首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A crucial feature of peptide antigen presentation by major histocompatibilty complex (MHC) class I and II molecules is their differential ability to sample cytosolic and extracellular antigens. Intracellular viral infections and bacteria that are taken up in phagosomes, but then escape from the endocytic compartment efficiently, enter the class I pathway via the cytosol. In contrast, phagosome-resident bacteria yield protein antigens that are sampled deep in the endocytic compartment and presented in a vacuolar acidification-dependent pathway mediated by MHC class II molecules. Despite this potential for antigen sampling, microbes have evolved a variety of evasive mechanisms that affect peptide transport in the MHC class I pathway or blockade of endosomal acidification and inhibition of phagosome–lysosome fusion that may compromise the MHC class II pathway of antigen presentation. Thus, besides MHC class I and II, a third lineage of antigen-presenting molecules that bind lipid and glycolipid antigens rather than peptides exists and is mediated by the family of CD1 proteins. CD1 isoforms (CD1a, b, c, and d) differentially sample both recycling endosomes of the early endocytic system and late endosomes and lysosomes to which lipid antigens are differentially delivered. These CD1 pathways include vacuolar acidification-independent pathways for lipid antigen presentation. These features of presenting lipid antigens, independently monitoring various antigen-containing intracellular compartments and avoiding certain evasive techniques employed by microbes, enable CD1 molecules to provide distinct opportunities to function in host defense against the microbial world.  相似文献   

2.
The Kaposi's sarcoma-associated herpes virus gene product K3 (KK3) subverts the MHC class I antigen presentation pathway by downregulating MHC class I from the plasma membrane. We now show that KK3 associates with MHC class I molecules and promotes ubiquitylation of class I after export from the endoplasmic reticulum. Ubiquitylation requires the KK3 N-terminal plant homeodomain and provides the signal for class I internalization at the plasma membrane. Once internalized, ubiquitylated MHC class I is targeted to the late endocytic pathway, where it is degraded. Depletion by small interfering RNA of TSG101, a ubiquitin enzyme 2 variant protein involved in late endosomal sorting, prevents class I degradation and preserves cell surface class I expression in KK3-expressing cells. These results suggest a mechanism by which the KK3-induced class I ubiquitylation provides a signal for both internalization and sorting to the late endosomal pathway for degradation. KK3 is the first viral gene product that subverts the trafficking of a host protein via the ubiquitin-dependent endosomal sorting machinery.  相似文献   

3.
Melanosomal membrane proteins are frequently recognized by the immune system of patients with melanoma and vitiligo. Melanosomal glycoproteins are transported to melanosomes by a dileucine-based melanosomal transport signal (MTS). To investigate whether this sorting signal could be involved in presentation of melanosome membrane proteins to the immune system, we devised a fusion construct containing the MTS from the mouse brown locus product gp75/tyrosinase-related protein-1 and full-length OVA as a reporter Ag. The fusion protein was expressed as an intracellular membrane protein, sorted to the endocytic pathway, processed, and presented by class II MHC molecules. DNA immunization with this construct elicited CD4+ T cell proliferative responses in vivo. Ag presentation and T cell responses in vitro and in vivo required a functional MTS. Mutations of either the upstream leucine in MTS or elimination of the entire MTS negated in vitro Ag presentation and in vivo T cell responses. In a mouse melanoma model, DNA immunization with MTS constructs protected mice from tumor challenge in a CD4+ T cell-dependent manner, but complete deletion of MTS decreased tumor rejection. Therefore, MTS can target epitopes to the endocytic pathway leading to presentation by class II MHC molecules to helper T cells.  相似文献   

4.
《Autophagy》2013,9(12):1839-1841
Autophagy-mediated major histocompatibility complex (MHC) class I presentation can follow either the conventional MHC class I pathway or a recently described vacuolar pathway. In the vacuolar pathway, protein degradation is effected by lysosomal proteases, peptide exchange takes place with recirculating MHC complexes and the newly formed peptide-MHC complexes reach the cell surface by the endocytic pathway. This pathway is independent of the proteasome and the transporter associated with antigen processing (TAP) complex, but generates the same, or a similar, epitope as that from the conventional MHC class I pathway. Here, we discuss different mechanisms by which autophagy mediates MHC class I-restricted antigen presentation, which is crucial to its role in the control of intracellular pathogens.  相似文献   

5.
We have developed cell-based cancer vaccines that activate anti-tumor immunity by directly presenting endogenously synthesized tumor antigens to CD4+ T helper lymphocytes via MHC class II molecules. The vaccines are non-conventional antigen-presenting cells because they express MHC class II, do not express invariant chain or H-2M, and preferentially present endogenous antigen. To further improve therapeutic efficacy we have studied the intracellular trafficking pathway of MHC class II molecules in the vaccines using endoplasmic reticulum-localized lysozyme as a model antigen. Experiments using endocytic and cytosolic pathway inhibitors (chloroquine, primaquine, and brefeldin A) and protease inhibitors (lactacystin, LLnL, E64, and leupeptin) indicate antigen presentation depends on the endocytic pathway, although antigen degradation is not mediated by endosomal or proteasomal proteases. Because H2-M facilitates presentation of exogenous antigen via the endocytic pathway, we investigated whether transfection of vaccine cells with H-2M could potentiate endogenous antigen presentation. In contrast to its role in conventional antigen presentation, H-2M had no effect on endogenous antigen presentation by vaccine cells or on vaccine efficacy. These results suggest that antigen/MHC class II complexes in the vaccines may follow a novel route for processing and presentation and may produce a repertoire of class II-restricted peptides different from those presented by professional APC. The therapeutic efficacy of the vaccines, therefore, may reside in their ability to present novel tumor peptides, consequently activating tumor-specific CD4+ T cells that would not otherwise be activated.  相似文献   

6.
Presentation and CD4(+) T cell responses to Ag in the context of MHC class II molecules require processing of native proteins into short peptide fragments. Within this pathway, IFN-gamma-inducible lysosomal thiol reductase (GILT) functions to catalyze thiol bond reduction, thus unfolding native protein Ag and facilitating further processing via cellular proteases. In contrast with professional APCs such as B cells, class II-positive human melanomas expressed relatively little to no GILT protein or mRNA. Tumor cell GILT expression was partially restored with IFN-gamma treatment but unlike other genes required for class II Ag presentation, GILT was not regulated by CIITA. Rather, studies revealed STAT1 plays a direct role in IFN-gamma-inducible GILT expression. These results define a molecular mechanism for the uncoupled regulation of MHC class II genes and the processing enzyme GILT in human melanomas.  相似文献   

7.
The unique ether glycerolipids of ARCHAEA: can be formulated into vesicles (archaeosomes) with strong adjuvant activity for MHC class II presentation. Herein, we assess the ability of archaeosomes to facilitate MHC class I presentation of entrapped protein Ag. Immunization of mice with OVA entrapped in archaeosomes resulted in a potent Ag-specific CD8(+) T cell response, as measured by IFN-gamma production and cytolytic activity toward the immunodominant CTL epitope OVA(257-264). In contrast, administration of OVA with aluminum hydroxide or entrapped in conventional ester-phospholipid liposomes failed to evoke significant CTL response. The archaeosome-mediated CD8(+) T cell response was primarily perforin dependent because CTL activity was undetectable in perforin-deficient mice. Interestingly, a long-term CTL response was generated with a low Ag dose even in CD4(+) T cell deficient mice, indicating that the archaeosomes could mediate a potent T helper cell-independent CD8(+) T cell response. Macrophages incubated in vitro with OVA archaeosomes strongly stimulated cytokine production by OVA-specific CD8(+) T cells, indicating that archaeosomes efficiently delivered entrapped protein for MHC class I presentation. This processing of Ag was Brefeldin A sensitive, suggesting that the peptides were transported through the endoplasmic reticulum and presented by the cytosolic MHC class I pathway. Finally, archaeosomes induced a potent memory CTL response to OVA even 154 days after immunization. This correlated to strong Ag-specific up-regulation of CD44 on splenic CD8(+) T cells. Thus, delivery of proteins in self-adjuvanting archaeosomes represents a novel strategy for targeting exogenous Ags to the MHC class I pathway for induction of CTL response.  相似文献   

8.
Heat shock proteins (HSP) are conserved proteins, many of which share the ability for indiscriminate peptide binding and ATPase-coupled peptide release. In this paper, we show that heat shock cognate protein (HSC)73, a constitutively expressed member of the HSP70 family, could be a candidate for chaperone activity within the MHC class II presentation pathway. HSC73 expression in macrophages was shown to overlap with expression of MHC class II; overexpression of HSC73 in stable transfectants of a macrophage line markedly enhanced their presentation of exogenous Ag without affecting presentation of processing independent peptide. Ag from an exogenous source was demonstrated to associate with HSC73 in macrophages, and this association was sensitive to ATP treatment and inhibited by deoxyspergualin, an immunosuppressive agent that has previously been shown to bind specifically to HSC73. Furthermore, deoxyspergualin reduced Ag presentation by macrophages in relation to the amount of HSC73 expressed in these cells. The data are consistent with a potential role for HSC73 in binding and protecting peptides from extensive degradation and/or facilitating the kinetics of peptide transfer to MHC class II molecules.  相似文献   

9.
The hematopoietic actin regulatory protein hematopoietic lineage cell-specific protein 1 (HS1) is required for cell spreading and signaling in lymphocytes, but the scope of HS1 function in Ag presentation has not been addressed. We show that dendritic cells (DCs) from HS1(-/-) mice differentiate normally and display normal LPS-induced upregulation of surface markers and cytokines. Consistent with their normal expression of MHC and costimulatory molecules, HS1(-/-) DCs present OVA peptide efficiently to CD4(+) T cells. However, presentation of OVA protein is defective. Similarly, MHC class I-dependent presentation of VSV8 peptide to CD8(+) T cells occurs normally, but cross-presentation of GRP94/VSV8 complexes is defective. Analysis of Ag uptake pathways shows that HS1 is required for receptor-mediated endocytosis, but not for phagocytosis or macropinocytosis. HS1 interacts with dynamin 2, a protein involved in scission of endocytic vesicles. However, HS1(-/-) DCs showed decreased numbers of endocytic invaginations, whereas dynamin-inhibited cells showed accumulation of these endocytic intermediates. Taken together, these studies show that HS1 promotes an early step in the endocytic pathway that is required for efficient Ag presentation of exogenous Ag by DCs.  相似文献   

10.
Intracellular trafficking pathway of newly synthesized CD1b molecules   总被引:3,自引:0,他引:3  
The intracellular trafficking of major histocompatibility complex (MHC) class I and class II molecules has evolved to support their function in peptide antigen presentation optimally. We have analyzed the intracellular trafficking of newly synthesized human CD1b, a lipid antigen-presenting molecule, to understand how this relates to its antigen-presenting function. Nascent CD1b was transported rapidly to the cell surface after leaving the Golgi, and then entered the endocytic system by internalization via AP-2-dependent sorting at the plasma membrane. A second sorting event, possibly involving AP-3 complexes, led to prominent accumulation of CD1b in MHC class II compartments (MIICs). Functional studies demonstrated the importance of nascent CD1b for the efficient presentation of a foreign lipid antigen. Therefore, the intracellular trafficking of nascent CD1b via the cell surface to reach MIICs may allow the efficient sampling of lipid antigens present in endocytic compartments.  相似文献   

11.
Exogenous antigenic peptides captured and presented in the context of major histocompatibility (MHC) class II molecules on APC, have been employed as potent vaccine reagents capable of activating cellular immune responses. Binding and presentation of select peptide via surface class II molecules has been reported. Here, a role for endocytosis and early endosomes in the presentation of exogenous peptides via MHC class II molecules is described. T cell recognition of a 14 amino acid human serum albumin-derived peptide in the context of HLA-DR4 was observed only with metabolically active APC. The delayed kinetics and temperature dependence of functional peptide presentation via APC, were consistent with a requirement for peptide internalization to early endosomal compartments prior to T cell recognition. Ablating endocytosis by exposing cells to inhibitors of ATP production completely blocked the display of functional peptide:class II complexes on the surface of the APC. Presentation of the peptide was also found to be sensitive to primaquine, a drug that perturbs the recycling of transport vesicles containing endocytic receptors and mature class II complexes. Functional presentation of the endocytosed peptide was dependent upon these mature class II complexes, as inhibitor studies ruled out a requirement for newly synthesized class II molecules. N-terminal processing of the endocytosed peptide was observed upon trafficking through endosomal compartments and linked to the formation of functional peptide:class II complexes. These findings establish a novel mechanism for regulating class II-restricted peptide presentation via the endocytic pathway.  相似文献   

12.
Macrophages present exogenous Ag either via MHC class I or MHC class II molecules. We investigated whether the mode of hemagglutinin (HA) uptake influences the class of MHC molecule by which this Ag is presented. Normally, HA is ingested by receptor-mediated endocytosis, but this may be switched to macropinocytosis and pinocytosis by adding phorbol esters to the cells. This switch resulted in altered intracellular routing of ingested Ag and a transition from Ag presentation via MHC class II molecules to presentation via MHC class I molecules. Similarly, inhibition of receptor-mediated HA endocytosis, by treating the cells with the HA receptor destroying enzyme neuraminidase, abrogated Ag presentation via MHC class II molecules and induced presentation via MHC class I molecules. If, however, under these conditions, receptor-mediated uptake of HA was restored, by virtue of HA/anti-HA Ab interaction and subsequent uptake of HA via the Fc receptor, presentation via MHC class II was restored as well, whereas presentation of HA via MHC class I molecules was no longer detectable. We conclude that in macrophages the mode of Ag uptake is decisive in determining via which class of MHC molecules Ag is presented: pinocytosis and macropinocytosis produce exclusive presentation of exogenous Ag via MHC class I molecules whereas receptor-mediated endocytosis leads exclusively to presentation via class II molecules.  相似文献   

13.
A vertebrate immune response is initiated by the presentation of foreign protein Ag to MHC class II-restricted T lymphocytes by specialized APC. Presentation of self-peptides in association with MHC class II molecules is also necessary for the induction of T cell tolerance. It is important to understand whether functionally divergent APC are responsible for delivering these distinct signals to class II-restricted T cells. Here we examine the ability of I-Ad surface molecules expressed in diverse cell types to stimulate I-Ad-restricted T cells. Recipients included J558L myeloma cells and EL4 lymphoma cells expressing barely detectable or undetectable levels of Ii chain mRNA. This allowed us to examine the influence of Ii expression on the presentation of intracellular Ag and thus test the hypothesis that Ii chain is necessary to prevent access of self-peptides to newly synthesized class II molecules. Ii chain expression did not restore the ability of transformants to process and present soluble protein Ag. A striking result was the finding that cells showing a defect in the exogenous class II presentation pathway were capable of functioning as stimulators when they expressed intracellular secreted but not signal-less V-CH3b Ag. Thus, so-called professional APC that can capture and process exogenous protein Ag may express a specialized set of proteins not required for the presentation of self-peptides.  相似文献   

14.
In addition to their role as peptide binding proteins, MHC class II proteins can also function as signal transducing molecules. Recent work using B cells expressing genetically engineered truncated MHC class II molecules has suggested that signaling through the cytoplasmic domains of these proteins plays an important role in the generation of signals required for the activation of some T cell hybrids. Treatment of truncated Ia-expressing B cells with cAMP-elevating agents corrects the deficiency in Ag presentation by these cells. We report that the MHC class II-mediated signal appears to act by a mechanism that increases the efficiency of Ag presentation by B cells thereby lowering the amount of specific Ag required for T cell activation. We further show that the induction of the cAMP-induced signal in B cells is inhibited by cycloheximide and cytochalasin A, implicating protein synthesis as well as cytoskeletal rearrangements in Ag presentation to accessory signal- dependent hybrids. In contrast, these agents do not block Ag presentation to a T cell hybrid previously shown not to require the cAMP-induced signal for activation. The signal-dependent T hybrid is additionally dependent on LFA-1-ICAM-1 interaction for activation, whereas the signal-independent hybrid is not. These observations suggest the existence of two types of T cell hybrid with respect to their requirements for activation: those that require only the recognition of MHC class II-peptide complexes without accessory signals, as shown by their ability to respond to purified Ia on planar membranes, and those that, in addition to recognition of MHC II/Ag, require LFA-1-ICAM-1 interaction and the delivery of additional signal(s) induced in the B cell via signal transduction through MHC class II molecules.  相似文献   

15.
Bispecific heteroconjugate antibodies can bind soluble protein Ag to APC and thereby enhance Ag presentation. We used such antibodies to bind hen egg lysozyme (HEL) to various structures on the surface of normal splenic B cells to determine which structures would provide the best targets for enhanced presentation. We found that HEL was presented efficiently to hybridoma T cells if bound to sIgD, sIgM, or class I or II MHC molecules, but not at all if bound to Fc gamma RII, or B220 molecules on B cells. The efficiency of presentation of HEL was measured as a function of the amount of 125I-HEL bound per cell. HEL was presented with 5 to 10 times greater efficiency when bound to sIg, than when bound to MHC molecules. When compared on the basis of the amount of HEL bound, sIgD and sIgM functioned equally as target structures, as did class I and class II MHC molecules. Large amounts of HEL bound to B220, but no presentation resulted, indicating that focusing HEL to the APC surface was not sufficient for presentation to occur. HEL was internalized rapidly and in large amounts when bound to sIgD or sIgM, but slowly and in small amounts, when bound to class I or class II MHC molecules. Thus, a rapid rate of internalization may in part explain the high efficiency of Ag presentation after binding to sIg. However, the small amount of HEL internalized via MHC molecules was utilized efficiently for presentation. These results indicate that sIgM and sIgD serve equally on normal B cells to focus and internalize Ag and enhance Ag presentation, but that class I or class II MHC molecules can also be used to internalize Ag and enhance Ag presentation, perhaps by a separate intracellular processing pathway.  相似文献   

16.
Peptides from extracellular proteins presented on MHC class II are mostly generated and loaded in endolysosomal compartments, but the major pathways responsible for loading peptides from APC-endogenous sources on MHC class II are as yet unclear. In this study, we show that MHC class II molecules present peptides from proteins such as OVA or conalbumin introduced into the cytoplasm by hyperosmotic pinosome lysis, with efficiencies comparable to their presentation via extracellular fluid-phase endocytosis. This cytosolic presentation pathway is sensitive to proteasomal inhibitors, whereas the presentation of exogenous Ags taken up by endocytosis is not. Inhibitors of nonproteasomal cytosolic proteases can also inhibit MHC class II-restricted presentation of cytosolically delivered protein, without inhibiting MHC class I-restricted presentation from the same protein. Cytosolic processing of a soluble fusion protein containing the peptide epitope I-Ealpha(52-68) yields an epitope that is similar to the one generated during constitutive presentation of I-Ealpha as an endogenous transmembrane protein, but is subtly different from the one generated in the exogenous pathway. Constitutive MHC class II-mediated presentation of the endogenous transmembrane protein I-Ealpha is also specifically inhibited over time by inhibitors of cytosolic proteolysis. Thus, Ag processing in the cytoplasm appears to be essential for the efficient presentation of endogenous proteins, even transmembrane ones, on MHC class II, and the proteolytic pathways involved may differ from those used for MHC class I-mediated presentation.  相似文献   

17.
Schmid D  Münz C 《Autophagy》2007,3(2):133-135
The adaptive immune system is orchestrated by CD4+ T cells. These cells detect peptides presented on Major Histocompatibility Complex (MHC) class II molecules, which are loaded in late endosomes with products of lysosomal proteolysis. One pathway by which proteins gain access to degradation in lysosomes is macroautophagy. We recently showed that constitutive macroautophagy can be detected in cells relevant for the immune system, including dendritic cells. In these antigen presenting cells, autophagosomes frequently fused with MHC class II antigen loading compartments and targeting of Influenza matrix protein 1 (MP1) for macroautophagy enhanced MHC class II presentation to MP1-specific CD4+ T cell clones up to 20 fold. Our findings indicate that macroautophagy is a constitutive and efficient pathway of antigen delivery for MHC class II presentation. We suggest that this pathway samples intracellular proteins for immune surveillance and induction of tolerance in CD4+ T cells, and could be targeted for improved MHC class II presentation of vaccine antigens.  相似文献   

18.
Exogenous Ags taken up from the fluid phase can be presented by both newly synthesized and recycling MHC class II molecules. However, the presentation of Ags internalized through the B cell receptor (BCR) has not been characterized with respect to whether the class II molecules with which they become associated are newly synthesized or recycling. We show that the presentation of Ag taken up by the BCR requires protein synthesis in splenic B cells and in B lymphoma cells. Using B cells transfected with full-length I-Ak molecules or molecules truncated in cytoplasmic domains of their alpha- or beta-chains, we further show that when an Ag is internalized by the BCR, the cytoplasmic tails of class II molecules differentially control the presentation of antigenic peptides to specific T cells depending upon the importance of proteolytic processing in the production of that peptide. Integrity of the cytoplasmic tail of the I-Ak beta-chain is required for the presentation of the hen egg lysozyme determinant (46-61) following BCR internalization, but that dependence is not seen for the (34-45) determinant derived from the same protein. The tail of the beta-chain is also of importance for the dissociation of invariant chain fragments from class II molecules. Our results demonstrate that Ags internalized through the BCR are targeted to compartments containing newly synthesized class II molecules and that the tails of class II beta-chains control the loading of determinants produced after extensive Ag processing.  相似文献   

19.
Ag presentation stimulates Ag-specific adaptive immune responses. FcalphaR (CD89)-mediated capture of IgA-bound exogenous Ag leads to efficient MHC class II Ag presentation by APCs. CD89 signaling is required for trafficking of internalized Ag to specialized multivesicular bodies known as MHC class II compartments (MIIC) and subsequent class II presentation. In the present study, we tested the hypothesis that the vesicle trafficking regulator protein kinase Balpha (PKBalpha) is required for CD89-mediated trafficking to MIIC and Ag presentation. We observed by two independent methods (chemical inhibitors and specific RNA interference) that PKBalpha was required for CD89 trafficking to MIIC and class II Ag presentation. Expression of constitutively active PKBalpha in APCs expressing a mutant CD89 accessory signaling molecule (deficient in CD89/Ag trafficking, processing, and presentation) induced trafficking of CD89 to lamp1-containing late endocytic vesicles, but not class II-containing vesicles (MIIC), or class II Ag presentation. These studies show for the first time that PKBalpha is required for receptor-mediated Ag presentation and suggest the mechanism of action includes regulation of vesicle trafficking.  相似文献   

20.
Antigen-presenting cells survey their environment and present captured antigens bound to major histocompatibility complex (MHC) molecules. Formation of MHC-antigen complexes occurs in specialized compartments where multiple protein trafficking routes, still incompletely understood, converge. Autophagy is a route that enables the presentation of cytosolic antigen by MHC class II molecules. Some reports also implicate autophagy in the presentation of extracellular, endocytosed antigen by MHC class I molecules, a pathway termed “cross-presentation.” The role of autophagy in cross-presentation is controversial. This may be due to studies using different types of antigen presenting cells for which the use of autophagy is not well defined. Here we report that active use of autophagy is evident only in DC subtypes specialized in cross-presentation. However, the contribution of autophagy to cross-presentation varied depending on the form of antigen: it was negligible in the case of cell-associated antigen or antigen delivered via receptor-mediated endocytosis, but more prominent when the antigen was a soluble protein. These findings highlight the differential use of autophagy and its machinery by primary cells equipped with specific immune function, and prompt careful reassessment of the participation of this endocytic pathway in antigen cross-presentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号