首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Environmental surfaces play an important role in the transmission of healthcare-associated pathogens. Because environmental cleaning is often suboptimal, there is a growing demand for safe, rapid, and automated disinfection technologies, which has lead to a wealth of novel disinfection options available on the market. Specifically, automated ultraviolet-C (UV-C) devices have grown in number due to the documented efficacy of UV-C for reducing healthcare-acquired pathogens in hospital rooms. Here, we assessed and compared the impact of pathogen concentration, organic load, distance, and radiant dose on the killing efficacy of two analogous UV-C devices.

Principal Findings

The devices performed equivalently for each impact factor assessed. Irradiation delivered for 41 minutes at 4 feet from the devices consistently reduced C. difficile spores by ∼ 3 log10CFU/cm2, MRSA by>4 log10CFU/cm2, and VRE by >5 log10CFU/cm2. Pathogen concentration did not significantly impact the killing efficacy of the devices. However, both a light and heavy organic load had a significant negative impacted on the killing efficacy of the devices. Additionally, increasing the distance to 10 feet from the devices reduced the killing efficacy to ≤3 log10CFU/cm2 for MRSA and VRE and <2 log10CFU/cm2 for C.difficile spores. Delivery of reduced timed doses of irradiation particularly impacted the ability of the devices to kill C. difficile spores. MRSA and VRE were reduced by >3 log10CFU/cm2 after only 10 minutes of irradiation, while C. difficile spores required 40 minutes of irradiation to achieve a similar reduction.

Conclusions

The UV-C devices were equally effective for killing C. difficile spores, MRSA, and VRE. While neither device would be recommended as a stand-alone disinfection procedure, either device would be a useful adjunctive measure to routine cleaning in healthcare facilities.  相似文献   

2.
We used an in vitro continuous-flow culture model of human stool microflora to examine the ability of human stool microflora to inhibit growth of two methicillin-resistant S. aureus (MRSA) strains. Continuous-flow cultures consistently eliminated MRSA inocula of 10(6) cfu/mL within 4 days, and addition of continuous-flow culture resulted in elimination of a pre-established MRSA culture ( approximately 10(8) cfu/mL) within 6-8 days. Anaerobic or "aerobic" (i.e., continuous bubbling of room air to eliminate obligate anaerobes) cultures eliminated MRSA at similar rates. The MRSA strains were unable to replicate under anaerobic conditions in sterile filtrates produced from the continuous-flow culture, but rapid growth occurred when glucose was added. These data demonstrate that indigenous stool microflora efficiently eliminate MRSA colonization and obligate anaerobes are not essential for inhibition. Our findings also suggest that inhibition of MRSA in continuous-flow cultures is due to depletion of nutrients rather than production of inhibitory conditions.  相似文献   

3.
A collection of bacterial strains obtained from a wide-range origin was screened for ability to promote growth in two types of Prunus rootstocks in a commercial nursery. Only few strains promoted growth significantly and consistently, and a strong specificity for the rootstock cultivar was observed. Irrigation of plants with Pseudomonas fluorescens EPS282 and Pantoea agglomerans EPS427 significantly increased plant height and root weight of the plum Marianna 2624 and the peach–almond hybrid GF-677, respectively. Plant height showed a higher rate of growth in early stages of development (2.6–3.5 times the non-treated controls), but the effect decreased with plant age. However, in aged plants growth promotion was more significant on root weight (1.9 times the non-treated controls) than on plant height. The efficacy of growth promotion and the persistence of strains in the root environment were dependent on the bacterial inoculum concentration applied. Increases in root development were maximum at inoculum concentrations of up to 8 log10 CFU ml–1 (ca 10 log10 CFU L–1 of potting mix). Population levels at the optimum inoculum concentration were around 7 log10 CFU g f.w.–1 root material at early stages of development and decreased to 4 log10 CFU g f.w.–1 after several months of development. The best plant growth-promoting strains were very diverse in secondary metabolite production and antagonistic ability against several plant pathogens.  相似文献   

4.
In 2003, 50 game carcasses (ungulates) originating from one Austrian hunting ground were subject to visual examination for (fecal) contamination of the body cavities and microbiological testing of the body cavities in order to assess variations in microbial surface contamination in the season June–August compared to October–December. No carcass tested positive for the bacterial pathogens Salmonella or Listeria. Bacterial surface counts in October–December (median values: total aerobic count: 4.12 log10 colony-forming-units (cfu)/cm2; Enterobacteriaceae: 2.48 log10 cfu/cm2) were significantly lower than those in June–August (median values: total aerobic count: 5.65 log10 cfu/cm2; Enterobacteriaceae: 3.45 log10 cfu/cm2). The cooling regime (0.4 °C, 62% relative humidity) allowed no microbial growth for 96 h but was associated with weight loss of the carcasses. All carcasses had undergone a precooling phase of 8–12 h, with temperatures of 17.8±1.2 °C in the season June–August and 9.8±1.2 °C in October–December. This temperature difference was identified as the most probable effector for the observed seasonal variation. The results demonstrate the need for a continuous cool chain after evisceration of game carcasses.  相似文献   

5.
Summary Previous Antarctic studies have pointed out the ecological importance of ornithogenic soils. However, few data exist to determine the impact of the bird's manuring on surrounding seawater microbial populations. In order to evaluate the influence of birds manuring, the relationships between the spatial distributions of seawater bacterial microflora and some related biological (chlorophyll pigments) and physicochemical (seston, NH4 + & NO3 ) parameters were studied during the Antarctic summer 1988 in the Terre Adelie land area. The clearly decreasing gradient from the shore towards the open sea previously reported for bacterial microflora (from 104 to 1 CFU ml–1 for heterotrophic bacteria and from 105 to 5.0103 cells ml–1 for total bacteria) was also observed for organic and mineral nutrients (from 1.09 mg Cl–1 to 0.1 mg Cl–1 for POC and from 196 to 17 mole l–1 for NH 4 + ) but not for chlorophyll pigments. The absence of any observable phytoplankton enrichment in the coastal area suggests a direct interaction between the birds manuring and the bacterial seawater microflora.  相似文献   

6.
Biological nitrogen fixation by the microorganisms in the gut of termites is one of the singularly important symbiotic processes, since termites invariably thrive on nitrogen poor diet. Two isolates of free living aerobic and facultative anaerobic N fixing bacteria were obtained from the guts of fungus cultivating termite, Macrotermes sp. Among the total bacterial isolates from termite gut, the per cents of N fixing aerobes viz., Azotobacter and Beijerinckia spp were 49% and 37% from the salivary gland while facultative N fixing anaerobe viz., Klebsiella and Clostridium contributed (51% and 93%). The free living aerobic bacteria were identified as Azotobacter spp (19 x 104 CFU mL‐1) and Beijerinckia (13.2 x 104 CFU mL‐1) from the salivary gland of the termite; interestingly, foregut, mid gut and hind gut registered a low population of these bacteria. The isolates of Azotobacter were smooth, glistening, vicid in nature, rods, gram negative and cyst forming. Isolates of Beijerinckia sp. produced copious slime, tenacious, rods, gram negative with no cyst formations. Both the isolates emitted green fluorescence and produced acid. Facultative N fixing anaerobes were harbored in the hind gut. The isolates were identified as Klebsiella (20 x 104 CFU mL‐1) and Clostridium pasteurianum 39.1 x 104 CFU mL‐1. Klebsiella were straight rods arranged singly or in pairs, non‐motile, gram negative, whereas Clostridium pasteurianum was viscoid, motile with terminal spores. A positive correlation was observed between the extractable polysaccharides of these isolates and soil aggregation. The aggregates formed by the isolates increased soil aeration, porosity, water holding capacity and helped in better plant growth. Thus, the gut microflora of termite, apart from harnessing nitrogen from the atmosphere, also helps improving soil fertility.  相似文献   

7.
A bacterium utilizing 2-chloro-4,6-diamino-s-triazine (CAAT) as sole nitrogen source was isolated under a N2-free atmosphere and identified as Klebsiella pneumoniae. Concomitant to CAAT degradation the protein content increased and chloride was released into the medium. Under air and a N2-atmosphere no reduction of CAAT degradation resulted, though this strain is able to fix molecular nitrogen, but the decomposition accelerated under anaerobic conditions. The degradation rate increased continuously with increasing CAAT concentration. A continuous CAAT degradation without CAAT accumulation was possible up to a influx rate of 4.8 mol·l–1 h–1 (dilution rate = 0.007 h–1). K. pneumoniae A2 was also able to utilize deethylsimazine (CEAT) and deethylatrazine (CIAT) as nitrogen source. Both under aerobic and anaerobic conditions CEAT could be degraded faster than CIAT. The degradation sequence of mixed s-triazines was cyanuric acid < CAAT < CEAT < CIAT, which was reflected by the degradation times of single compounds. Complete degradation was assumed for all investigated s-triazine derivatives.  相似文献   

8.
Clough  T.J.  Ledgard  S.F.  Sprosen  M.S.  Kear  M.J. 《Plant and Soil》1998,199(2):195-203
A field lysimeter experiment was conducted over a 406 day period to determine the effect of different soil types on the fate of synthetic urinary nitrogen (N). Soil types included a sandy loam, silty loam, clay and peat. Synthetic urine was applied at 1000 kg N ha-1, during a winter season, to intact soil cores in lysimeters. Leaching losses, nitrous oxide (N2O) emissions, and plant uptake of N were monitored, with soil 15N content determined upon destructive sampling of the lysimeters. Plant uptake of urine-N ranged from 21.6 to 31.4%. Soil type influenced timing and form of inorganic-N leaching. Macropore flow occurred in the structured silt and clay soils resulting in the leaching of urea. Ammonium (NH 4 + –N), nitrite (NO 2 - –N) and nitrate (NO3 -–N) all occurred in the leachates with maximum concentrations, varying with soil type and ranging from 2.3–31.4 g NH 4 + –N mL-1, 2.4–35.6 g NO 2 - –N mL-1, and 62–102 g NO 3 - –N mL-1, respectively. Leachates from the peat and clay soils contained high concentrations of NO 2 - –N. Gaseous losses of N2O were low (<2% of N applied) over a 112 day measurement period. An associated experiment showed the ratio of N2–N:N2O–N ranged from 6.2 to 33.2. Unrecovered 15N was presumed to have been lost predominantly as gaseous N2. It is postulated that the high levels of NO 2 - –N could have contributed to chemodenitrification mechanisms in the peat soil.  相似文献   

9.
The effects of grass growth and N deposition on the leaching of nutrients from forest soil were studied in a lysimeter experiment performed in the Moravian-Silesian Beskydy Mts. (the Czech Republic). It was assumed that the grass sward formed on sites deforested due to forest decline would improve the soil environment. Lysimeters with growing acidophilous grasses (Calamagrostis arundinacea and C. villosa), common on clear-cut areas, and with unplanted bare forest soil were installed in the deforested area affected by air pollution. Wet bulk deposition of sulphur in SO42– corresponded to 21.6–40.1 kg ha–1 and nitrogen in NH4+ and NO3 to 8.9–17.4 kg N ha–1, with a rain water pH of 4.39–4.59 and conductivity of 18.6–36.4 S cm–1 during the growing seasons 1997–1999. In addition, the lysimeters were treated with 50 kg N ha–1 yr–1 as ammonium nitrate during the 3 years of the experiment. Rapid growth of planted grasses resulted in a very fast formation of both above- and below-ground biomass and a large accumulation of nitrogen in the tissue of growing grasses. The greatest differences in N accumulation in aboveground biomass were observed at the end of the third growing season; in C. villosa and C. arundinacea, respectively, 2.66 and 3.44 g N m–2 after addition of nitrogen and 1.34 and 2.39 g N m–2 in control. Greater amounts of nitrogen were assessed in below-ground plant parts (9.93–12.97 g N m–2 in C. villosa and 4.29–4.39 g N m–2 in C. arundinacea). During the second and third year of experiment, the following effects were the most pronounced: the presence of growing grasses resulted in a decrease of both the acidity and conductivity of lysimetric water and in a lower amount of leached nitrogen, especially of nitrates. Leaching of base cations (Ca2+ and Mg2+) was two to three times lower than from bare soil without grasses. An excess of labile Al3+ was substantially eliminated in treatments with grasses. Enhanced N input increased significantly the acidity and losses of nutrients only in unplanted lysimeters. The leaching of N from treatments with grasses (3.9–5.6 kg N ha–1) was 31–46% of the amount of N in wet deposition. However, the amount of leached N (4.2–6.0 kg N ha–1) after N application was only 7.1–8.9% of total N input. After a short three year period, the features of soil with planted grasses indicated a slight improvement: higher pH values and Ca2+ and Mg2+ contents. The ability of these grass stands to reduce the excess nitrogen in soil is the principal mechanism modifying the negative impact on sites deforested by acid depositions. Thus it is suggested that grass sward formation partly eliminates negative processes associated with soil acidification and has a positive effect on the reduction of nutrient losses from the soil.  相似文献   

10.
Lyophilization was used to concentrate bovine feces prior to DNA extraction and analysis using real-time PCR. Lyophilization significantly improved the sensitivity of detection compared to that in fresh feces and was associated with reliable quantification of both Escherichia coli O157:H7 and Campylobacter jejuni bacteria present in feces at concentrations ranging between 2 log10 and 6 log10 CFU g1.Bovines are a reservoir for verotoxigenic Escherichia coli O157:H7 and Campylobacter jejuni, pathogenic microorganisms responsible for severe human gastrointestinal disease (5, 12). Qualitative and quantitative detection of these organisms in bovine feces is essential for evaluating risk to human health. Real-time PCR (quantitative PCR [qPCR]) assays have been developed to detect and quantify both E. coli O157:H7 and C. jejuni bacteria by using DNA directly extracted from animal feces (20, 22). Analysis of DNA extracted from bovine feces can generate a high level of correlation between the actual target cell density and the PCR signal (7, 8). However, the detection of E. coli O157:H7 and C. jejuni by direct DNA extraction is less sensitive and more variable than detection by procedures based on a preliminary enrichment step (e.g., laboratory culture) (7, 9, 16, 20). We explored the potential of lyophilization for improving overall detection by qPCR through increasing the amount of bovine fecal material available for DNA extraction.Four sets of five fresh bovine fecal samples were collected, and each sample was divided into four equal portions. Samples were seeded with either (i) E. coli O157:H7 (strain NZRM 3614) grown for 18 h at 37°C in tryptic soy broth (BD, Sparks, MD) or (ii) C. jejuni (strain NZRM 1958) grown for 48 h at 42°C in Exeter broth (11) to obtain the following concentrations: set 1, 0 CFU g1 (unseeded) and 3.5 log10, 4.5 log10, and 5.5 log10 CFU of E. coli O157:H7 g1, and set 2, 0 CFU g1 (unseeded) to 5.2 log10 CFU of E. coli O157:H7 g1. Set 3 and 4 concentrations varied from 0 CFU g1 (unseeded) to 6.4 log10 C. jejuni CFU g1. DNA was either extracted directly from fresh samples or extracted from samples after lyophilization. Lyophilization involved mixing of prepared fecal samples in phosphate-buffered saline (145 mM NaCl, 59 mM Na2HPO4, 8 mM KH2PO4, pH 7.5) at a ratio of 1:10 (wt/vol), homogenization with a lab blender model 400 (Seward Medical, London, United Kingdom), cooling to −35°C, and concentration using a 1015GP lyophilizer (Cuddon Ltd., Blenheim, New Zealand). Total DNA was extracted from 0.2 g of a fresh or lyophilized fecal sample by using a QIAamp DNA stool minikit (Qiagen Inc., Mississauga, Canada). DNA was amplified using either a TaqMan E. coli O157:H7 detection kit (Applied Biosystems, Foster City, CA) or mapA primers and a corresponding probe (1). Amplification and fluorescence data were collected with optical-grade 96-well plates by using a TaqMan 7300 PCR system (Applied Biosystems). For each DNA sample, a mean threshold cycle (CT) value for triplicate qPCR runs was calculated. When no CT value was obtained, an arbitrary CT value of 40 was assigned. All data were reported as equivalent concentrations in fresh feces. Significance levels were determined by one-way analysis of variance. The relationship between the log10 numbers of CFU g1 fresh feces (viable-cell counts) and CT values was analyzed using GenStat software (version 10.2.0.175; VSN International, Oxford, United Kingdom). Confidence intervals were obtained using the software program Flexi (21).Lyophilized samples were associated with significantly improved sensitivity (P < 0.001) at seeding levels of 4.5 and 5.5 log10 E. coli O157:H7 CFU g1 (Table (Table1).1). At 3.5 log10 CFU g1, the rate of E. coli O157:H7 detection was also higher, with all lyophilized samples producing a CT value of <40 (Table (Table1).1). Individual CT values for the three qPCR amplification runs were sufficiently similar to allow averaging (P > 0.05). Regression analysis of the averaged set 2 and 3 data (Fig. (Fig.1)1) demonstrated that the detection of both E. coli O157:H7 and C. jejuni was linear for seeding levels ranging from ca. 2 log10 to 6 log10 CFU g1 fresh feces. The range of concentrations used reflects the reported range of concentrations of these bacteria in feces (i.e., 0 to 6 log10 CFU g1) as determined by conventional culture (3, 4, 18, 19). The high coefficients of correlation for the relationships between the log10 numbers of CFU g1 feces and the CT values indicated the specific amplification of the target DNA. The reproducibility of detection of E. coli O157:H7 was reduced at the lowest seeding concentration (i.e., 2.2 log10 CFU g1 feces), with 75% of the samples giving a CT value of <40. The limit for 100% successful detection after lyophilization was 2.9 log10 E. coli O157:H7 CFU g1. The detection of C. jejuni by qPCR varied between sets. For set 3, 100% reproducibility occurred at 2.2 log10 C. jejuni CFU g1. For set 4, satisfactory detection was obtained only after dilution of the DNA extract prior to qPCR. Despite this requirement for dilution, C. jejuni was still detected in 80% of the samples of set 4 seeded at a density of 2.2 log10 C. jejuni CFU g1.Open in a separate windowFIG. 1.Ranges of quantification of E. coli O157:H7 (A) and C. jejuni (B) bacteria obtained from lyophilized fecal samples by real-time PCR. Each point represents the average CT value for triplicate runs of one fecal sample at one seeding concentration. The hatched areas represent the 95% confidence intervals.

TABLE 1.

Difference in CT values obtained for real-time PCR detection of E. coli O157:H7 in seeded fecal samples (n = 5) with and without lyophilization
Seeding level (log10 CFU g−1 fresh feces) or statusAverage CT value (range)
Without lyophilizationWith lyophilization
5.531.50 (31.02-32.18)28.34 (28.04-29.03)
4.534.79 (33.43-35.75)31.33 (31.01-31.89)
3.535.45a33.52 (33.21-33.87)
Unseeded>40>40
Open in a separate windowaOnly one fecal sample gave a CT value of <40.Overall, the removal of water by lyophilization provided an approximately 10-fold increase in the amount of fecal material used. Consequently, the test sensitivity was 10-fold greater than that reported previously (17, 7). Lyophilization of feces has been reported to be useful for PCR-based studies of pigs (14), and our results indicate a useful role for the quantification of E. coli O157:H7 bacteria in cattle feces. Indeed, the slopes and the linear regression coefficients for the qPCR signal (CT values) and the known concentrations of microbial pathogen cells in the feces are in agreement with published values (2). Our methodology shows a lower limit of C. jejuni quantification by qPCR (ca. 2 log10 CFU g1 in seeded fresh feces) than that reported previously (8), demonstrating the usefulness of lyophilization to improve detection and quantification of bacteria in feces.In our study, the accurate detection of C. jejuni after DNA extraction from lyophilized feces was adversely affected for some samples. Interference due to partial removal of PCR inhibitors after DNA extraction using the QIAamp DNA stool minikit has been reported by other workers (10, 15). For lyophilized samples, the inhibition was successfully overcome by dilution of DNA. Recent reports confirmed the importance of diluting DNA (up to 3 log) to increase the accuracy of detection by real-time PCR (6, 13). Lyophilization presents the advantage that lyophilized material can be stored for long periods at room temperature, is easy to transport, and can also be used for complementary chemical analysis.  相似文献   

11.
Idli, a traditional cereal/legume-based naturally fermented steamed product with soft and spongy texture is highly popular and widely consumed in India. The inherent viable bacterial populations of mesophilic aerobes and lactics in idli batter increased in their numbers with time at 35 °C, reaching numbers in the range of 13 to 15 log10 CFU g–1. Simultaneously, the pH level decreased from 6.2 to 4.4. Strains of Bacillus cereus F 4810, Escherichia coli D 21 and Staphylococcus aureus FRI 722 (foodborne pathogens) introduced into the idli batter at an initial level of 4.3 log10 CFU g–1 was able to survive and grow well in an initial period of 6 h. However, the strain of S. aureus showed a constant increase in its numbers reaching 9.3 log10 CFU g–1 in 12 h. The addition of plantaricin LP84, a bacteriocin produced by Lactobacillus plantarum NCIM 2084 to idli batter at 1% (v/w) level was able to retard the growth of the inoculated cultures during fermentation. Two aspects were established from this study, (i) that foodborne pathogens occurring as contaminants in idli batter can survive and grow under conditions of natural fermentation and (ii) the efficacy of a lactic bacteriocin as a potential food biopreservative.  相似文献   

12.
Summary A chemostat was used as a model system to study competitive interactions of diazotrophic microorganisms. Enrichment experiments were carried out under microaerobic conditions (8.7 mol O2/l) with malate as the sole carbon source. The starting material was a Korean rice soil including intact root pieces. The enrichment process was governed by the dilution rate. High dilution rates resulted in the enrichment ofAzospirillum lipoferum, whereas low dilution rates led to the predominance of an unidentified organism, named Isolate R. Dilution rates were set in the range from D=0.005 to D=0.1 h–1. The growth kinetics of both organisms followed Monod's model in the enrichment culture. From the experiments, the maximum specific growth rate ofA. lipoferum and Isolate R were 0.069 h–1 and 0.025 h–1, respectively. The corresponding Ks-values were 8.4 and 0.9 (mg. 1–1). The point of theoretical coexistence of both organisms was calculated to occur at a substrate concentration of s=3.0 (mg.l–1) with a growth of rate =0.018 h–1. Hence the preset nutritional niches occupied by at least two organisms.Azospirillum lipoferum seems to represent the copiotroph microflora and Isolate R is of the oligotroph type. In addition to its high substrate affinity Isolate R liberatedca. 75% of the fixed nitrogen into the medium, which indicates its potential role for mutualistic interactions in the rhizosphere.  相似文献   

13.
Behavioral and physiological responses to hypoxia were examined in three sympatric species of sharks: bonnethead shark Sphyrna tiburo, blacknose shark, Carcharhinus acronotus, and Florida smoothhound shark, Mustelus norrisi, using closed system respirometry. Sharks were exposed to normoxic and three levels of hypoxic conditions. Under normoxic conditions (5.5–6.4mg l–1), shark routine swimming speed averaged 25.5 and 31.0cm s–1 for obligate ram-ventilating S. tiburo and C. acronotus respectively, and 25.0cm s–1 for buccal-ventilating M. norrisi. Routine oxygen consumption averaged about 234.6 mg O2kg–1h–1 for S. tiburo, 437.2mg O2kg–1h–1 for C. acronotus, and 161.4mg O2 kg–1 h–1 for M. norrisi. For ram-ventilating sharks, mouth gape averaged 1.0cm whereas M. norrisi gillbeats averaged 56.0 beats min–1. Swimming speeds, mouth gape, and oxygen consumption rate of S. tiburo and C. acronotus increased to a maximum of 37–39cm s–1, 2.5–3.0cm and 496 and 599mg O2 kg–1 h–1 under hypoxic conditions (2.5–3.4mg l–1), respectively. M. norrisi decreased swimming speeds to 16cm s–1 and oxygen consumption rate remained similar. Results support the hypothesis that obligate ram-ventilating sharks respond to hypoxia by increasing swimming speed and mouth gape while buccal-ventilating smoothhound sharks reduce activity.  相似文献   

14.
A rich and varied meiofauna inhabits a Cornish mudflat near the mouth of the Tamar River in southwestern England. Population densities range from 117 to 943 individuals · g–1 (wet) sediment (1.4–11.4 × 106 individuals · m–2), with foraminifera, harpacticoid copepods and nematodes appearing in nearly equal numbers and comprising most of the meiofauna. Seasonally, meiofaunal numbers rise and fall with solar radiation and vary inversely with river discharge. Two species, the atestate allogromiid A and the calcareous Haynesina germanica (Ehrenberg), far outnumber other foraminifera; their population densities and growth rates reach maxima in spring and summer.Monthly rates of sediment respiration are locally variable, but clearly increase from winter (4.13 ml O2 · m–2 · h–1 in December) to spring (38.87 ml O2 · m–2 · h–1 in April). Experiments and calculations ascribe approximately 30% of this total to the meiofauna (including microfauna and microflora), 50% to bacteria and less than 20% to chemical oxidation. A tentative energy budget for the mudflat suggests that secondary production by meiofauna is small as compared with coastal environments elsewhere, and that meiofaunal production (426 Kcal · m–2 · y–1) is nearly twice meiofaunal respiration (252 Kcal · m–2 · yr–1).  相似文献   

15.
The cyanobacterium Spirulina platensis was used to verify the possibility of employing microalgal biomass to reduce the contents of nitrate and phosphate in wastewaters. Batch tests were carried out in 0.5 dm3 Erlenmeyer flasks under conditions of light limitation (40 mol quanta m–2 s–1) at a starting biomass level of 0.50 g/dm3 and varying temperature in the range 23–40°C. In this way, the best temperature for the growth of this microalga (30°C) was determined and the related thermodynamic parameters were estimated. All removed nitrate was used for biomass growth (biotic removal), whereas phosphate appeared to be removed mainly by chemical precipitation (abiotic removal). The best results in terms of specific and volumetric growth rates ( =0.044 day–1, Q x =33.2 mg dm–3 day–1) as well as volumetric rate and final yield of nitrogen removal ( =3.26 mg dm–3 day–1, =0.739) were obtained at 30°C, whereas phosphorus was more effectively removed at a lower temperature. In order to simulate full-scale studies, batch tests of nitrate and phosphate removal were also performed in 5.0 dm3 vessels (mini-ponds) at the optimum temperature (30°C) but increasing the photon fluence rate to 80 mol quanta m–2 s–1 and varying the initial biomass concentration from 0.25 to 0.86 g/dm3. These additional tests demonstrated that an increase in the inoculum level up to 0.75 g/dm3 enhanced both NO3 and PO4 3– removal, confirming a strict dependence of these processes on biomass activity. In addition, the larger surface area of the ponds and the higher light intensity improved removal yields and kinetics compared to the flasks, particularly concerning phosphorus removal ( =0.032–0.050 day–1, Q x =34.7–42.4 mg dm–3 day–1, =3.24–4.06 mg dm–3 day–1, =0.750–0.879, =0.312–0.623 mg dm–3 day–1, and =0.224–0.440).  相似文献   

16.
Summary Anaerobic bacteria, such as sulfate-reducing bacteria and clostridia, are capable of generating H2S and organic acids which corrode metallurgy resulting in millions of dollars of damage to industry annually. The bacteria are obligate anaerobes which grow typically on equipment surfaces under deposits such as biofilms. A successful method of penetrating biofilm and killing the anaerobic bacteria specifically has not been previously presented. We have investigated whether a blend of 1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole (metronidazole) and a biodispersant would killDesulfovibrio, Desulfotomaculum, andClostridium species grown in the laboratory and in field applications. We found the blend significantly reduced the anaerobes in laboratory cultures. However, in a bioreactor designed to induced a high level of biofilm production and enhance underdeposit growth of anaerobic bacteria, a 40–58% increase in the antibiotic-biodispersant blend concentration was required. The metronidazole blend killed obligate anaerobic bacteria specifically but was non-toxic to aerobic bacteria and fungi. These results were confirmed in cooling tower field trial studies.  相似文献   

17.
This paper provides an approach for optimizing the cell density (Xc) and dilution rate (D) in a chemostat for a Pichia pastoris continuous fermentation for the extracellular production of a recombinant protein, interferon (INF-). The objective was to maximize the volumetric productivity (Q, mg INF- l–1 h–1), which was accomplished using response surface methodology (RSM) to model the response of Q as a function of Xc and D within the ranges 150 Xc 450 g cells (wet weight) l–1 and 0.1 mD0.9 m (m=0.0678 h–1, the maximum specific growth rate obtained from a fed-batch phase controlled with a methanol sensor). The methanol and medium feed rates that resulted in the desired Xc and D were determined based on the mass balance. From the RSM model, the optimal Xc and D were 328.9 g l–1 and 0.0333 h–1 for a maximum Q of 2.73 mg l–1 h–1. The model of specific production rate (, mg INF- g–1 cells h–1) was also established and showed the optimal Xc=287.7 g l–1 and D=0.0361 h–1 for the maximum (predicted to be 8.92×10–3 mg–1 g–1 h–1). The methanol specific consumption rate (, g methanol g–1 cells h–1) was calculated and shown to be independent of the cell density. The relationship between and (specific growth rate) was the same as that discovered from fed-batch fermentations of the same strain. The approach developed in this study is expected to be applicable to the optimization of continuous fermentations by other microorganisms.  相似文献   

18.
The effects of temperature, aerobic and anaerobic conditions in the silo and plant characteristics [water-soluble carbohydrate (WSC) contents, growing season] on the fermentation characteristics of a tropical forage species, Sorghum bicolor cv. sugar-drip, were investigated. Silages fermented in oxygen-impermeable bags were well preserved and had low pH (3.7), high lactic acid [72 g kg–1 dry matter (DM) 80% of total acids], and low butyric acid (0.12 g kg–1 DM) and ammonia nitrogen (NH3–N) (57 g kg–1 total nitrogen contents. Conversely, the use of oxygen-permeable bags as silos allowed aerobic decomposition of the ensiled forages. Increasing the incubation temperature lowered the population of lactic acid bacteria, reduced lactic acid production and caused the pH to rise. The heterofermentative Leuconostoc spp. predominated on fresh forages but homofermentative Lactobacillus plantarum began to dominate after 5 and 8 days of fermentation. Heterofermentative lactobacilli, notably Lactobacillus brevis, were dominant among the isolates obtained from 100-day silages. Varying the WSC contents, by crushing and/or chopping the forage, and growing season did not significantly affect the fermentation quality of the resulting silages. It was concluded that the maintenance of anaerobic conditions is essential if good quality silage is to be produced from tropical forage species.  相似文献   

19.
CO2 exchange components of a temperate semi-desert sand grassland ecosystem in Hungary were measured 21 times in 2000–2001 using a closed IRGA system. Stand CO2 uptake and release, soil respiration rate (R s), and micrometeorological values were determined with two types of closed system chambers to investigate the daily courses of gas exchange. The maximum CO2 uptake and release were –3.240 and 1.903 mol m–2 s–1, respectively, indicating a relatively low carbon sequestration potential. The maximum and the minimum R s were 1.470 and 0.226 mol(CO2) m–2 s–1, respectively. Water shortage was probably more effective in decreasing photosynthetic rates than R s, indicating water supply as the primary driving variable for the sink-source relations in this ecosystem type.  相似文献   

20.
Campylobacter spp. are a leading bacterial cause of human foodborne illness. When cocultured in anaerobic Bolton broth with the hyper-ammonia producing bacterium, Clostridium aminophilum, ammonia accumulation was greater and final growth of Campylobacter jejuni was reduced (CFU ≥ 1.4 log10/mL) compared to that obtained by pure culture controls. Co-culture with the less active ammonia-producing saccharolytic Prevotella albensis had no effect on final C. jejuni concentrations. When co-cultured similarly except with the addition of 10 μmol/L monensin, monensin-susceptible Cl. aminophilum was reduced by 2 to 4 log10 CFU/mL and concentrations of C. jejuni, which is insensitive to monensin, did not differ from its pure culture control. These results suggest that in the absence of added monensin, the hyper ammonia-producing Cl. aminophilum may be able to outcompete asaccharolytic C. jejuni for amino acid substrates and that this competitive ability was eliminated by addition on monensin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号