首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In many animals, germline development is initiated by proteins and RNAs that are expressed maternally. PIWI proteins and their associated small noncoding PIWI-interacting RNAs (piRNAs), which guide PIWI to target RNAs by base-pairing, are among the maternal components deposited into the germline of the Drosophila early embryo. Piwi has been extensively studied in the adult ovary and testis, where it is required for transposon suppression, germline stem cell self-renewal, and fertility. Consequently, loss of Piwi in the adult ovary using piwi-null alleles or knockdown from early oogenesis results in complete sterility, limiting investigation into possible embryonic functions of maternal Piwi. In this study, we show that the maternal Piwi protein persists in the embryonic germline through gonad coalescence, suggesting that maternal Piwi can regulate germline development beyond early embryogenesis. Using a maternal knockdown strategy, we find that maternal Piwi is required for the fertility and normal gonad morphology of female, but not male, progeny. Following maternal piwi knockdown, transposons were mildly derepressed in the early embryo but were fully repressed in the ovaries of adult progeny. Furthermore, the maternal piRNA pool was diminished, reducing the capacity of the PIWI/piRNA complex to target zygotic genes during embryogenesis. Examination of embryonic germ cell proliferation and ovarian gene expression showed that the germline of female progeny was partially masculinized by maternal piwi knockdown. Our study reveals a novel role for maternal Piwi in the germline development of female progeny and suggests that the PIWI/piRNA pathway is involved in germline sex determination in Drosophila.  相似文献   

2.
Argonaute 1 regulates the fate of germline stem cells in Drosophila   总被引:4,自引:0,他引:4  
The Argonaute-family proteins play crucial roles in small-RNA-mediated gene regulation. In Drosophila, previous studies have demonstrated that Piwi, one member of the PIWI subfamily of Argonaute proteins, plays an essential role in regulating the fate of germline stem cells (GSCs). However, whether other Argonaute proteins also play similar roles remains elusive. Here, we show that overexpression of Argonaute 1 (AGO1) protein, another subfamily (AGO) of the Argonaute proteins, leads to GSC overproliferation, whereas loss of Ago1 results in the loss of GSCs. Combined with germline clonal analyses of Ago1, these findings strongly support the argument that Ago1 plays an essential and intrinsic role in the maintenance of GSCs. In contrast to previous observations of Piwi function in the maintenance of GSCs, we show that AGO1 is not required for bag of marbles (bam) silencing and probably acts downstream or parallel of bam in the regulation of GSC fate. Given that AGO1 serves as a key component of the miRNA pathway, we propose that an AGO1-dependent miRNA pathway probably plays an instructive role in repressing GSC/cystoblast differentiation.  相似文献   

3.
Argonaute 1 (Ago1) is a member of the Argonaute/PIWI protein family involved in small RNA-mediated gene regulation. In Drosophila, Ago1 plays a specific role in microRNA (miRNA) biogenesis and function. Previous studies have demonstrated that Ago1 regulates the fate of germline stem cells. However, the function of Ago1 in other aspects of oogenesis is still elusive. Here we report the function of Ago1 in developing egg chambers. We find that Ago1 protein is enriched in the oocytes and is also highly expressed in the cytoplasm of follicle cells. Clonal analysis of multiple ago1 mutant alleles shows that many mutant egg chambers contain only 8 nurse cells without an oocyte which is phenocopied in dicer-1, pasha and drosha mutants. Our results suggest that Ago1 and its miRNA biogenesis partners play a role in oocyte determination and germline cell division in Drosophila.  相似文献   

4.
Jin Z  Xie T 《Current biology : CB》2006,16(22):R966-R967
Germline cell fate is specified by localized OSK, VAS and other components in the pole plasm of the Drosophila embryo. New work shows that a PIWI-mediated miRNA pathway contributes to this process by regulating OSK and VAS localization.  相似文献   

5.
piwi represents the first class of genes known to be required for stem cell self-renewal in diverse organisms. In the Drosophila ovary, piwi is required in somatic signaling cells to maintain germline stem cells. Here we show that piwi encodes a novel nucleoplasmic protein present in both somatic and germline cells, with the highly conserved C-terminal region essential for its function. Removing PIWI protein from single germline stem cells significantly decreases the rate of their division. This suggests that PIWI has a second role as a cell-autonomous promoter of germline stem cell division. Consistent with its dual function, over-expression of piwi in somatic cells causes an increase both in the number of germline stem cells and the rate of their division. Thus, PIWI is a key regulator of stem cell division - its somatic expression modulates the number of germline stem cells and the rate of their division, while its germline expression also contributes to promoting stem cell division in a cell-autonomous manner.  相似文献   

6.
Stem cells uniquely self-renew and maintain tissue homoeostasis by differentiating into different cell types to replace aged or damaged cells [1]. During oogenesis of Drosophila melanogaster, self-renewal of germline stem cells (GSCs) requires both intrinsic signaling mechanisms and extrinsic signals from neighboring niche cells [2]. Emerging evidence suggests that microRNA (miRNA)-mediated translational regulation may also control Drosophila GSC self-renewal [3, 4]. It is unclear, however, whether the miRNA pathway functions within stem cells or niche cells to maintain GSCs. In Drosophila, Dicer-1 (Dcr-1) and the double-stranded RNA binding protein Loquacious (Loqs) catalyze miRNA biogenesis [3-5]. Here, we generate loqs knockout (loqs(KO)) flies by ends-out homologous recombination and show that loqs is essential for embryonic viability and ovarian GSC maintenance. Both developmental and miRNA processing defects are rescued by transgenic expression of Loqs-PB, but not Loqs-PA. Furthermore, mosaic germline analysis indicates that Loqs is required intrinsically for GSC maintenance. Consistently, GSCs are restored in loqs mutant ovaries by germline expression, but not somatic expression, of Loqs-PB. Together, these results demonstrate that Loqs-PB, but not Loqs-PA, is necessary and sufficient for Drosophila development and the miRNA pathway. Our study strongly suggests that miRNAs play an intrinsic, but not extrinsic, role in Drosophila female GSC self-renewal.  相似文献   

7.
8.
9.
The nuage is a germline-specific perinuclear structure that remains functionally elusive. Recently, the nuage in Drosophila was shown to contain two of the three PIWI proteins - Aubergine and Argonaute 3 (AGO3) - that are essential for germline development. The PIWI proteins bind to PIWI-interacting RNAs (piRNAs) and function in epigenetic regulation and transposon control. Here, we report a novel nuage component, PAPI (Partner of PIWIs), that contains a TUDOR domain and interacts with all three PIWI proteins via symmetrically dimethylated arginine residues in their N-terminal domain. In adult ovaries, PAPI is mainly cytoplasmic and enriched in the nuage, where it partially colocalizes with AGO3. The localization of PAPI to the nuage does not require the arginine methyltransferase dPRMT5 or AGO3. However, AGO3 is largely delocalized from the nuage and becomes destabilized in the absence of PAPI or dPRMT5, indicating that PAPI recruits PIWI proteins to the nuage to assemble piRNA pathway components. As expected, papi deficiency leads to transposon activation, phenocopying piRNA mutants. This further suggests that PAPI is involved in the piRNA pathway for transposon silencing. Moreover, AGO3 and PAPI associate with the P body component TRAL/ME31B complex in the nuage and transposon activation is observed in tral mutant ovaries. This suggests a physical and functional interaction in the nuage between the piRNA pathway components and the mRNA-degrading P-body components in transposon silencing. Overall, our study reveals a function of the nuage in safeguarding the germline genome against deleterious retrotransposition via the piRNA pathway.  相似文献   

10.
Piwi proteins such as Drosophila Aubergine (Aub) and mouse Miwi are essential for germline development and for primordial germ cell (PGC) specification. They bind piRNAs and contain symmetrically dimethylated arginines (sDMAs), catalyzed by dPRMT5. PGC specification in Drosophila requires maternal inheritance of cytoplasmic factors, including Aub, dPRMT5, and Tudor (Tud), that are concentrated in the germ plasm at the posterior end of the oocyte. Here we show that Miwi binds to Tdrd6 and Aub binds to Tudor, in an sDMA-dependent manner, demonstrating that binding of sDMA-modified Piwi proteins with Tudor-domain proteins is an evolutionarily conserved interaction in germ cells. We report that in Drosophila tud1 mutants, the piRNA pathway is intact and most transposons are not de-repressed. However, the localization of Aub in the germ plasm is severely reduced. These findings indicate that germ plasm assembly requires sDMA modification of Aub by dPRMT5, which, in turn, is required for binding to Tudor. Our study also suggests that the function of the piRNA pathway in PGC specification may be independent of its role in transposon control.  相似文献   

11.
袁志恒  赵艳梅 《遗传》2017,39(8):683-691
piRNAs(PIWI-interacting RNAs)是一类与PIWI相互作用的小非编码RNAs(small noncoding RNAs, sncRNAs),其长度介于24~32 nt,特异性地在动物生殖腺细胞中表达。近来研究表明piRNA/PIWI系统在动物生殖腺细胞的基因组转座元件沉默及转录后调控mRNAs方面具有重要功能。最近,中国科学院上海生物化学与细胞生物学研究所刘默芳课题组的一项研究表明,在人和小鼠的精子发生过程中,PIWI (鼠源同源蛋白MIWI、人源同源蛋白HIWI)的严格代谢调控至关重要。以此为契机,本文综述了piRNA/PIWI在哺乳动物(主要是小鼠和人)精子发生过程中调控功能的研究进展。  相似文献   

12.
13.
14.
piRNA和PIWI蛋白的功能机制研究进展   总被引:1,自引:0,他引:1  
赵爽  刘默芳 《生命科学》2010,(7):623-627
piRNA是2006年7月在动物生殖细胞中发现的一类新小分子非编码RNA。piRNA特异地与PIWI家族蛋白相互作用,因此,被命名为PIWI-interacting RNA,简称piRNA。这类长度在26~32核苷酸的小分子非编码RNA代表了一个生殖细胞转座子沉默的独特小RNA通路。它们可能通过与PIWI家族蛋白质相互作用,在表观遗传学水平和转录后水平沉默转座子等基因组自私性遗传元件,参与生殖干细胞自我维持和分化命运决定、减数分裂、精子形成等生殖相关事件。在piRNA发现后短短数年的时间,对其生物发生、功能及作用机制的研究都取得了诸多重大突破。该文就piRNA研究的最新研究进展作一简述。  相似文献   

15.
Primordial germ cells (PGCs) give rise to the germline stem cells (GSCs) in the adult Drosophila gonads. Both PGCs and GSCs need to be tightly regulated to safeguard the survival of the entire species. During larval development, a non-cell autonomous homeostatic mechanism is in place to maintain PGC number in the gonads. Whether such germline homeostasis occurs during early embryogenesis before PGCs reach the gonads remains unclear. We have previously shown that the maternally deposited sisRNA sisR-2 can influence GSC number in the female progeny. Here we uncover the presence of a homeostatic mechanism regulating PGCs during embryogenesis. sisR-2 represses PGC number by promoting PGC death. Surprisingly, increasing maternal sisR-2 leads to an increase in PGC death, but no drop in PGC number was observed. This is due to ectopic division of PGCs via the de-repression of Cyclin B, which is governed by a genetic pathway involving sisR-2, bantam and brat. We propose a cell autonomous model whereby germline homeostasis is achieved by preserving PGC number during embryogenesis.Subject terms: Development, Gene regulation  相似文献   

16.
In Drosophila, the posterior determinant nanos is required for embryonic patterning and for primordial germ cell (PGC) development. We have identified three genes in Caenorhabditis elegans that contain a putative zinc-binding domain similar to the one found in nanos, and show that two of these genes function during PGC development. Like Drosophila nanos, C. elegans nos-1 and nos-2 are not generally required for PGC fate specification, but instead regulate specific aspects of PGC development. nos-2 is expressed in PGCs around the time of gastrulation from a maternal RNA associated with P granules, and is required for the efficient incorporation of PGCs into the somatic gonad. nos-1 is expressed in PGCs after gastrulation, and is required redundantly with nos-2 to prevent PGCs from dividing in starved animals and to maintain germ cell viability during larval development. In the absence of nos-1 and nos-2, germ cells cease proliferation at the end of the second larval stage, and die in a manner that is partially dependent on the apoptosis gene ced-4. Our results also indicate that putative RNA-binding proteins related to Drosophila Pumilio are required for the same PGC processes as nos-1 and nos-2. These studies demonstrate that evolutionarily distant organisms utilize conserved factors to regulate early germ cell development and survival, and that these factors include members of the nanos and pumilio gene families.  相似文献   

17.
Fragile X Syndrome (FraX) is a broad-spectrum neurological disorder with symptoms ranging from hyperexcitability to mental retardation and autism. Loss of the fragile X mental retardation 1 (fmr1) gene product, the mRNA-binding translational regulator FMRP, causes structural over-elaboration of dendritic and axonal processes, as well as functional alterations in synaptic plasticity at maturity. It is unclear, however, whether FraX is primarily a disease of development, a disease of plasticity or both: a distinction that is vital for engineering intervention strategies. To address this crucial issue, we have used the Drosophila FraX model to investigate the developmental function of Drosophila FMRP (dFMRP). dFMRP expression and regulation of chickadee/profilin coincides with a transient window of late brain development. During this time, dFMRP is positively regulated by sensory input activity, and is required to limit axon growth and for efficient activity-dependent pruning of axon branches in the Mushroom Body learning/memory center. These results demonstrate that dFMRP has a primary role in activity-dependent neural circuit refinement during late brain development.  相似文献   

18.
Throughout the eukaryotic lineage, small RNA silencing pathways protect the genome against the deleterious influence of selfish genetic elements such as transposons. In animals an elaborate small RNA pathway centered on PIWI proteins and their interacting piRNAs silences transposons within the germline. In contrast to other small RNA silencing pathways, we lack a mechanistic understanding of this genome defense system. However, genetic and molecular studies have uncovered a fascinating conceptual framework for this pathway that is conserved from sponges to mammals. We discuss our current understanding of the piRNA pathway in Drosophila with an emphasis on origin and biogenesis of piRNAs.  相似文献   

19.
Argonaute proteins of the PIWI clade complexed with PIWI-interacting RNAs (piRNAs) protect the animal germline genome by silencing transposable elements. One of the leading experimental systems for studying piRNA biology is the Drosophila melanogaster ovary. In addition to classical mutagenesis, transgenic RNA interference (RNAi), which enables tissue-specific silencing of gene expression, plays a central role in piRNA research. Here, we establish a versatile toolkit focused on piRNA biology that combines germline transgenic RNAi, GFP marker lines for key proteins of the piRNA pathway, and reporter transgenes to establish genetic hierarchies. We compare constitutive, pan-germline RNAi with an equally potent transgenic RNAi system that is activated only after germ cell cyst formation. Stage-specific RNAi allows us to investigate the role of genes essential for germline cell survival, for example, nuclear RNA export or the SUMOylation pathway, in piRNA-dependent and independent transposon silencing. Our work forms the basis for an expandable genetic toolkit provided by the Vienna Drosophila Resource Center.  相似文献   

20.
A critical step in animal development is the specification of primordial germ cells (PGCs), the precursors of the germline. Two seemingly mutually exclusive mechanisms are implemented across the animal kingdom: epigenesis and preformation. In epigenesis, PGC specification is non-autonomous and depends on extrinsic signaling pathways. The BMP pathway provides the key PGC specification signals in mammals. Preformation is autonomous and mediated by determinants localized within PGCs. In Drosophila, a classic example of preformation, constituents of the germ plasm localized at the embryonic posterior are thought to be both necessary and sufficient for proper determination of PGCs. Contrary to this longstanding model, here we show that these localized determinants are insufficient by themselves to direct PGC specification in blastoderm stage embryos. Instead, we find that the BMP signaling pathway is required at multiple steps during the specification process and functions in conjunction with components of the germ plasm to orchestrate PGC fate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号