed, with high frequency, morphological features characteristic of apoptosis. DNA within the affected cells underwent rapid fragmentation, revealed as a ladder of DNA fragments in multiples of about 200 base pairs. HGF prevented loss of cell viability, morphological damages and retarded DNA fragmentation in confluent C2.8 cells. Cycloheximide delayed cell death caused by HGF deprivation.  相似文献   

14.
The differentiation of hepatocytes and biliary epithelial cells has been histochemically analyzed with anti-calf cytokeratin antiserum in the fetal mouse liver. Almost all young fetal hepatocytes transiently express bile-duct-specific cytokeratin; subsequently, the strong staining of the cytokeratin is confined to progenitor cells of intrahepatic biliary epithelial cells around portal veins. These results suggest that all fetal hepatocytes are bi-potent in terms of the differentiation of mature hepatocytes and intrahepatic bile-duct cells, and that the microenvironment around portal veins plays an important role in bile-duct differentiation. Large periportal hepatocytes continue to stain weakly for cytokeratin until 2 weeks after birth, although the number of positive hepatocytes decreases with development. The differentiation of bile ducts from periportal hepatocytes may continue for 2 weeks after birth.  相似文献   

15.
Cultures of primary hepatocytes from various species, including human, are used in several applications during pre-clinical drug development. Their use is however limited by cell survival and conservation of liver-specific functions in vitro. The differentiation status of hepatocytes in culture strongly depends on medium formulation and the extracellular matrix environment. We incubated primary rat hepatocytes for 10 days on collagen monolayer and in collagen sandwich cultures with or without serum. Restoration of polygonal cell shape and formation of functional bile canaliculi-like structures was stable only in serum-free sandwich cultures. Variations in general cell viability, as judged by the cellular ATP content, LDH release or apoptosis, were less pronounced between alternative cultures. The intracellular glutathione content was preserved close to in vivo levels especially in serum-free sandwich cultures. Basal activities of cytochrome P450 enzymes (P450) varied strongly between cultures. There was a minor effect on CYP1A but CYP2B activity was only detectable in the serum-free sandwich culture after 3 days and beyond. CYP2C activity was slightly elevated in both sandwich cultures, whereas CYP3A showed increased levels in both serum-free cultures. Inducibility of these P450s was fully maintained over time in serum-free collagen sandwich only. Gene expression was largely constant over time in serum-free sandwich cultures that was closest to liver. This liver-like property was supported by protein profiling results. Taken together, the serum-free collagen sandwich culture of primary rat hepatocytes maintained liver-like features over 10 days and is therefore a suitable model for long-term toxicity and drug-drug interaction studies.  相似文献   

16.
Two antigens - A6 and G7 - shared by mouse biliary epithelial and oval cells were revealed by monoclonal antibodies raised in rat immunized with oval-cell-enriched liver fraction. Oval cells were induced in CBA or F1 (CBA x C57BL6) mice by a combination of a single injection of the alkylating drug Dipin with partial hepatectomy. In normal liver A6 antigen was localized, using light and electron microscopy, in biliary epithelial cells of all ducts including Hering canals. Some bile ductal and Hering cells were A6-negative. Occasionally, A6 antigen was present in single hepatocytes forming the periportal ends of hepatic cords. In preneoplastic and tumorous liver A6 antigen was present in bile ductal and oval cells and in a fraction of newly formed hepatocytes and tumor cells. G7 antigen was revealed in normal, precancerous and tumorous liver in biliary epithelial and oval cells but not in hepatocytes. A6 and G7 antigens were not liver-specific: they were expressed in various normal organs and tissues, especially in epithelia. In studies of mouse liver lineages A6 antigen can be used as a common marker of biliary epithelial and oval cells and hepatocytes at certain stages of differentiation. G7 antigen is a marker of oval and biliary epithelial cells. There was a striking similarity in A6 antigen localization to that of human blood group antigens in normal liver and liver tumors. A6 antigen may thus provide a useful tool for the study of neoexpression of human blood group antigens in liver tumors.  相似文献   

17.
Although hepatocyte growth factor (HGF) was discovered as a potent hepatotrophic factor responsible for liver regeneration and may involve some organ development in embryogenesis, it remains to be revealed what roles HGF plays in liver development. The present study was undertaken to determine which cells express HGF and its receptor c-Met and when c-Met is activated in mouse liver development by using immunoblotting and immunohistochemical techniques. HGF was detected in hepatocytes and non-parenchymal cells, including biliary epithelial cells, periportal connective tissue cells, megakaryocytes, endothelial cells, and sinusoidal cells, throughout liver development. Positive HGF immunostaining in hepatocytes increased during postnatal development, and reached the maximal level in the adult stage. c-Met protein was also expressed in hepatocytes throughout liver development, but maximal staining was obtained in 1- or 2-week-old livers. Phosphorylation of tyrosine residues in the c-Met beta chain also occurred in these stages. These results suggest that HGF signaling is implicated in hepatocyte growth during postnatal liver development, and its action could be in a paracrine mode; HGF produced by non-parenchymal cells such as sinusoidal cells acts on hepatocytes expressing c-Met receptors. Positive immunostaining in adult and postnatal hepatocytes may be derived from their blood clearance of HGF.  相似文献   

18.
19.
20.

Background

Due to significant limitations to the access to orthotropic liver transplantation, cell therapies for liver diseases have gained large interest worldwide.

Scope of review

To revise current literature dealing with cell therapy for liver diseases. We discussed the advantages and pitfalls of the different cell sources tested so far in clinical trials and the rationale underlying the potential benefits of transplantation of human biliary tree stem cells (hBTSCs).

Major conclusions

Transplantation of adult hepatocytes showed transient benefits but requires immune-suppression that is a major pitfall in patients with advanced liver diseases. Mesenchymal stem cells and hematopoietic stem cells transplanted into patients with liver diseases are not able to replace resident hepatocytes but rather they target autoimmune or inflammatory processes into the liver. Stem cells isolated from fetal or adult liver have been recently proposed as alternative cell sources for advanced liver cirrhosis and metabolic liver disease. We demonstrated the presence of multipotent cells expressing a variety of endodermal stem cell markers in (peri)-biliary glands of bile ducts in fetal or adult human tissues, and in crypts of gallbladder epithelium. In the first cirrhotic patients treated in our center with biliary tree stem cell therapy, we registered no adverse event but significant benefits.

General significance

The biliary tree stem cell could represent the ideal cell source for the cell therapy of liver diseases. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号