首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil and litter disturbances within Central Hardwood forests may facilitate exotic plant species invasion of interior forest areas. Microstegium vimineum is an annual exotic grass that has become common throughout the Southeastern United States. Three replicates of three different mineral soil and litter disturbance treatments, plus a control with no disturbance, were established on the leading edge of M. vimineum patches prior to seed fall. All patches were located in areas with similar forest canopy structure and slope in three Central Hardwood forest stands prior to seed fall. At the beginning of the following growing season, each individual M. vimineum seedling was mapped within the treatment plots. The mean number of M. vimineum individuals that established within each treatment did not differ significantly from the control. The distance at which 90% of the individuals had spread, and the overall mean distance spread were significantly farther for the litter removal treatment than the control. The farthest individual seedling from the boundary of existing patches in both the litter removal and the mineral soil disturbance and litter removal treatments were significantly farther than the control. The individuals that spread the farthest are of most concern due to the large number of viable seed that a single M. vimineum plant can produce. These results suggest that disturbance of the litter layer may increase the spread rate of M. vimineum and facilitate its invasion of new habitats, and that leaving litter layers intact may slow the spread of M. vimineum.  相似文献   

2.
Tropical montane forests in the Andes are subjected to deforestation and subsequent transformation into pastures. Abandoned pastures are frequently reforested by planting monoculture timber plantations, resulting in reduced aboveground diversity and changes in soil characteristics compared to primary forests. In this study, we evaluated differences in soil properties (litter layer thickness, pH, water content, and C-to-N ratio) between degraded primary montane forest and monoculture pine (Pinus patula) and alder (Alnus acuminata) plantations and their effects on density, diversity, and community structure of litter and soil-living mesofauna, with focus on oribatid mites (Acariformes). The study was performed in a montane region in the southern Ecuadorian Andes (2,000–2,600 m a.s.l.). C-to-N ratios in the litter and upper 5 cm soil layer were higher in pine plantations, while other soil characteristics were similar between vegetation types. Surprisingly, microbial biomass and density of soil mesofauna in the litter layer did not differ between vegetation types, while density and species richness of oribatid mites were higher in pine plantations. Community structure of oribatid mites differed between vegetation types with only a few species overlapping. The results indicate that quality and diversity of litter were not the major factors regulating the mesofauna community. Instead, soil animals benefited from increased habitat structure in thicker litter layers and potentially increased availability of root-derived resources. Overall, the results suggest that from a soil animal perspective, monoculture plantations are less detrimental than commonly assumed and enrichment of abandoned plantations with native tree species may help to restore tropical montane forests.  相似文献   

3.
Jan Frouz 《Biologia》2008,63(2):249-253
Field microcosms consisting of mineral soil (spoil substrate) and two types of litter taken either from an unreclaimed site with spontaneously developed vegetation (mostly Salix caprea) or from an alder plantation (a mixture of Alnus glutinosa and A. incana) were exposed in spontaneously developed or reclaimed sites at a post-mining heap near Sokolov (Czech Republic) for one year. The litter types differed remarkably in C:N ratio which was 29 for spontaneous litter and 14 for alder litter. The two microcosm types were either accessible or not accessible to soil macrofauna. The effect of macrofauna exclusion on soil mixing was complex and depended on litter quality and the site that determined soil fauna composition. In reclaimed sites where macrofauna was dominated by saprophags, mainly earthworms, the macrofauna access increased soil mixing. In sites where predators dominated, the macrofauna exclusion probably suppressed fragmentation and mixing activity of the mesofauna.  相似文献   

4.
Ground dwelling spiders are important predators in the detrital food web, which plays important roles in nutrient cycling and energy flow in forest ecosystems. The cursorial spider assemblage in a Beech-Maple forest in southwestern Michigan at sites where and invasive plant, Vinca minor, has invaded was compared to a native site within the same forest and to the forest prior to invasion by the plant. Pitfall traps were used to sample cursorial spiders over the course of a summer. Vinca minor substantially altered the forest floor spider assemblage. The invasive plant reduced the total activity-abundance of spiders by nearly 49% and depressed species diversity and evenness; in contrast, species richness was not affected. We found that V. minor changed the guild and family structure with wolf spiders being common at sites where the plant had invaded. Vinca minor reduced the abundance of vagrant web building and crab spiders. Similarity indices revealed that the spider communities between the two sites were quite dissimilar (Bray-Curtis = 0.506; Jaccard’s = 0.520). Importantly, comparison to a study conducted in the same forest 28 years earlier showed that the cursorial spider assemblage in the forest prior to Vinca invasion was very different than it was after Vinca invaded but was similar to the current native site in species and guild composition. We conclude that invasion by Vinca has caused the striking changes we observed in community organization of this important group of forest floor predators. We suggest that changes in the physical structure of the litter/soil microhabitat with the invasion of V. minor are likely the cause of the substantial impacts of the plant on the spider assemblage.  相似文献   

5.
改变凋落物输入对川西亚高山天然次生林土壤呼吸的影响   总被引:1,自引:0,他引:1  
2019年5月-10月,采用LI-8100A土壤碳通量自动测量分析仪对川西米亚罗林区20世纪60年代采伐后经自然更新恢复形成的岷江冷杉(Abies faxoniana)次生针叶林(针叶林)、红桦(Betula albo-sinensis)+青榨槭(Acer davidii)+岷江冷杉次生针阔混交林(针阔混交林)和青榨槭+红桦+陕甘花楸(Sorbus koehneana Schneid)次生阔叶林(阔叶林)的土壤呼吸及土壤温湿度因子(对照、去除凋落物和加倍凋落物)进行观测。结果显示:去除和加倍凋落物对土壤温湿度的影响不显著,且3种林型之间的土壤呼吸速率差异不显著。与对照相比,去除凋落物使针叶林、针阔混交林、阔叶林的土壤呼吸速率分别降低了17.65%、21.01%和19.83%(P<0.05);加倍凋落物则分别增加6.76%、7.28%、8.16%(P>0.05)。3种林分土壤呼吸速率均与土壤温度极显著指数相关,与土壤湿度不相关。对照Q10值变幅为2.01-3.29,去除凋落物降低了3种林型的Q10值;加倍凋落物分别提高了针叶林和降低了针阔混交林和阔叶林的Q10值。土壤呼吸速率仅表现在天然次生林对照处理中受到土壤pH、有机质、可溶性有机氮和草本Pielou均匀度指数的显著影响。研究结果表明,天然次生阔叶林和针阔混交林凋落物对土壤呼吸的贡献及Q10值高于天然次生针叶林,说明在未来CO2浓度及温度升高背景下,地表凋落物增加并未引起天然次生林土壤呼吸速率成倍增加,更有利于该区域天然次生林尤其是针叶林的土壤碳吸存。  相似文献   

6.
我国南海诸岛主要是珊瑚岛。植物凋落物分解是生态系统元素循环的关键环节,但目前关于南海珊瑚岛生态系统凋落物分解的研究还是空白。以我国西沙群岛的优势树种抗风桐(Pisonia grandis)和海岸桐(Guettarda speciosa)为研究对象,采用凋落物袋法,分别于分解期间的第3、6、9、13和15个月取样,探究中型土壤动物对两种植物群落中凋落物分解过程中质量损失和养分释放的影响。结果表明:与没有中型土壤动物存在的情况(0.1 mm凋落物袋)相比,分解开始后的6个月内,中型土壤动物存在(2 mm凋落物袋)使抗风桐和海岸桐凋落叶分解速率分别提高了12.3%和4.8%(P<0.05);分解6-15个月期间,中型土壤动物存在使抗风桐和海岸桐凋落叶分解速率分别提高了33.0%和12.3%(P<0.05)。中型土壤动物排除显著影响了不同分解阶段凋落叶总碳(Total carbon,TC)、总氮(Total nitrogen,TN)、纤维素、木质素和半纤维素的残留率变化。中型土壤动物群落组成受土壤温度显著影响(P<0.05),它们对凋落叶分解的贡献可能主要受优势类群如真螨目和寄螨目的影响。相较海岸桐,抗风桐凋落叶的分解周期更短,中型土壤动物对其的贡献更大;选用抗风桐作为南海珊瑚岛退化植被恢复或新建的先锋种对促进生态系统元素循环更有利。  相似文献   

7.
In this study effects of previous intensive management on microorganisms and soil fauna were investigated. It was hypothesized that a former but now abandoned intensive management practice still causes negative effects years after conversion into conventional management.Two agricultural fields were investigated. Until 1990 one field (preINT) had been managed with the intensive crop hops (Humulus lupulus), whereas the second one (preCON) had been under crop rotation. In consequence the main difference between the two fields was the high copper load of preINT. In the period during this study both fields were cultivated the same way (1991: winter wheat, 1992: spring barley).Microbial biomass, species numbers and abundances of collembola as well as of earthworms were much lower in preINT in the first year of investigation. In 1992, earthworm biomass was still extremely low, whereas the microbial biomass and total collembola had reached the values of preCON. Between the collembola populations there were still distinct differences in species abundances. In preCON,Folsomia quadrioculata, Onychiurus armatus, and theMesaphorura krausbaueri group each made up about 1/4 of the total population. In preINT nearly 60% of the population consisted of theMesaphorura krausbaueri group, followed byIsotoma notabilis andOnychiurus armatus.Folsomia quadrioculata andIsotomiella minor in preINT exhibited extremely small abundances during the whole investigation period. Thus, in comparative field studies their abundances could serve as indicators for copper contamination.Supplementary microcosm studies had shown that severe reductions of earthworm numbers, especially with simultaneous high mesofauna abundances, will be accompanied by increased mineralization rates. Therefore changes in soil fauna composition caused by copper contamination could have pronounced effects on mineralization rates and nutrient fluxes.  相似文献   

8.
孙轲  黎建强  杨关吕  左嫚  胡景 《生态学报》2021,41(8):3100-3110
为了更好地理解土壤碳氮对枯落物输入变化的响应,通过枯落物添加与去除实验(DIRT)对滇中高原云南松林枯落物输入变化对土壤碳氮储量及其分布格局的影响进行了研究。2018年3月至2019年2月分别设置6种枯落物输处理,分别为对照(CO)、去除枯落物(NL)、双倍枯落物(DL)、去除根系(NR)、无输入(NI)以及去除有机层与A层(O/A-Less),研究了不同处理条件下土壤剖面上碳氮储量的分布规律。研究结果表明:(1)不同处理全碳储量为134.49-170.92 t/hm2,全碳储量在不同处理间表现为:SC(NL)=170.92 t/hm2 > SC(CO)=168.10 t/hm2 > SC(NR)=153.26 t/hm2 > SC(NI)=147.20 t/hm2 > SC(O/A-Less)=143.54 t/hm2 > SC(DL)=134.49 t/hm2,不同处理0-20 cm土层全碳储量占0-60 cm土层全碳储量的40.86%-53.56%;不同处理全氮储量表现为:SN(CO)=11.83 t/hm2 > SN(NL)=9.70 t/hm2 > SN(DL)=8.70 t/hm2 > SN(NR)=8.35 t/hm2 > SN(O/A-Less)=8.21 t/hm2 > SN(NI)=8.09 t/hm2。不同处理0-20 cm土层的全氮储量占0-60 cm土层全氮储量的39.28%-46.04%。云南松林地枯落物添加去除实验发现去除枯落物短期内可以增加土壤碳储量,其他处理均在一定程度上减少了土壤碳氮储量。(2)地上枯落物输入对表层(0-20 cm)土壤碳氮影响显著,根系输入对深层(20-40 cm)土壤碳氮影响显著;(3)土壤C、N存在耦合关系,不同处理土壤全碳含量与全氮含量极显著正相关,并且土壤全碳含量与土壤各化学计量比均呈极显著正相关关系;土壤容重与土壤碳氮含量具有极显著负相关关系。  相似文献   

9.
Microbial biomass C and N, and anaerobically mineralizable-N, were measured in the litter and mineral soil (0–10 cm and 10–20 cm depth) of Pinus radiata plantations in two trials on a nitrogen-deficient coastal sand. The trials comprised (a) stands of different age (1 to 33 years), with five of the seven stands studied being second rotation, and (b) a harvest-management trial, with stands established after different harvesting treatments of the first-rotation trees and understorey development controlled by manual weeding and chemical sprays. The harvest-management stands were sampled in the fifth year after the second-rotation establishment.In the stands of different age, the levels of microbial biomass C and N, and also mineralizable-N, in the litter and mineral soil showed no relationship with tree age and were similar to those in the oldest (33 years) stands of P. radiata. In the harvesting trial, five years after establishment of the second rotation, levels of microbial N and mineralizable-N in the litter and mineral soil were generally lowest where whole trees and the original forest floor had been removed; they were higher in associated plots in which the original forest floor had been removed but fertilizer N was regularly applied. No marked differences were then found between the other harvest treatments, viz. whole-tree harvest, stem-only harvest with slash remaining on site, and stem-only harvest plus extra added slash materials. In each trial, levels of microbial C and N and mineralizable-N were closely related to total C, and especially total N, in 0–10 cm depth mineral soil, but not generally in litter. Respiratory measurements strongly suggest that the microbial populations in mineral soil had a high metabolic activity.On an area basis in the harvest-management trial, total tree N and microbial N in the litter and mineral soil were lowest in stands where the original forest floor had been removed. In this particular treatment, microbial N in the litter plus mineral soil (0–20 cm depth) after five years of second-rotation growth comprised 7.3% of the total ecosystem N; values in the other treatments ranged between 5.6 and 6.0%.Our results emphasise the importance of slash and litter, and probably volunteer shrubs and herbaceous under-storey species, in conserving pools of potentially available N during the early stages of tree development.  相似文献   

10.

Aims

We assessed the effects of native and exotic tree leaf litter on soil properties in two contrasting scenarios. The native Quercus robur and Pinus pinaster tree species coexist with the aliens Eucalyptus globulus and Acacia dealbata in acid soils of NW Spain. The native trees Fraxinus angustifolia and Ulmus minor coexist with the aliens Ailanthus altissima, Robinia pseudoacacia and Ulmus pumila in eutrophic basic riparian soils in Central Spain.

Methods

Four plastic trays per species were filled with homogenized top-soil of the site and covered with leaf litter. Before and after 9?months of incubation, litter mass, soil pH, organic matter, mineral and total N were measured. Available mineral N (NO 3 ? -N and NH 4 + -N) was assessed every 2?months.

Results

Soil biological activity was higher in the basic than in the acid soil. Litter of the exotic trees tended to decompose less than litter of native species, probably due to the presence of secondary metabolites in the former. Soil pH, mineral and total N responded differently to different litter types, irrespective of their exotic or native origin (acid soil), or was similar across litter treatments (basic riparian soil). The similar response of the basic soil to the addition of different litter types may be due to the low contrast of litter quality between the species. E. globulus litter inhibitied soil microbial activity much more than the rest of the studied litter types, leading to a drastic impoverishment of N in soils.

Conclusion

Litter of exotic N-fixing trees (A. dealbata and R. pseudoacacia) did not increase soil N pools because of the inhibition of microbial activity by secondary compounds. Therefore, secondary metabolites of the litter played a major role explaining exotic litter impact on soil properties.  相似文献   

11.
Abstract. Species composition, detritus, and soil data from 97 boreal forest stands along a transect in central Canada were analysed using Correspondence Analysis to determine the dominant environmental/site variables that differentiate these forest stands. Picea mariana stands were densely clustered together on the understorey DCA plot, suggesting a consistent understorey species composition (feather mosses and Ericaceae), whereas Populus tremuloides stands had the most diverse understorey species composition (ca. 30 species, mostly shrubs and herbs). Pinus banksiana stands had several characteristic species of reindeer lichens (Cladina spp.), but saplings and Pinus seedlings were rare. Although climatic variables showed large variation along the transect, the CCA results indicated that site conditions are more important in determining species composition and differentiating the stand types. Forest floor characteristics (litter and humus layer, woody debris, and drainage) appear to be among the most important site variables. Stands of Picea had significantly higher average carbon (C) densities in the combined litter and humus layer (43530 kg‐C.ha‐1) than either Populus (25 500 kg‐C.ha‐1) or Pinus (19 400 kg‐C.ha‐1). The thick surface organic layer in lowland Picea stands plays an important role in regulating soil temperature and moisture, and organic‐matter decomposition, which in turn affect the ecosystem C‐dynamics. During forest succession after a stand‐replacing disturbance (e.g. fires), tree biomass and surface organic layer thickness increase in all stand types as forests recover; however, woody biomass detritus first decreases and then increases after ca. 80 yr. Soil C densities show slight decrease with ages in Populus stands, but increase in other stand types. These results indicate the complex C‐transfer processes among different components (tree biomass, detritus, forest floor, and soil) of boreal ecosystems at various stages of succession.  相似文献   

12.
When fertilizer is broadcast in boreal forest stands, the applied nutrients must pass through a thick layer of either feather moss or leaf litter which covers the forest floor. In a growth chamber experiment we tested the transfer of N through living feather moss or aspen litter when fertilized with urea ((NH2)2CO) or NH4NO3 at a rate of 100 kg ha?1 and under different watering regimes. When these organic substrates were frequently watered to excess they allowed the highest transfer of nutrients through, although 72% of the applied fertilizer was captured in the substrates. In a field experiment we also fertilized moss and aspen litter with urea ((NH2)2CO) or NH4NO3 at a more operationally relevant rate of 330 kg ha?1. We captured the NO3 ? or NH4 + by ion exchange resin at the substrate–mineral soil interface. In contrast to the growth chamber experiment, this fertilizer rate killed the moss and there was no detectable increase in nutrient levels in the aspen litter or feather moss layers. Instead, the urea was more likely transferred into the mineral soil; mineral soil of the urea treatment had 1.6 times as much extractable N compared to the NH4NO3 treatment. This difference between the growth chamber and field studies was attributed to observed fertilizer-damage to the living moss and possibly damage to the litter microflora due to the higher rate of fertilization in the field. In addition, the early and substantial rainfall after fertilization in the field experiment produced conditions for rapid leaching of N through the organic layers into the mineral soil. In the field, only 8% of the urea-N that was applied was captured by the ion exchange resin, while 34% was captured in for the NH4NO3 fertilization. Thus, the conditions for rapid leaching in the field moved much of the N in the form of urea through the organic layers and into the mineral soil before it was hydrolyzed.  相似文献   

13.
田慧敏  刘彦春  刘世荣 《生态学报》2022,42(10):3889-3896
凋落物既是森林生态系统养分循环的重要构件,又是森林土壤环境和功能的关键调节因子。降雨脉冲导致的土壤碳排放变异是陆地生态系统碳汇能力评价的不确定性来源之一。凋落物在调节土壤碳排放对降雨脉冲的响应中的作用仍缺乏科学的评价。通过在暖温带栎类落叶阔叶林中设置不同凋落物处理(对照、去除凋落物和加倍凋落物)和降雨模拟实验以阐明凋落物数量变化对土壤呼吸脉冲的影响。结果表明:模拟降雨脉冲之前,不同凋落物处理下的土壤呼吸存在显著差异;与对照相比,加倍凋落物导致土壤呼吸速率显著增加57.6%,然而,去除凋落物则对土壤呼吸无显著影响。模拟降雨后52小时内,对照、去除凋落物和加倍凋落物样方的土壤累积碳排放量分别为251.69 gC/m~2,250.93 gC/m~2和409.01 gC/m~2,加倍凋落物处理下的土壤碳排放量显著高于对照和去除凋落物处理;然而,去除凋落物与对照之间无显著差异。此外,不同凋落物处理下土壤呼吸的脉冲持续时间存在显著差异;加倍凋落物显著提高降雨后土壤呼吸脉冲的持续时间,分别比对照和去除凋落物高出262%和158%。多元逐步回归分析表明,土壤总碳排放通量和土壤呼吸的脉冲持续时间与土壤理...  相似文献   

14.
Canada bluejoint grass [Calamagrostis canadensis (Michx.) Beauv., referred to as bluejoint below] is a competitive understory species widely distributed in the boreal region in North America and builds up a thick litter layer that alters the soil surface microclimate in heavily infested sites. This study examined the effects of understory removal, N fertilization, and litter layer removal on litter decomposition, soil microbial biomass N (MBN), and net N mineralization and nitrification rates in LFH (the sum of organic horizons of litter, partially decomposed litter and humus on the soil surface) and mineral soil (0–10 cm) in a 13-year-old white spruce [Picea glauca (Moench.) Voss] plantation infested with bluejoint in Alberta, Canada. Removal of the understory vegetation and the litter layer together significantly increased soil temperature at 10 cm below the mineral soil surface by 1.7 and 1.3°C in summer 2003 and 2004, respectively, resulting in increased net N mineralization (by 1.09 and 0.14 mg N kg−1 day−1 in LFH and mineral soil, respectively, in 2004) and net nitrification rates (by 0.10 and 0.20 mg N kg−1 day−1 in LFH and mineral soil, respectively, in 2004). When the understory vegetation was intact, nitrification might have been limited by NH4 + availability due to competition for N from bluejoint and other understory species. Litter layer removal increased litter decomposition rate (percentage mass loss per month) from 2.6 to 3.0% after 15 months of incubation. Nitrogen fertilization did not show consistent effects on soil MBN, but increased net N mineralization and nitrification rates as well as available N concentrations in the soil. Clearly, understory removal combined with N fertilization was most effective in increasing rates of litter decomposition, net N mineralization and nitrification, and soil N availability. The management of understory vegetation dominated by bluejoint in the boreal region should consider the strong effects of understory competition and the accumulated litter layer on soil N cycling and the implications for forest management.  相似文献   

15.
Question: What are the changes in vegetation structure, soil attributes and mesofauna associated with grazing in mesic grasslands? Location: Southern Campos of the Río de la Plata grasslands, in south‐central Uruguay. Methods: We surveyed seven continuously grazed and ungrazed paired plots. Plant and litter cover were recorded on three 5‐m interception lines placed parallel to the fence in each plot. We extracted soil fauna from a 10 cm deep composite sample and analysed the oribatids. Soil attributes included bulk density, water content, organic carbon (in particulate and mineral associated organic matter) and nitrogen content and root biomass at different depths. Changes in floristic, Plant Functional Types and mesofauna composition were analysed by Non‐metric Multidimensional Scaling. Results: Species number was lower in ungrazed than in grazed plots. Of 105 species in grazed plots only three were exotics. Shrub and litter cover were significantly higher inside the exclosures, while the cover of Cyperaceae‐Juncaceae was lower. Grazing treatments differed significantly in plant and oribatid species composition. Grazing exclusion significantly reduced soil bulk density and increased soil water content. Carbon content in particulate organic matter was lower in the upper soil of ungrazed sites, but deeper in the profile, grazing exclosures had 8% more carbon in the mineral associated organic matter. Conclusions Our results generally agree with previous studies but deviate from the results of previous analyses in (1) the increase of shrub cover in ungrazed sites; (2) the redistribution of the soil organic carbon in the profile and (3) the low invasibility of the prairies regardless of grazing regime.  相似文献   

16.
陈刚  涂利华  彭勇  胡红玲  胡庭兴 《生态学报》2015,35(18):6100-6109
次生林在全球碳循环中占有重要地位,为了研究中国中亚热带次生林土壤有机碳组分特征,以四川瓦屋山中山段扁刺栲-中华木荷常绿阔叶次生林为对象,通过挖取土壤剖面分层(0—10、10—40、40—70 cm和70—100 cm)取样方式,研究土壤各有机碳组分特征。结果表明:土壤有机碳、微生物生物量碳、可浸提溶解性有机碳和易氧化碳含量均随土层深度增加而减小,0—10 cm土层有机碳含量为121.89 g/kg,高于已报道的亚热带其他常绿阔叶林和四川各类森林;0—10 cm层微生物生物量碳含量为1931.82 mg/kg,可浸提溶解性有机碳含量为697.42 mg/kg,易氧化碳含量为20.98 g/kg,高于已报道的许多相似天然林和人工林活性碳含量。土壤有机碳储量为154.87 t/hm2,在四川省各类森林中处于中等水平。研究表明瓦屋山扁刺栲-中华木荷常绿阔叶次生林活性碳含量较大,微生物活动和养分流动较为活跃,凋落物层转化为土壤碳的潜力较大,这类生态系统可能会在区域碳循环过程中扮演更为重要的角色。  相似文献   

17.
Summary Food preference, metal avoidance behaviour and desiccation tolerance were investigated for two collembolan species, Folsomia fimetarioides and Isotomiella minor, in order to test some hypotheses for their different distributions in relation to a heavy metal gradient. F. fimetarioides showed a higher preference for metal tolerant fungi than I. minor when they were offered fungi of different metal tolerance. When they could choose between polluted and unpolluted fungi and substrate, F. fimetarioides significantly avoided the polluted source while I. minor did not. Both species were negatively affected by drought. I. minor was more tolerant than F. fimetarioides when exposed to drought in combination with metal pollution. High supply of preferred fungal species and a better ability to avoid heavy metals favour F. fimetarioides and determine its dominance over I. minor in polluted soils.  相似文献   

18.
研究凋落物去除对秦岭天然林土壤团聚体稳定性及细根分布特征的影响机制,为森林生态治理提供理论依据。结果表明:(1)凋落物去除导致云杉林10-40 cm土层土壤中粒径大于0.25 mm水稳性团聚体含量(WR0.25)较对照显著降低(P<0.05);混交林10-40 cm土层的大于0.25 mm机械稳定性团聚体含量(DR0.25)显著降低(P<0.05);红桦林表层0-10 cm土壤团聚体的平均质量直径(MWD)显著降低(P<0.05);(2)凋落物去除导致三种天然林0-20 cm土层的细根生物量密度(FRBD)较对照显著降低44.18%-57.24%,细根体积(FRV)显著降低24.64%-60.41%;三种天然林中红桦林0-40 cm各土层的FRV最高;(3)凋落物去除导致云杉林0-40 cm土层的土壤容重较对照显著增加5.24%-13.04%,三种天然林0-40 cm土层的土壤有机碳含量显著降低7.92%-25.21%,全氮含量显著降低10.17%-18.10%;(4)相关分析表明,云杉林土壤的团聚体破坏率(PAD)和土壤不稳定团粒指数(ELT)与FRBD、细根根长密度(FRLD)和FRV均呈极显著负相关,混交林土壤的PAD与FRBD呈极显著负相关关系(r=-0.814),红桦林土壤团聚体MWD与FRBD、FRLD和细根比根长(FSRL)均呈显著负相关关系(r=-0.777、-0.771和-0.786)。综上,凋落物去除在总体上降低了天然林土壤团聚体的稳定性及有机碳和全氮含量,并且不利于林木细根的生长。  相似文献   

19.
Li  Zhi-an  Peng  Shao-lin  Rae  Debbie J.  Zhou  Guo-yi 《Plant and Soil》2001,229(1):105-116
Litter decomposition and nitrogen mineralization were investigated in subtropical plantation forests in southern China. The CO2 –C release from incubated litter and the forest floor of Acacia mangium, Acacia auriculaeformis, Eucalyptus citriodora, Pinus elliotii and Schima superba stands were used to estimate relative rates of litter decomposition. Decomposition was not positively correlated with litter nitrogen. E. citridora litter decomposed most rapidly and A. mangium litter most slowly, both with and without the addition of exotic nitrogen. Aerobic incubation and intact soil core incubation at 30 °C over a period of 30 days were used to assess nitrogen mineralization of six forest soils. Although there were differences in results obtained using the two methods, patterns between legume and non-legume species were the same regardless of method. All soils had pH values below 4.5, but this did not prevent nitrification. The dominant form of mineral nitrogen was nitrate for legume species and ammonium for non-legume species. The nitrogen mineralization potential was highest for soils in which legumes were growing.  相似文献   

20.
Soil and litter respiration and nutrient concentrations (N, P, Ca, Mg and K) were measured in two adjacent rainforests near Lake Eacham on the Atherton Tableland in north-east Queensland. One forest had soil formed on basalt and, in physiognomic-structural classification of Webb (1968, 1978), was structurally complex. The other had soil formed on metamorphic rock and was structurally simple. Respiration was measured by the alkali trap method on 16 monthly occasions in 1986 and 1987. Soil and litter nutrient concentrations were higher in the complex forest (with the exception of soil N). The relative differences were greater for soil than litter and more pronounced for P and Ca (and also soil Mg) than other nutrients. Litter polyphenol concentrations were lower in the complex forest. Rates of litter respiration in the complex forest were, on average, nearly twice those of the simple forest. Soil respiration rates were occasionally slightly lower in the complex forest during the wet season but did not differ between the forests during the dry season. Highest rates of respiration were measured during the wet season although high rates for litter occasionally occurred during the dry season. Cumulative CO2 release from the soil and overlying litter did not differ between forests and averaged 5134 ± 96 g CO2 m-2 per year (mean ± s.e.m.) (1400 g C m-2 per year). Litter respiration accounted for 14% of the annual release in the complex forest and 11% in the simple forest. The association between site nutrient status and forest physiognomic structure at Lake Eacham represents a more general pattern in rainforests of north-east Queensland. Further study is needed to ascertain whether the results from this study apply more generally in both primary and secondary rainforests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号