首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The electrons extracted from the CaMn(4) cluster during water oxidation in photosystem II are transferred to P(680)(+) via the redox-active tyrosine D1-Tyr161 (Y(Z)). Upon Y(Z) oxidation a proton moves in a hydrogen bond toward D1-His190 (His(Z)). The deprotonation and reprotonation mechanism of Y(Z)-OH/Y(Z)-O is of key importance for the catalytic turnover of photosystem II. By light illumination at liquid helium temperatures (~5 K) Y(Z) can be oxidized to its neutral radical, Y(Z)(?). This can be followed by the induction of a split EPR signal from Y(Z)(?) in a magnetic interaction with the CaMn(4) cluster, offering a way to probe for Y(Z) oxidation in active photosystem II. In the S(3) state, light in the near-infrared region induces the split S(3) EPR signal, S(2)'Y(Z)(?). Here we report on the pH dependence for the induction of S(2)'Y(Z)(?) between pH 4.0 and pH 8.7. At acidic pH the split S(3) EPR signal decreases with the apparent pK(a) (pK(app)) ~ 4.1. This can be correlated to a titration event that disrupts the essential H-bond in the Y(Z)-His(Z) motif. At alkaline pH, the split S(3) EPR signal decreases with the pK(app) ~ 7.5. The analysis of this pH dependence is complicated by the presence of an alkaline-induced split EPR signal (pK(app) ~ 8.3) promoted by a change in the redox potential of Y(Z). Our results allow dissection of the proton-coupled electron transfer reactions in the S(3) state and provide further evidence that the radical involved in the split EPR signals is indeed Y(Z)(?).  相似文献   

2.
The photosynthetic processes that lead to water oxidation involve an evolution in time from photon dynamics to photochemically-driven electron transfer to coupled electron/proton chemistry. The redox-active tyrosine, Y(Z), is the component at which the proton currents necessary for water oxidation are switched on. The thermodynamic and kinetic implications of this function for Y(Z) are discussed. These considerations also provide insight into the related roles of Y(Z) in preserving the high photochemical quantum efficiency in Photosystem II (PSII) and of conserving the highly oxidizing conditions generated by the photochemistry in the PSII reaction center. The oxidation of Y(Z) by P(680)(+) can be described well by a treatment that invokes proton coupling within the context of non-adiabatic electron transfer. The reduction of Y(.)(Z), however, appears to proceed by an adiabatic process that may have hydrogen-atom transfer character.  相似文献   

3.
One of the key problems of molecular bioenergetics is the understanding of the function of redox-driven proton pumps on a molecular level. One such class of proton pumps are the heme-copper oxidases. These enzymes are integral membrane proteins in which proton translocation across the membrane is driven by electron transfer from a low-potential donor, such as, e.g. cytochrome c, to a high-potential acceptor, O(2). Proton pumping is associated with distinct exergonic reaction steps that involve gradual reduction of oxygen to water. During the process of O(2) reduction, unprotonated high pK(a) proton acceptors are created at the catalytic site. Initially, these proton acceptors become protonated as a result of intramolecular proton transfer from a residue(s) located in the membrane-spanning part of the enzyme, but removed from the catalytic site. This residue is then reprotonated from the bulk solution. In cytochrome c oxidase from Rhodobacter sphaeroides, the proton is initially transferred from a glutamate, E(I-286), which has an apparent pK(a) of 9.4. According to a recently published structure of the enzyme, the deprotonation of E(I-286) is likely to result in minor structural changes that propagate to protonatable groups on the proton output (positive) side of the protein. We propose that in this way, the free energy available from the O(2) reduction is conserved during the proton transfer. On the basis of the observation of these structural changes, a possible proton-pumping model is presented in this paper. Initially, the structural changes associated with deprotonation of E(I-286) result in the transfer of a proton to an acceptor for pumped protons from the input (negative) side of the membrane. After reprotonation of E(I-286) this acceptor releases a proton to the output side of the membrane.  相似文献   

4.
Photosystem II (PSII) oxidizes two water molecules to yield dioxygen plus four protons. Dioxygen is released during the last out of four sequential oxidation steps of the catalytic centre (S(0) --> S(1), S(1) --> S(2), S(2) --> S(3), S(3) --> S(4) --> S(0)). The release of the chemically produced protons is blurred by transient, highly variable and electrostatically triggered proton transfer at the periphery (Bohr effect). The extent of the latter transiently amounts to more than one H(+)/e(-) under certain conditions and this is understood in terms of electrostatics. By kinetic analyses of electron-proton transfer and electrochromism, we discriminated between Bohr-effect and chemically produced protons and arrived at a distribution of the latter over the oxidation steps of 1 : 0 : 1 : 2. During the oxidation of tyr-161 on subunit D1 (Y(Z)), its phenolic proton is not normally released into the bulk. Instead, it is shared with and confined in a hydrogen-bonded cluster. This notion is difficult to reconcile with proposed mechanisms where Y(Z) acts as a hydrogen acceptor for bound water. Only in manganese (Mn) depleted PSII is the proton released into the bulk and this changes the rate of electron transfer between Y(Z) and the primary donor of PSII P(+)(680) from electron to proton controlled. D1-His190, the proposed centre of the hydrogen-bonded cluster around Y(Z), is probably further remote from Y(Z) than previously thought, because substitution of D1-Glu189, its direct neighbour, by Gln, Arg or Lys is without effect on the electron transfer from Y(Z) to P(+)(680) (in nanoseconds) and from the Mn cluster to Y(ox)(Z).  相似文献   

5.
The combination of site-directed mutagenesis, isotopic labeling, new magnetic resonance techniques and optical spectroscopic methods have provided new insights into cofactor coordination and into the mechanism of electron transport and proton-coupled electron transport in photosystem II. Site-directed mutations in the D1 polypeptide of this photosystem have implicated a number of histidine and carboxylate residues in the coordination and assembly of the manganese cluster, responsible for photosynthetic water oxidation. Many of these are located in the carboxy-terminal region of this polypeptide close to the processing site involved in its maturation. This maturation is a required precondition for cluster assembly. Recent proposals for the mechanism of water oxidation have directly implicated redox-active tyrosine Y(Z) in this mechanism and have emphasized the importance of the coupling of proton and electron transfer in the reduction of Y(Z)(radical) by the Mn cluster. The interaction of both homologous redox-active tyrosines Y(Z) and Y(D) with their respective homologous proton acceptors is discussed in an effort to better understand the significance of such coupling.  相似文献   

6.
To further characterize the role of D1-His190 in the oxidation of tyrosine Y(Z) in photosystem II, the pH dependence of P(680)(*)()(+) reduction was measured in H190A and Mn-depleted wild-type PSII particles isolated from the cyanobacterium, Synechocystis sp. PCC 6803. Measurements were conducted in the presence and absence of imidazole and other small organic bases. In H190A PSII particles, rapid reduction of P(680)(*)()(+) attributed to electron transfer from Y(Z) increased dramatically above pH 9, with an apparent pK(A) of approximately 10.3. In the presence of ethanolamine and imidazole, this dramatic increase occurred at lower pH values, with the efficiency of Y(Z) oxidation correlating with the solution pK(A) value of the added base. We conclude that the pK(A) of Y(Z) is approximately 10.3 in D1-H190A PSII particles. In Mn-depleted wild-type PSII particles, P(680)(*)()(+) reduction was accelerated by all exogenous bases examined (substituted imidazoles, histidine, Tris, and 1,4-diazabicyclo[2.2.2]octane). We conclude that Y(Z) is solvent accessible in Mn-depleted wild-type PSII particles and that its pK(A) is near that of tyrosine in solution. In Mn-depleted wild-type PSII particles, over 80% of the kinetics of P(680)(*)()(+) reduction after a flash could be described by three kinetic components. The individual rate constants of these components varied slightly with pH, but their relative proportions varied dramatically with pH, showing apparent pK(A) values of 7.5 and 6.25 (6.9 and 5.8 in the presence of Ca(2+) and Mg(2+) ions). An additional pK(A) value (pK(A) < 4.5) may also be present. To describe these data, we propose (1) the pK(A) of His190 is 6.9-7.5, depending on buffer ions, (2) the deprotonation of Y(Z) is facilitated by the transient formation of a either a hydrogen bond or a hydrogen-bonded water bridge between Y(Z) and D1-His190, and (3) when protonated, D1-His190 interacts with nearby residues having pK(A) values near 6 and 4. Because Y(Z) and D1-His190 are located near the Mn cluster, these residues may interact with the Mn cluster in the intact system.  相似文献   

7.
This review is focused on the mechanism of photovoltage generation involving the photosystem II turnover. This large integral membrane enzyme catalyzes the light-driven oxidation of water and reduction of plastoquinone. The data discussed in this work show that there are four main electrogenic steps in native complexes: (i) light-induced charge separation between special pair chlorophylls P(680) and primary quinone acceptor Q(A); (ii) P(680)(+) reduction by the redox-active tyrosine Y(Z) of polypeptide D1; (iii) oxidation of Mn cluster by Y(Z)(ox) followed by proton release, and (iv) protonation of double reduced secondary quinone acceptor Q(B). The electrogenicity related to (i) proton-coupled electron transfer between Q(A)(-) and preoxidized non-heme iron (Fe(3+)) in native and (ii) electron transfer between protein-water boundary and Y(Z)(ox) in the presence of redox-dye(s) in Mn-depleted samples, respectively, were also considered. Evaluation of the dielectric properties using the electrometric data and the polarity profiles of reaction center from purple bacteria Blastochloris viridis and photosystem II are presented. The knowledge of the profile of dielectric permittivity along the photosynthetic reaction center is important for understanding of the mechanism of electron transfer between redox cofactors.  相似文献   

8.
Debus RJ  Campbell KA  Pham DP  Hays AM  Britt RD 《Biochemistry》2000,39(21):6275-6287
Recent models for water oxidation in photosystem II postulate that the tyrosine Y(Z) radical, Y(Z)(*), abstracts both an electron and a proton from the Mn cluster during one or more steps in the catalytic cycle. This coupling of proton- and electron-transfer events is postulated to provide the necessary driving force for oxidizing the Mn cluster in its higher oxidation states. The formation of Y(Z)(*) requires the deprotonation of Y(Z) by His190 of the D1 polypeptide. For Y(Z)(*) to abstract both an electron and a proton from the Mn cluster, the proton abstracted from Y(Z) must be transferred rapidly from D1-His190 to the lumenal surface via one or more proton-transfer pathways. The proton acceptor for D1-His190 has been proposed to be either Glu189 of the D1 polypeptide or a group positioned by this residue. To further define the role of D1-Glu189, 17 D1-Glu189 mutations were constructed in the cyanobacterium Synechocystis sp. PCC 6803. Several of these mutants are of particular interest because they appear to assemble Mn clusters in 70-80% of reaction centers in vivo, but evolve no O(2). The EPR and electron-transfer properties of PSII particles isolated from the D1-E189Q, D1-E189L, D1-E189D, D1-E189N, D1-E189H, D1-E189G, and D1-E189S mutants were examined. Intact PSII particles isolated from mutants that evolved no O(2) also exhibited no S(1) or S(2) state multiline EPR signals and were unable to advance beyond an altered Y(Z)(*)S(2) state, as shown by the accumulation of narrow "split" EPR signals under multiple turnover conditions. In the D1-E189G and D1-E189S mutants, the quantum yield for oxidizing the S(1) state Mn cluster was very low, corresponding to a > or =1400-fold slowing of the rate of Mn oxidation by Y(Z)(*). In Mn-depleted D1-Glu189 mutant PSII particles, charge recombination between Q(A)(*)(-) and Y(Z)(*) in the mutants was accelerated, showing that the mutations alter the redox properties of Y(Z) in addition to those of the Mn cluster. These results are consistent with D1-Glu189 participating in a network of hydrogen bonds that modulates the properties of both Y(Z) and the Mn cluster and are consistent with proposals that D1-Glu189 positions a group that accepts a proton from D1-His190.  相似文献   

9.
In cytochrome c oxidase (CcO), exergonic electron transfer reactions from cytochrome c to oxygen drive proton pumping across the membrane. Elucidation of the proton pumping mechanism requires identification of the molecular components involved in the proton transfer reactions and investigation of the coupling between internal electron and proton transfer reactions in CcO. While the proton-input trajectory in CcO is relatively well characterized, the components of the output pathway have not been identified in detail. In this study, we have investigated the pH dependence of electron transfer reactions that are linked to proton translocation in a structural variant of CcO in which Arg481, which interacts with the heme D-ring propionates in a proposed proton output pathway, was replaced with Lys (RK481 CcO). The results show that in RK481 CcO the midpoint potentials of hemes a and a(3) were lowered by approximately 40 and approximately 15 mV, respectively, which stabilizes the reduced state of Cu(A) during reaction of the reduced CcO with O(2). In addition, while the pH dependence of the F --> O rate in wild-type CcO is determined by the protonation state of two protonatable groups with pK(a) values of 6.3 and 9.4, only the high-pK(a) group influences this rate in RK481 CcO. The results indicate that the protonation state of the Arg481 heme a(3) D-ring propionate cluster having a pK(a) of approximately 6.3 modulates the rate of internal electron transfer and may act as an acceptor of pumped protons.  相似文献   

10.
When photosynthetic organisms developed so that they could use water as an electron source to reduce carbon dioxide, the stage was set for efficient proliferation. Algae and plants spread globally and provided the foundation for our atmosphere and for O(2)-based chemistry in biological systems. Light-driven water oxidation is catalysed by photosystem II, the active site of which contains a redox-active tyrosine denoted Y(Z), a tetramanganese cluster, calcium and chloride. In 1995, Gerald Babcock and co-workers presented the hypothesis that photosynthetic water oxidation occurs as a metallo-radical catalysed process. In this model, the oxidized tyrosine radical is generated by coupled proton/electron transfer and re-reduced by abstracting hydrogen atoms from substrate water or hydroxide-ligated to the manganese cluster. The proposed function of Y(Z) requires proton transfer from the tyrosine site upon oxidation. The oxidation mechanism of Y(Z) in an inhibited and O(2)-evolving photosystem II is discussed. Domino-deprotonation from Y(Z) to the bulk solution is shown to be consistent with a variety of data obtained on metal-depleted samples. Experimental data that suggest that the oxidation of Y(Z) in O(2)-evolving samples is coupled to proton transfer in a hydrogen-bonding network are described. Finally, a dielectric-dependent model for the proton release that is associated with the catalytic cycle of photosystem II is discussed.  相似文献   

11.
Cytochrome c oxidase is a membrane-bound enzyme, which catalyses the one-electron oxidation of four molecules of cytochrome c and the four-electron reduction of O(2) to water. Electron transfer through the enzyme is coupled to proton pumping across the membrane. Protons that are pumped as well as those that are used for O(2) reduction are transferred though a specific intraprotein (D) pathway. Results from earlier studies have shown that replacement of residue Asn139 by an Asp, at the beginning of the D pathway, results in blocking proton pumping without slowing uptake of substrate protons used for O(2) reduction. Furthermore, introduction of the acidic residue results in an increase of the apparent pK(a) of E286, an internal proton donor to the catalytic site, from 9.4 to ~11. In this study we have investigated intramolecular electron and proton transfer in a mutant cytochrome c oxidase in which a neutral residue, Thr, was introduced at the 139 site. The mutation results in uncoupling of proton pumping from O(2) reduction, but a decrease in the apparent pK(a) of E286 from 9.4 to 7.6. The data provide insights into the mechanism by which cytochrome c oxidase pumps protons and the structural elements involved in this process.  相似文献   

12.
Fe-containing superoxide dismutase (FeSOD) and MnSOD are widely assumed to employ the same catalytic mechanism. However this has not been completely tested. In 1985, Bull and Fee showed that FeSOD took up a proton upon reduction [J. Am. Chem. Soc. 107 (1985) 3295]. We now demonstrate that MnSOD incorporates the same crucial coupling between electron transfer and proton transfer. The redox-coupled H(+) acceptor has been presumed to be the coordinated solvent molecule, in both FeSOD and MnSOD, however this is very difficult to test experimentally. We have now examined the most plausible alternative: that Tyr34 accepts a proton upon SOD reduction. We report specific incorporation of 13C in the C(zeta) positions of Tyr residues, assignment of the C(zeta) signal of Tyr34 in each of oxidized FeSOD and MnSOD, and direct NMR observations showing that in both cases, Tyr34 is in the neutral protonated state. Thus Tyr34 cannot accept a proton upon SOD reduction, and coordinated solvent is concluded to be the redox-coupled H(+) acceptor instead, in both FeSOD and MnSOD. We have also confirmed by direct 13C observation that the pK of 8.5 of reduced FeSOD corresponds to deprotonation of Tyr34. This work thus provides experimental proof of important commonalities between the detailed mechanisms of FeSOD and MnSOD.  相似文献   

13.
The crystal structure of photosystem II (PSII) at 3.0-A resolution suggests that titratable residues on the lumenal side of D1/D2 and PsbO form a polar channel, which might serve as a proton exit pathway associated with water oxidation on the Mn-cluster. With full account of protein environment, we calculated the pK(a) of these residues by solving the linearized Poisson-Boltzmann equation. Along the prospective proton channel, the calculated pK(a) of titratable residues (namely via D1-Asp61, D1-Glu65, D2-Glu312, D2-Lys317 D1-Asp59, D1-Arg64, PsbO-Arg152, and PsbO-Asp224) monotonically increase from the Mn-cluster to the lumenal bulk side. We suggest that these residues form the exit pathway guiding protons, which are released at the Mn-cluster as a product of water oxidation, in an exergonic process out of PSII. Upon the S2 to S3 transition, CP43-Arg357 showed a dramatic deprotonation of ca. one H(+), suggesting that this residue is coupled to the redox states of the Mn-cluster and the tyrosine Y(Z). The calculated pK(a) values of 4.2-4.4 for D2-Glu312 and those of approximately 8-10.9 for D1-Asp59 and D1-Arg64 are indicative of the experimentally determined pK(a) values for inhibition of S-state transitions. Upon removal of the atomic coordinates of PsbO, the pK(a) of these residues are dramatically affected, indicating a significant role of PsbO in tuning the pK(a) of those residues in the proton exit pathway.  相似文献   

14.
We have probed the electrostatics of P680(+) reduction in oxygenic photosynthesis using histidine-tagged and histidine-tagged Y(D)-less Photosystem II cores. We make two main observations: (i) that His-tagged Chlamydomonas cores show kinetics which are essentially identical to those of Photosystem II enriched thylakoid membranes from spinach; (ii) that the microsecond kinetics, previously shown to be proton/hydrogen transfer limited [Schilstra et al. (1998) Biochemistry 37, 3974-3981], are significantly different in Y(D)-less Chlamydomonas particles when compared with both the His-tagged Chlamydomonas particles and the spinach membranes. The oscillatory nature of the kinetics in both Chlamydomonas samples is normal, indicating that S-state cycling is unaffected by either the histidine-tagging or the replacement of tyrosine D with phenylalanine. We propose that the effects on the proton-coupled electron transfers of P680(+) reduction in the absence of Y(D) are likely to be due to pK shifts of residues in a hydrogen-bonded network of amino acids in the vicinity of Y(Z). Tyrosine D is 35 A from Y(Z) and yet has a significant influence on proton-coupled electron transfer events in the vicinity of Y(Z). This finding emphasizes the delicacy of the proton balance that Photosystem II has to achieve during the water splitting process.  相似文献   

15.
Photosystem II (PSII), the multisubunit pigment-protein complex localised in the thylakoid membranes of oxygenic photosynthetic organisms, uses light energy to drive a series of remarkable reactions leading to the oxidation of water. The products of this oxidation are dioxygen, which is released to the atmosphere, and reducing equivalents destined to reduce carbon dioxide to organic molecules. The water oxidation occurs at catalytic sites composed of four manganese atoms (Mn(4)-cluster) and powered by the redox potential of an oxidised chlorophyll a molecule (P680(*+)). Gerald T (Jerry) Babcock and colleagues showed that electron/proton transfer processes from substrate water to P680(*+) involved a tyrosine residue (Y(Z)) and proposed an attractive reaction mechanism for the direct involvement of Y(Z) in the chemistry of water oxidation. The 'hydrogen-atom abstract/metalloradical' mechanism he formulated is an expression of his genius and a highlight of his many other outstanding contributions to photosynthesis research. A structural basis for Jerry's model is now being revealed by X-ray crystallography.  相似文献   

16.
This minireview addresses questions on the mechanism of oxidative water cleavage with special emphasis on the coupling of electron (ET) and proton transfer (PT) of each individual redox step of the reaction sequence and on the mode of O-O bond formation. The following topics are discussed: (1) the multiphasic kinetics of Y(Z)(ox) formation by P680(+*) originate from three different types of rate limitations: (i) nonadiabatic electron transfer for the "fast" ns reaction, (ii) local "dielectric" relaxation for the "slow" ns reaction, and (iii) "large-scale" proton shift for the micros kinetics; (2) the ET/PT-coupling mode of the individual redox transitions within the water oxidizing complex (WOC) driven by Y(Z)(ox) is assumed to depend on the redox state S(i): the oxidation steps of S(0) and S(1) comprise separate ET and PT pathways while those of S(2) and S(3) take place via proton-coupled electron transfer (PCET) analogous to Jerry Babcock's hydrogen atom abstractor model [Biochim. Biophys. Acta, 1458 (2000) 199]; (3) S(3) is postulated to be a multistate redox level of the WOC with fast dynamic equilibria of both redox isomerism and proton tautomerism. The primary event in the essential O-O bond formation is the population of a state S(3)(P) characterized by an electronic configuration and nuclear geometry that corresponds with a complexed hydrogen peroxide; (4) the peroxidic type S(3)(P) is the entatic state for formation of complexed molecular oxygen through S(3) oxidation by Y(Z)(ox); and (5) the protein matrix itself is proposed to exert catalytic activity by functioning as "PCET director". The WOC is envisaged as a supermolecule that is especially tailored for oxidative water cleavage and acts as a molecular machine.  相似文献   

17.
Electron transfer from the Rieske iron-sulfur protein to cytochrome c(1) (cyt c(1)) in the Rhodobacter sphaeroides cytochrome bc(1) complex was studied using a ruthenium dimer complex, Ru(2)D. Laser flash photolysis of a solution containing reduced cyt bc(1), Ru(2)D, and a sacrificial electron acceptor results in oxidation of cyt c(1) within 1 micros, followed by electron transfer from the iron-sulfur center (2Fe-2S) to cyt c(1) with a rate constant of 80,000 s(-1). Experiments were carried out to evaluate whether the reaction was rate-limited by true electron transfer, proton gating, or conformational gating. The temperature dependence of the reaction yielded an enthalpy of activation of +17.6 kJ/mol, which is consistent with either rate-limiting conformational gating or electron transfer. The rate constant was nearly independent of pH over the range pH 7 to 9.5 where the redox potential of 2Fe-2S decreases significantly due to deprotonation of His-161. The rate constant was also not greatly affected by the Rieske iron-sulfur protein mutations Y156W, S154A, or S154A/Y156F, which decrease the redox potential of 2Fe-2S by 62, 109, and 159 mV, respectively. It is concluded that the electron transfer reaction from 2Fe-2S to cyt c(1) is controlled by conformational gating.  相似文献   

18.
The catalytic Mn cluster of the photosynthetic oxygen-evolving system is oxidized via a tyrosine, Y(Z), by a photooxidized chlorophyll a moiety, P(+)(680). The rapid reduction of P(+)(680) by Y(Z) in nanoseconds requires the intactness of an acid/base cluster around Y(Z) with an apparent functional pK of <5. The removal of Mn (together with bound Ca) shifts the pK of the acid/base cluster from the acid into the neutral pH range. At alkaline pH the electron transfer (ET) from Y(Z) to P(+)(680) is still rapid (<1 micros), whereas at acid pH the ET is much slower (10-100 micros) and steered by proton release. In the intermediate pH domain one observes a mix of these kinetic components (see R. Ahlbrink, M. Haumann, D. Cherepanov, O. B?gershausen, A. Mulkidjanian, W. Junge, Biochemistry 37 (1998)). The overall kinetics of P(680)(+) reduction by Y(Z) in Mn-depleted photosystem II (PS II) has been previously shown to be slowed down by divalent cations (added at >10 microM), namely: Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+) (C.W. Hoganson, P.A. Casey, O. Hansson, Biochim. Biophys. Acta 1057 (1991)). Using Mn-depleted PS II core particles from pea as starting material, we re-investigated this phenomenon at nanosecond resolution, aiming at the effect of divalent cations on the particular kinetic components of P(+)(680) reduction. To our surprise we found only the slower, proton steered component retarded by some added cations (namely Co(2+)/Zn(2+)>Fe(2+)>Mn(2+)). Neither the fast component nor the apparent pK of the acid/base cluster around Y(Z) was affected. Apparently, the divalent cations acted (electrostatically) on the proton release channel that connects the oxygen-evolving complex with the bulk water, but not on the ET between Y(Z) and P(+)(680), proper. Contrastingly, Ca(2+) and Mg(2+), when added at >5 mM, accelerated the slow component of P(+)(680) reduction by Y(Z) and shifted the apparent pK of Y(Z) from 7.4 to 6.6 and 6.7, respectively. It was evident that the binding site(s) for added Ca(2+) and Mg(2+) were close to Y(Z) proper. The data obtained are discussed in relation to the nature of the metal-binding sites in photosystem II.  相似文献   

19.
Ming M  Lu M  Balashov SP  Ebrey TG  Li Q  Ding J 《Biophysical journal》2006,90(9):3322-3332
The pH-dependence of photocycle of archaerhodopsin 4 (AR4) was examined, and the underlying proton pumping mechanism investigated. AR4 is a retinal-containing membrane protein isolated from a strain of halobacteria from a Tibetan salt lake. It acts as a light-driven proton pump like bacteriorhodopsin (BR). However, AR4 exhibits an "abnormal" feature--the time sequence of proton release and uptake is reversed at neutral pH. We show here that the temporal sequence of AR4 reversed to "normal"--proton release preceding proton uptake--when the pH is increased above 8.6. We estimated the pK(a) of the proton release complex (PRC) in the M-intermediate to be approximately 8.4, much higher than 5.7 of wide-type BR. The pH-dependence of the rate constant of M-formation shows that the pK(a) of PRC in the initial state of AR4 is approximately 10.4, whereas it is 9.7 in BR. Thus in AR4, the chromophore photoisomerization and subsequent proton transport from the Schiff base to Asp-85 is coupled to a decrease in the pK(a) of PRC from 10.4 to 8.4, which is 2 pK units less than in BR (4 units). This weakened coupling accounts for the lack of early proton release at neutral pH and the reversed time sequence of proton release and uptake in AR4. Nevertheless the PRC in AR4 effectively facilitates deprotonation of primary proton acceptor and recovery of initial state at neutral pH. We found also that all pK(a)s of the key amino acid residues in AR4 were elevated compared to those of BR.  相似文献   

20.
A combined DFT/electrostatic approach is employed to study the coupling of proton and electron transfer reactions in cytochrome c oxidase (CcO) and its proton pumping mechanism. The coupling of the chemical proton to the internal electron transfer within the binuclear center is examined for the O→E transition. The novel features of the His291 pumping model are proposed, which involve timely well-synchronized sequence of the proton-coupled electron transfer reactions. The obtained pK(a)s and E(m)s of the key ionizable and redox-active groups at the different stages of the O→E transition are consistent with available experimental data. The PT step from E242 to H291 is examined in detail for various redox states of the hemes and various conformations of E242 side-chain. Redox potential calculations of the successive steps in the reaction cycle during the O→E transition are able to explain a cascade of equilibria between the different intermediate states and electron redistribution between the metal centers during the course of the catalytic activity. All four electrometric phases are discussed in the light of the obtained results, providing a robust support for the His291 model of proton pumping in CcO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号