首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chlorine Demand and Inactivation of Fungal Propagules   总被引:2,自引:2,他引:0       下载免费PDF全文
Conidia of filamentous fungi, vegetative yeast cells, and coliform bacteria were tested to determine their chlorine demand and their sensitivity to chlorine inactivation. Levels of chlorine demand for the various conidia, yeast, and coliforms were, respectively, 3.6 × 10−9 to 3.2 × 10−8, 1.2 × 10−9 to 8.0 × 10−9, and 2.5 × 10−11 to 6.3 × 10−10 mg of chlorine per propagule. Preliminary evidence suggests that the chlorine demand per propagule increases as the number of propagules per milliliter decreases. In general, conidia showed greatest resistance to chlorine inactiviation, followed by the yeast and coliforms. Inactivation by chlorine was influenced by pH, with inactivation (chlorine activity) falling in the order pH 5 > 7 > 8.  相似文献   

2.
Actinomycin D (0.05 μg/ml) suppresses the synthesis of ribosomal RNA of baby hamster kidney (BHK21) cells. The production of infectious Pichinde virus was enhanced in the presence of actinomycin D, although the production of virus particles was not substantially different from cultures inoculated in the absence of the drug. By prelabeling BHK21 cells with 3H-uridine and then allowing the virus to replicate in the presence of actinomycin D, it was possible to show that ribosomal RNA synthesized prior to infection was incorporated into the virion. A single-hit kinetics of inactivation of Pichinde virus was observed with ultraviolet light, suggesting that the virus contains only a single copy of genome per virion. Comparison of the inactivation kinetics by gamma irradiation of Pichinde virus with Sindbis and rubella virus indicated that the radiosensitive genome of Pichinde virus was about 6 × 106 to 8 × 106 daltons. This value is greater than the 3.2 × 106 daltons which was estimated by biochemical analysis. One possible explanation considered is that the ribosomal RNA of host cell origin is functional and accounts for the differences in genome size estimated by the two methods.  相似文献   

3.
We have studied the differential mutation production by the decay of incorporated tritium compounds in E. coli (WWU) using DNA-seeking precursors (H3-thymidine), RNA-seeking precursors (H3-uracil, H3-uridine), and protein-seeking precursors (H3-histidine, H3-proline). In particular we have determined the reversion frequency of an arginine locus. The reversion frequency is measured in units of revertants/surviving bacteria/H3 decay, and has an average value of 1.84 × 10-8 for H3-uridine and H3-uracil, 0.67 × 10-8 for H3-thymidine, and 0.28 × 10-8 for H3-proline and H3-histidine. Thus, the revertants are produced most effectively by H3 decays when the label is introduced in the form of an RNA precursor. The macromolecular distribution of the label shows that 5 to 8 per cent of the H3-uridine or H3-uracil is incorporated into DNA.  相似文献   

4.
Recent whole-genome analysis suggests that lateral gene transfer by bacteriophages has contributed significantly to the genetic diversity of bacteria. To accurately determine the frequency of phage-mediated gene transfer, we employed cycling primed in situ amplification-fluorescent in situ hybridization (CPRINS-FISH) and investigated the movement of the ampicillin resistance gene among Escherichia coli cells mediated by phage at the single-cell level. Phages P1 and T4 and the newly isolated E. coli phage EC10 were used as vectors. The transduction frequencies determined by conventional plating were 3 × 10−8 to 2 × 10−6, 1 × 10−8 to 4 × 10−8, and <4 × 10−9 to 4 × 10−8 per PFU for phages P1, T4, and EC10, respectively. The frequencies of DNA transfer determined by CPRINS-FISH were 7 × 10−4 to 1 × 10−3, 9 × 10−4 to 3 × 10−3, and 5 × 10−4 to 4 × 10−3 for phages P1, T4, and EC10, respectively. Direct viable counting combined with CPRINS-FISH revealed that more than 20% of the cells carrying the transferred gene retained their viabilities. These results revealed that the difference in the number of viable cells carrying the transferred gene and the number of cells capable of growth on the selective medium was 3 to 4 orders of magnitude, indicating that phage-mediated exchange of DNA sequences among bacteria occurs with unexpectedly high frequency.  相似文献   

5.
70S ribosomes and 30S ribosomal subunits from Escherichia coli MRE 600 were exposed to gamma irradiation at -80szC. Exponential decline of activity with dose was observed when the ability of ribosomes to support the synthesis of polyphenylalanine was assayed. Irradiated ribosomes showed also an increased thermal lability. D37 values of 2.2 MR and 4.8 MR, corresponding to radiation-sensitive molecular weights of 3.1 × 105 and 1.4 × 105, were determined for inactivation of 70S ribosomes and 30S subunits, respectively. Zone sedimentation analysis of RNA isolated from irradiated bacteria or 30S ribosomal subunits showed that at average, one chain scission occurs per four hits into ribosomal RNA. From these results it was concluded that the integrity of only a part of ribosomal proteins (the sum of their molecular weights not exceeding 1.4 × 105) could be essential for the function of the 30S subunit in the polymerization of phenylalanine. This amount is smaller if the breaks in the RNA chain inactivate the ribosome.  相似文献   

6.
Anaerobic ammonium-oxidizing (anammox) bacteria have been detected in many marine and freshwater ecosystems. However, little is known about the distribution, diversity, and abundance of anammox bacteria in terrestrial ecosystems. In this study, anammox bacteria were found to be present in various agricultural soils collected from 32 different locations in China. Phylogenetic analysis of the 16S rRNA genes showed “Candidatus Brocadia,” “Candidatus Kuenenia,” “Candidatus Anammoxoglobus,” and “Candidatus Jettenia” in the collected soils, with “Candidatus Brocadia” being the dominant genus. Quantitative PCR showed that the abundance of anammox bacteria ranged from 6.38 × 104 ± 0.42 × 104 to 3.69 × 106 ± 0.25 × 106 copies per gram of dry weight. Different levels of diversity, composition, and abundance of the anammox bacterial communities were observed, and redundancy analysis indicated that the soil organic content and the distribution of anammox communities were correlated in the soils examined. Furthermore, Pearson correlation analysis showed that the diversity of the anammox bacteria was positively correlated with the soil ammonium content and the organic content, while the anammox bacterial abundance was positively correlated with the soil ammonium content. These results demonstrate the broad distribution of diverse anammox bacteria and its correlation with the soil environmental conditions within an extensive range of Chinese agricultural soils.  相似文献   

7.
Production and specific growth rates of attached and free-living bacteria were estimated in an oligotrophic marine system, La Salvaje Beach, Vizcaya, Spain, and in a freshwater system having a higher nutrient concentration, Butron River, Vizcaya, Spain. Production was calculated from [methyl-3H]thymidine incorporation by estimating specific conversion factors (cells or micrograms of C produced per mole of thymidine incorporated) for attached and free-living bacteria, respectively, in each system. Conversion factors were not statistically different between attached and free-living bacteria: 6.812 × 1011 and 8.678 × 1011 μg of C mol−1 for free-living and attached bacteria in the freshwater system, and 1.276 × 1011 and 1.354 × 1011 μg of C mol−1 for free-living and attached bacteria in the marine system. Therefore, use of a unique conversion factor for the mixed bacterial population is well founded. However, conversion factors were higher in the freshwater system than in the marine system. This could be due to the different trophic conditions of the two systems. Free-living bacteria contributed the most to production in the two systems (85% in the marine system and 67% in the freshwater system) because of their greater contribution to total biomass. Specific growth rates calculated from production data and biomass data were similar for attached and free-living bacteria.  相似文献   

8.
In two-stage continuous cultures, at bacterial concentrations, biovolumes, and growth rates similar to values found in Lake Vechten, ingestion rates of heterotrophic nanoflagellates (HNAN) increased from 2.3 bacteria HNAN−1 · h−1 at a growth rate of 0.15 day−1 to 9.2 bacteria · HNAN−1 · h−1 at a growth rate of 0.65 day−1. On a yeast extract medium with a C/N/P ratio of 100:15:1.2 (Redfield ratio), a mixed bacterial population showed a yield of 18% (C/C) and a specific carbon content of 211 fg of C · μm−3. The HNAN carbon content and yield were estimated at 127 fg of C · μm−3 and 47% (C/C). Although P was not growth limiting, HNAN accelerated the mineralization of PO4-P from dissolved organic matter by 600%. The major mechanism of P remineralization appeared to be direct consumption of bacteria by HNAN. N mineralization was performed mainly (70%) by bacteria but was increased 30% by HNAN. HNAN did not enhance the decomposition of the relatively mineral-rich dissolved organic matter. An accelerated decomposition of organic carbon by protozoa may be restricted to mineral-poor substrates and may be explained mainly by protozoan nutrient regeneration. Growth and grazing in the cultures were compared with methods for in situ estimates. Thymidine incorporation by actively growing bacteria yielded an empirical conversion factor of 1.1 × 1018 bacteria per mol of thymidine incorporated into DNA. However, nongrowing bacteria also showed considerable incorporation. Protozoan grazing was found to be accurately measured by uptake of fluorescently labeled bacteria, whereas artificial fluorescent microspheres were not ingested, and selective prokaryotic inhibitors blocked not only bacterial growth but also protozoan grazing.  相似文献   

9.
Morphology of echovirus 22   总被引:1,自引:1,他引:0       下载免费PDF全文
Purified preparations of echovirus 22 were examined in the electron microscope. The virus was found to possess 32 capsomers arranged at the vertices of either a pentakis dodecahedron or a rhombic triacontahedron. The size of the virions ranges from 22 × 10−3 to 32 × 10−3 μm with a mean of 27 × 10−3 μm and a mode of 28 × 10−3 μm.  相似文献   

10.
The steady-state effect of 2,5,2′,5′-tetrachlorobiphenyl (TCBP) on the green alga Selenastrum capricornutum was investigated in a P-limited two-stage chemostat system. The partition coefficient of this polychlorinated biphenyl congener was 5.9 × 104 in steady-state cultures. At a cellular TCBP concentration of 12.2 × 10−8 ng · cell−1, growth rate was not affected. However, photosynthetic capacity (Pmax) was significantly enhanced by TCBP (56 × 10−9 μmol of C · cell−1 · h−1 versus 34 × 10−9 μmol of C · cell−1 · h−1 in the control). Photosynthetic efficiency, or the slope of the photosynthesis-irradiance curve, was also significantly higher. There was little difference in the cell chlorophyll a content, and therefore the difference in these photosynthetic characteristics was the same even when they were expressed on a per-chlorophyll a basis. Cell C content was higher in TCBP-containing cells than in TCBP-free cells, but approximately 36% of the C fixed by cells with TCBP was not incorporated as cell C. The maximum P uptake rate was also enhanced by TCBP, but the half-saturation concentration appeared to be unaffected.  相似文献   

11.
The conversion factor for the calculation of bacterial production from rates of [3H]thymidine incorporation was examined with diluted batch cultures of freshwater bacteria. Natural bacterial assemblages were grown in aged, normal, and enriched media at 10 to 20°C. The generation time during 101 growth cycles covered a range from 4 to >200 h. The average conversion factor was 2.15 × 1018 cells mol-1 of thymidine incorporated into the trichloroacetic acid (TCA) precipitate (standard error = 0.29 × 1018; n = 54), when the generation time exceeded 20 h. At generation times of <20 h, the average conversion factor was 11.8 × 1018 cells mol-1 of thymidine incorporated into TCA precipitate (standard error = 1.72 × 1018; n = 47). The amount of radioactivity in purified DNA increased with decreasing generation time and increasing conversion factor (calculated from the TCA precipitate), corresponding to a decrease in the percentage in protein. The conversion factors calculated from purified DNA or from the TCA precipitate gave the same variability. Conversion factors did not change significantly with the medium, but were significantly higher at 20°C than at 15 and 10°C. A detailed examination of the [3H]thymidine concentrations that were needed to achieve maximum labeling in DNA was carried out 6 times during a complete growth cycle. During periods with low generation times and high conversion factors, 15 nM [3H]thymidine was enough for the maximum labeling of the TCA precipitate. This suggests that incorporation of [3H]thymidine into DNA is probably limited by uptake during periods with generation times of <20 h and that freshwater bacterioplankton cell production sometimes is underestimated when a conversion factor of 2.15 × 1018 cells mol-1 of thymidine incorporated is used.  相似文献   

12.
With an initial microbial level of ca. 107 microorganisms per g of Ivory Coast cacao beans, 5 kGy of gamma radiation under an atmosphere of air reduced the microflora per g by 2.49 and 3.03 logs at temperatures of 35 and 50°C, respectively. Bahia cacao beans were artificially contaminated with dried spores of Aspergillus flavus and Penicillium citrinum, giving initial fungal levels of 1.9 × 104 and 1.4 × 103 spores per g of whole Bahia cacao beans, respectively. The average D10 values for A. flavus and P. citrinum spores on Bahia cacao beans were 0.66 and 0.88 kGy, respectively.  相似文献   

13.
Total and cellulolytic bacterial and fungal numbers were determined in ruminal and cecal contents of 20 blue duikers (Cephalophus monticola). The animals were equally divided by sex and fed two diets, either high roughage or high concentrate. The mean concentration for total bacterial numbers in the rumen was 26.0 × 108/g of contents, with values ranging from 2 × 108/g to 93 × 108/g. Cellulolytic numbers averaged 6.0 × 108/g with a range of 1.5 × 108/g to 24.0 × 108/g. No differences related to sex or diet were found. In contrast, total bacterial numbers in the cecum differed between diets (P < 0.02), i.e., 1,046 × 106 bacteria per g for animals fed the high-forage diet compared with 166 × 106/g for those fed the high-concentrate diet. Cellulolytic bacterial counts in the cecal contents averaged 3.1 and 7.0% of the total counts for the high-forage and high-concentrate diets, respectively. Low concentrations of fungi were found in both ruminal and cecal contents of some, but not all, animals. Unexpectedly, concentrations of bacteria and fungi in the rumen and cecum were highly correlated with their total numbers (concentration multiplied by total weight of contents).  相似文献   

14.
Quantitative PCR of denitrification genes encoding the nitrate, nitrite, and nitrous oxide reductases was used to study denitrifiers across a glacier foreland. Environmental samples collected at different distances from a receding glacier contained amounts of 16S rRNA target molecules ranging from 4.9 × 105 to 8.9 × 105 copies per nanogram of DNA but smaller amounts of narG, nirK, and nosZ target molecules. Thus, numbers of narG, nirK, nirS, and nosZ copies per nanogram of DNA ranged from 2.1 × 103 to 2.6 × 104, 7.4 × 102 to 1.4 × 103, 2.5 × 102 to 6.4 × 103, and 1.2 × 103 to 5.5 × 103, respectively. The densities of 16S rRNA genes per gram of soil increased with progressing soil development. The densities as well as relative abundances of different denitrification genes provide evidence that different denitrifier communities develop under primary succession: higher percentages of narG and nirS versus 16S rRNA genes were observed in the early stage of primary succession, while the percentages of nirK and nosZ genes showed no significant increase or decrease with soil age. Statistical analyses revealed that the amount of organic substances was the most important factor in the abundance of eubacteria as well as of nirK and nosZ communities, and copy numbers of these two genes were the most important drivers changing the denitrifying community along the chronosequence. This study yields an initial insight into the ecology of bacteria carrying genes for the denitrification pathway in a newly developing alpine environment.  相似文献   

15.
Indigenous bacteria from poplar tree (Populus canadensis var. eugenei ‘Imperial Carolina’) and southern California shrub rhizospheres, as well as two tree-colonizing Rhizobium strains (ATCC 10320 and ATCC 35645), were engineered to express constitutively and stably toluene o-monooxygenase (TOM) from Burkholderia cepacia G4 by integrating the tom locus into the chromosome. The poplar and Rhizobium recombinant bacteria degraded trichloroethylene at a rate of 0.8 to 2.1 nmol/min/mg of protein and were competitive against the unengineered hosts in wheat and barley rhizospheres for 1 month (colonization occurred at a level of 1.0 × 105 to 23 × 105 CFU/cm of root). In addition, six of these recombinants colonized poplar roots stably and competitively with populations as large as 79% ± 12% of all rhizosphere bacteria after 28 days (0.2 × 105 to 31 × 105 CFU/cm of root). Furthermore, five of the most competitive poplar recombinants (e.g., Pb3-1 and Pb5-1, which were identified as Pseudomonas sp. strain PsK recombinants) retained the ability to express TOM for 29 days as 100% ± 0% of the recombinants detected in the poplar rhizosphere expressed TOM constitutively.  相似文献   

16.
The response of the planktonic heterotrophic bacterial community to the buildup and breakdown of a semipermanent, crusted, floating cyanobacterial mat, or hyperscum, that covered 1 to 2 ha was studied in a hypertrophic lake (Hartbeespoort Dam, South Africa). The initial response of bacteria in the main basin to the release of dissolved organic carbon (DOC) from the hyperscum 1 km away was an increase in activity per cell from 35 × 10−12 to 153 × 10−12 μg of C cell−1 h−1 for total cell counts, while activity per cell for metabolically active cells increased from 19 × 10−11 to 85 × 10−11 μg of C cell−1 h−1. No major population growth occurred at this stage. Later, with the continuous supply of DOC from the hyperscum, total bacterial numbers increased from 6.6 × 106 to 20 × 106 cells ml−1, while the activity per cell declined. Metabolically active bacteria followed the same trend. Shorter-term DOC increases caused only increases in bacterial activity per cell. The data from Hartbeespoort Dam demonstrate an interesting and little-documented mechanism by which aquatic bacteria respond to increased DOC concentration and which may be universal for aquatic systems.  相似文献   

17.
The behaviour of the modifications due to ultraviolet (UV) radiation on denatured phagic DNA has been investigated by looking at the changes of density in CsCl gradient, after irradiation with increasing doses of monochromatic light. The spectral range studied is 2300-2900 A, with a wavelength resolution Δλ = ±20 A. The observed effect is a gradual shift toward higher densities as the UV absorbed dose increases. The experimental results show an exponential law and the analysis of the action spectra indicates that thymine is the main factor responsible for the observed effect. An evaluation of the quantum yield for the thymine-dimers formation gives a constant value of (18 ± 3) × 10-3 quanta-1.  相似文献   

18.
In stratified Lake Vechten, The Netherlands, protozoan grazing was estimated on the basis of uptake of fluorescently labeled bacteria and compared with bacterial production estimated on the basis of thymidine incorporation. By using a grazer-free mixed bacterial population from the lake in continuous culture, an empirical relationship between cell production and thymidine incorporation was established. Thymidine incorporation into total cold-trichloroacetic-acid-insoluble macromolecules yielded a relatively constant empirical conversion factor of ca. 1018 (range, 0.38 × 1018 to 1.42 × 1018) bacteria mol of thymidine−1 at specific growth rates (μ) ranging from 0.007 to 0.116 h−1. Although thymidine incorporation has been assumed to measure DNA synthesis thymidine incorporation appeared to underestimate the independently measured bacterial DNA synthesis by at least 1.5- to 13-fold, even if all incorporated label was assumed to be in DNA. However, incorporation into DNA was found to be insignificant as measured by conventional acid-base hydrolysis. Methodological problems of the thymidine technique are discussed. Like the cultures, Lake Vechten bacteria showed considerable thymidine incorporation into total macromolecules, but no significant incorporation into DNA was found by acid-base hydrolysis. This applied not only to the low-oxygen hypo- and metalimnion but also to the aerobic epilimnion. Thus, the established empirical conversion factor for thymidine incorporation into total macromolecules was used to estimate bacterial production. Maximum production rates (141 × 106 bacteria liter−1 h−1; μ, 0.012 h−1) were found in the metalimnion and were 1 order of magnitude higher than in the epi- and hypolimnion. In all three strata, the estimated bacterial production was roughly balanced by the estimated protozoan grazing. Heterotrophic nanoflagellates were the major consumers of the bacterial production and showed maximum numbers (up to 40 × 106 heterotrophic nanoflagellates liter−1) in the microaerobic metalimnion.  相似文献   

19.
Irrigation with wastewater releases pharmaceuticals, pathogenic bacteria, and resistance genes, but little is known about the accumulation of these contaminants in the environment when wastewater is applied for decades. We sampled a chronosequence of soils that were variously irrigated with wastewater from zero up to 100 years in the Mezquital Valley, Mexico, and investigated the accumulation of ciprofloxacin, enrofloxacin, sulfamethoxazole, trimethoprim, clarithromycin, carbamazepine, bezafibrate, naproxen, diclofenac, as well as the occurrence of Enterococcus spp., and sul and qnr resistance genes. Total concentrations of ciprofloxacin, sulfamethoxazole, and carbamazepine increased with irrigation duration reaching 95% of their upper limit of 1.4 µg/kg (ciprofloxacin), 4.3 µg/kg (sulfamethoxazole), and 5.4 µg/kg (carbamazepine) in soils irrigated for 19–28 years. Accumulation was soil-type-specific, with largest accumulation rates in Leptosols and no time-trend in Vertisols. Acidic pharmaceuticals (diclofenac, naproxen, bezafibrate) were not retained and thus did not accumulate in soils. We did not detect qnrA genes, but qnrS and qnrB genes were found in two of the irrigated soils. Relative concentrations of sul1 genes in irrigated soils were two orders of magnitude larger (3.15×10−3±0.22×10−3 copies/16S rDNA) than in non-irrigated soils (4.35×10−5±1.00×10−5 copies/16S rDNA), while those of sul2 exceeded the ones in non-irrigated soils still by a factor of 22 (6.61×10–4±0.59×10−4 versus 2.99×10−5±0.26×10−5 copies/16S rDNA). Absolute numbers of sul genes continued to increase with prolonging irrigation together with Enterococcus spp. 23S rDNA and total 16S rDNA contents. Increasing total concentrations of antibiotics in soil are not accompanied by increasing relative abundances of resistance genes. Nevertheless, wastewater irrigation enlarges the absolute concentration of resistance genes in soils due to a long-term increase in total microbial biomass.  相似文献   

20.
The UV inactivation of RNA-directed DNA polymerase activity of Rauscher leukemia virus was shown to be due to damage to the protein. The UV dose resulting in 37% survival of viral polymerase activity at 254 nm was 2.4 × 104 to 3.1 × 104 ergs/mm2. The inactivation rate of p30, a major internal viral protein, was much slower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号