首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The suggestions from the author's group over the past 25 years for how steps in catalysis by ATP synthase occur are reviewed. Whether rapid ATP hydrolysis requires the binding of ATP to a second site (bi-site activation) or to a second and third site (tri-site activation) is considered. Present evidence is regarded as strongly favoring bi-site activation. Presence of nucleotides at three sites during rapid ATP hydrolysis can be largely accounted for by the retention of ADP formed and/or by the rebinding of ADP formed. Menz, Leslie and Walker ((2001) FEBS Lett., 494, 11-14) recently attained an X-ray structure of a partially closed enzyme form that binds ADP better than ATP. This accomplishment and other considerations form the base for a revised reaction sequence. Three types of catalytic sites are suggested, similar to those proposed before the X-ray data became available. During net ATP synthesis a partially closed site readily binds ADP and Pi but not ATP. At a closed site, tightly bound ADP and Pi are reversibly converted to tightly bound ATP. ATP is released from a partially closed site that can readily bind ATP or ADP. ATP hydrolysis when protonmotive force is low or lacking occurs simply by reversal of all steps with the opposite rotation of the subunit. Each type of site can exist in various conformations or forms as they are interconverted during a 120° rotation. The conformational changes with the ATP synthase, including the vital change when bound ADP and Pi are converted to bound ATP, are correlated with those that occur in enzyme catalysis in general, as illustrated by recent studies of Rose with fumarase. The B structure of Walker's group is regarded as an unlikely, or only quite transient, intermediate. Other X-ray structures are regarded as closely resembling but not identical with certain forms participating in catalysis. Correlation of the suggested reaction scheme with other present information is considered.  相似文献   

2.
The mechanism of ATP hydrolysis by the solubilized mitochondrial ATPase (MF1) has been studied under conditions where catalytic turnover occurs at one site, uni-site catalysis (obtained when enzyme is in excess of substrate), or at two sites, bi-site catalysis (obtained when substrate is in excess of enzyme). Pulse-chase experiments support the conclusion that the sites which participate in bi-site catalysis are the same as those which participate in uni-site catalysis. Upon addition of ATP in molar excess to MF1, label that was bound under uni-site conditions dissociates at a rate equal to the rate of bi-site catalysis. Similarly, when medium ATP is removed, label that was bound under bi-site conditions dissociates at a rate equal to the rate of uni-site catalysis. Evidence that a high affinity catalytic site equivalent to the one observed under uni-site conditions participates as an intermediate in bi-site catalysis includes the demonstration of full occupancy of a catalytically competent site during steady-state turnover at nanomolar concentrations of ATP. Improved measurements of the interaction of ADP at a high affinity catalytic site have lead to the revision of several of the rate constants that define uni-site catalysis. The rate constant for unpromoted dissociation of ADP is equal to that for Pi (4 X 10(-3) s-1). The rate of binding ADP at a high affinity chaseable site (Kd = 1 nM) is equal to the rate of binding ATP (4 X 10(6) M-1 s-1). The rate of catalysis obtained when substrate binding at one site promotes product release from an adjacent site (bi-site catalysis) is up to 100,000-fold faster than unpromoted product release (uni-site catalysis).  相似文献   

3.
The F1F0 proton-translocating ATPase/synthase is the primary generator of ATP in most organisms growing aerobically. Kinetic assays of ATP synthesis have been conducted using enzymes from mitochondria and chloroplasts. However, limited data on ATP synthesis by the model Escherichia coli enzyme are available, mostly because of the lack of an efficient and reproducible assay. We have developed an optimized assay and have collected synthase kinetic data over a substrate concentration range of 2 orders of magnitude for both ADP and Pi from the synthase enzyme of E. coli. Negative and positive cooperativity of substrate binding and positive catalytic cooperativity were all observed. ATP synthesis displayed biphasic kinetics for ADP indicating that 1) the enzyme is capable of catalyzing efficient ATP synthesis when only two of three catalytic sites are occupied by ADP; and 2) occupation of the third site further activates the rate of catalysis.  相似文献   

4.
Klingenberg M 《Biochemistry》2005,44(24):8563-8570
Carrier-linked transport through biomembranes is treated under the view of catalysis. As in enzymes, substrate-protein interaction yields catalytic energy in overcoming the activation barrier. At variance with enzymes, catalytic energy is concentrated on structural changes of the carrier rather than on the substrate destabilization for facilitating the global protein rearrangements during transport. A transition state is invoked in which the binding site assumes the best fit to the substrate, whereas in the two ground (internal and external) states, the fit is poor. The maximum binding energy released in the transition state provides catalytic energy to enable the large carrier protein transformations associated with transport. This "induced transition fit" (ITF) of carrier catalysis provides a framework of rules, concerning specificity, unidirectional versus exchange type transport, directing inhibitors to the ground state instead of the transition state, and excluding simultaneous chemical and transport catalysis (vectorial group translocation). The possible role of external energy sources (ATP and Deltapsi) in supplementing the catalytic energy is elucidated. The analysis of the structure-function relationship based on new carrier structures may be challenged to account for the workings of the ITF.  相似文献   

5.
Submitochondrial particles from beef heart, washed with dilute solutions of KCl so as to activate the latent, membrane-bound ATPase, F1, may be used to study single site catalysis by the enzyme. [gamma-32P]ATP, incubated with a molar excess of catalytic sites, a condition which favors binding of substrate in only a single catalytic site on the enzyme, is hydrolyzed via a four-step reaction mechanism. The mechanism includes binding in a high affinity catalytic site, Ka = 10(12)M-1, a hydrolytic step for which the equilibrium constant is near unity, and two product release steps in which Pi dissociates from catalytic sites about 10 times more rapidly than ADP. Catalysis by the membrane-bound ATPase also is characterized by a 10(6)-fold acceleration in the rate of net hydrolysis of [gamma-32P]ATP, bound in the high affinity catalytic site, that occurs when substrate is made available to additional catalytic sites on the enzyme. These aspects of the reaction mechanism of the ATPase of submitochondrial particles closely parallel the reaction mechanism determined for solubilized, homogeneous F1 (Grubmeyer, C., Cross, R. L., and Penefsky, H. S. (1982) J. Biol. Chem. 257, 12092-12100). The finding that removal of the enzyme from the membrane does not significantly alter the properties of single site catalysis lends support to models of ATP synthesis in oxidative phosphorylation, catalyzed by membrane-bound F1, that have been based on the study of the soluble enzyme.  相似文献   

6.
A perspective of the binding change mechanism for ATP synthesis   总被引:7,自引:0,他引:7  
P D Boyer 《FASEB journal》1989,3(10):2164-2178
An overview of research in the field of bioenergetics that led to the development of the binding change mechanism for ATP synthesis is presented, with emphasis on research from the author's laboratory. The text follows closely the Rose Award Lecture given at the 1989 meeting of the American Society for Biochemistry and Molecular Biology. Remarkable advances have revealed that the ubiquitous membrane-bound ATP synthase has unusual composition and properties. The enzyme complex has 1, 2, 3, or 9-12 copies of eight or more protein subunits. The catalytic sites are located on three copies of an approximately 55-kDa subunit. It has the strongest positive catalytic cooperativity known for any enzyme. Examples are given of selected experimental results that have provided insights into its mechanism. These include demonstration of the characteristics, location, and function of catalytic and noncatalytic adenine nucleotide binding sites and the incisive information provided by measurement of phosphate oxygen exchanges and distribution of 18(O) in ATP or Pi formed by catalysis. Research from various laboratories gives support to the binding change mechanism in which energy from proton translocation serves principally to promote release of tightly bound ATP, with sequential participation of three catalytic sites. Some speculative suggestions about a rotational catalysis and about the different forms assumed by the ATPase are included.  相似文献   

7.
The H(+)-ATPase from chloroplasts, CF(0)F(1), was isolated and purified. The enzyme contained one endogenous ADP at a catalytic site, and two endogenous ATP at non-catalytic sites. Incubation with 2-azido-[alpha-(32)P]AD(T)P leads to a tight binding of the azido-nucleotides. Free nucleotides were removed by three consecutive passages through centrifugation columns, and after UV-irradiation, the label was covalently bound. The labelled enzyme was digested by trypsin, the peptides were separated by ion exchange chromatography into nitreno-AMP, nitreno-ADP and nitreno-ATP labelled peptides, and these were then separated by reversed phase chromatography. Amino acid sequence analysis was used to identify the type of the nucleotide binding site. After incubation with 2-azido-[alpha-(32)P]ADP, the covalently bound label was found exclusively at beta-Tyr-362, i.e. binding occurs only to catalytic sites. Incubation conditions with 2-azido-[alpha-(32)P]ADP were varied, and conditions were found which allow selective binding of the label to different catalytic sites, either to catalytic site 2 or to catalytic site 3. For measurements of the degree of inhibition by covalent modification, CF(0)F(1) was reconstituted into phosphatidylcholine liposomes, and the membranes were energised by an acid-base transition in the presence of a K(+)/valinomycin diffusion potential. The rate of ATP synthesis was 120 s(-1), and the rate of ATP hydrolysis was 20 s(-1), both measured under multi-site conditions. Covalent modification of either catalytic site 2 or catalytic site 3 inhibited both ATP synthesis and ATP hydrolysis, the degree of inhibition being proportional to the degree of modification. Extrapolation to complete inhibition indicates that modification of one catalytic site, either site 2 or site 3, is sufficient to completely block multi-site ATP synthesis and ATP hydrolysis. The rate of ATP synthesis and the rate of ATP hydrolysis were measured as a function of the substrate concentration from multi-site to uni-site conditions with covalently modified CF(0)F(1) and with non-modified CF(0)F(1). The result was that uni-site ATP synthesis and ATP hydrolysis were not inhibited by covalent modification of either catalytic site 2 or site 3. The results indicate cooperative interactions between catalytic nucleotide binding sites during multi-site catalysis, whereas neither uni-site ATP synthesis nor uni-site ATP hydrolysis require interaction with other sites.  相似文献   

8.
Acetate kinase catalyzes transfer of the gamma-phosphate of ATP to acetate. The only crystal structure reported for acetate kinase is the homodimeric enzyme from Methanosarcina thermophila containing ADP and sulfate in the active site (Buss, K. A., Cooper, D. C., Ingram-Smith, C., Ferry, J. G., Sanders, D. A., and Hasson, M. S. (2001) J. Bacteriol. 193, 680-686). Here we report two new crystal structure of the M. thermophila enzyme in the presence of substrate and transition state analogs. The enzyme co-crystallized with the ATP analog adenosine 5'-[gamma-thio]triphosphate contained AMP adjacent to thiopyrophosphate in the active site cleft of monomer B. The enzyme co-crystallized with ADP, acetate, Al(3+), and F(-) contained a linear array of ADP-AlF(3)-acetate in the active site cleft of monomer B. Together, the structures clarify the substrate binding sites and support a direct in-line transfer mechanism in which AlF(3) mimics the meta-phosphate transition state. Monomers A of both structures contained ADP and sulfate, and the active site clefts were closed less than in monomers B, suggesting that domain movement contributes to catalysis. The finding that His(180) was in close proximity to AlF(3) is consistent with a role for stabilization of the meta-phosphate that is in agreement with a previous report indicating that this residue is essential for catalysis. Residue Arg(241) was also found adjacent to AlF(3), consistent with a role for stabilization of the transition state. Kinetic analyses of Arg(241) and Arg(91) replacement variants indicated that these residues are essential for catalysis and also indicated a role in binding acetate.  相似文献   

9.
P-glycoprotein (Pgp) is a plasma membrane protein whose overexpression confers multidrug resistance to tumor cells by extruding amphipathic natural product cytotoxic drugs using the energy of ATP. An elucidation of the catalytic cycle of Pgp would help design rational strategies to combat multidrug resistance and to further our understanding of the mechanism of ATP-binding cassette transporters. We have recently reported (Sauna, Z. E., and Ambudkar, S. V. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 2515-2520) that there are two independent ATP hydrolysis events in a single catalytic cycle of Pgp. In this study we exploit the vanadate (Vi)-induced transition state conformation of Pgp (Pgp.ADP.Vi) to address the question of what are the effects of ATP hydrolysis on the nucleotide-binding site. We find that at the end of the first hydrolysis event there is a drastic decrease in the affinity of nucleotide for Pgp coincident with decreased substrate binding. Release of occluded dinucleotide is adequate for the next hydrolysis event to occur but is not sufficient for the recovery of substrate binding. Whereas the two hydrolysis events have different functional outcomes vis à vis the substrate, they show comparable t(12) for both incorporation and release of nucleotide, and the affinities for [alpha-(32)P]8-azido-ATP during Vi-induced trapping are identical. In addition, the incorporation of [alpha-(32)P]8-azido-ADP in two ATP sites during both hydrolysis events is also similar. These data demonstrate that during individual hydrolysis events, the ATP sites are recruited in a random manner, and only one site is utilized at any given time because of the conformational change in the catalytic site that drastically reduces the affinity of the second ATP site for nucleotide binding. In aggregate, these findings provide an explanation for the alternate catalysis of ATP hydrolysis and offer a mechanistic framework to elucidate events at both the substrate- and nucleotide-binding sites in the catalytic cycle of Pgp.  相似文献   

10.
Le NP  Omote H  Wada Y  Al-Shawi MK  Nakamoto RK  Futai M 《Biochemistry》2000,39(10):2778-2783
The three catalytic sites of the F(O)F(1) ATP synthase interact through a cooperative mechanism that is required for the promotion of catalysis. Replacement of the conserved alpha subunit Arg-376 in the Escherichia coli F(1) catalytic site with Ala or Lys resulted in turnover rates of ATP hydrolysis that were 2 x 10(3)-fold lower than that of the wild type. Mutant enzymes catalyzed hydrolysis at a single site with kinetics similar to that of the wild type; however, addition of excess ATP did not chase bound ATP, ADP, or Pi from the catalytic site, indicating that binding of ATP to the second and third sites failed to promote release of products from the first site. Direct monitoring of nucleotide binding in the alphaR376A and alphaR376K mutant F(1) by a tryptophan in place of betaTyr-331 (Weber et al. (1993) J. Biol. Chem. 268, 20126-20133) showed that the catalytic sites of the mutant enzymes, like the wild type, have different affinities and therefore, are structurally asymmetric. These results indicate that alphaArg-376, which is close to the beta- or gamma-phosphate group of bound ADP or ATP, respectively, does not make a significant contribution to the catalytic reaction, but coordination of the arginine to nucleotide filling the low-affinity sites is essential for promotion of rotational catalysis to steady-state turnover.  相似文献   

11.
Molecular mechanisms of rotational catalysis in the F(0)F(1) ATP synthase   总被引:1,自引:0,他引:1  
Rotation of the F(0)F(1) ATP synthase gamma subunit drives each of the three catalytic sites through their reaction pathways. The enzyme completes three cycles and synthesizes or hydrolyzes three ATP for each 360 degrees rotation of the gamma subunit. Mutagenesis studies have yielded considerable information on the roles of interactions between the rotor gamma subunit and the catalytic beta subunits. Amino acid substitutions, such as replacement of the conserved gammaMet-23 by Lys, cause altered interactions between gamma and beta subunits that have dramatic effects on the transition state of the steady state ATP synthesis and hydrolysis reactions. The mutations also perturb transmission of specific conformational information between subunits which is important for efficient conversion of energy between rotation and catalysis, and render the coupling between catalysis and transport inefficient. Amino acid replacements in the transport domain also affect the steady state catalytic transition state indicating that rotation is involved in coupling to transport.  相似文献   

12.
In the ATP synthases of Escherichia coli ADP and phosphate exert an apparent regulatory role on the efficiency of proton transport coupled to the hydrolysis of ATP. Both molecules induce clearly biphasic effects on hydrolysis and proton transfer. At intermediate concentrations (~ 0.5–1 µM and higher) ADP inhibits hydrolysis and proton transfer; a quantitative analysis of the fluxes however proves that the coupling efficiency remains constant in this concentration range. On the other hand at nanomolar concentrations of ADP (a level obtainable only using an enzymatic ATP regenerating system) the efficiency of proton transport drops progressively, while the rate of hydrolysis remains high. Phosphate, at concentrations ≥ 0.1 mM, inhibits hydrolysis only if ADP is present at sufficiently high concentrations, keeping the coupling efficiency constant. At lower ADP levels phosphate is, however, necessary for an efficiently coupled catalytic cycle. We present a model for a catalytic cycle of ATP hydrolysis uncoupled from the transport of protons. The model is based on the available structures of bovine and yeast F1 and on the known binding affinities for ADP and Pi of the catalytic sites in their different functional states. The binding site related to the inhibitory effects of Pi (in association with ADP) is identified as the αHCβHC site, the pre-release site for the hydrolysis products. We suggest, moreover, that the high affinity site, associated with the operation of an efficient proton transport, could coincide with a conformational state intermediate between the αTPβTP and the αDPβDP (similar to the transition state of the hydrolysis/synthesis reaction) that does not strongly bind the ligands and can exchange them rather freely with the external medium. The emptying of this site can lead to an unproductive hydrolysis cycle that occurs without a net rotation of the central stalk and, consequently, does not translocate protons.  相似文献   

13.
F(1)-ATPase is a rotary molecular motor in which unidirectional rotation of the central gamma subunit is powered by ATP hydrolysis in three catalytic sites arranged 120 degrees apart around gamma. To study how hydrolysis reactions produce mechanical rotation, we observed rotation under an optical microscope to see which of the three sites bound and released a fluorescent ATP analog. Assuming that the analog mimics authentic ATP, the following scheme emerges: (i) in the ATP-waiting state, one site, dictated by the orientation of gamma, is empty, whereas the other two bind a nucleotide; (ii) ATP binding to the empty site drives an approximately 80 degrees rotation of gamma; (iii) this triggers a reaction(s), hydrolysis and/or phosphate release, but not ADP release in the site that bound ATP one step earlier; (iv) completion of this reaction induces further approximately 40 degrees rotation.  相似文献   

14.
Characteristics of the exchange reactions catalyzed by beef heart submitochondrial particles give new insight into energy transducing steps of oxidative phosphorylation. The uncoupler-insensitive portion of the total Pi in equilibrium HOH exchange in presence of ATP, ADP, and Pi is the intermediate Pi in equilibrium HOH exchange, that is the exchange occurring with Pi formed by hydrolysis of ATP prior to release of Pi from the catalytic site. The exchange of medium Pi with HOH is as sensitive to uncouplers as the Pi in equilibrium ATP exchange and net oxidative phosphorylation, demonstrating a requirement of an uncoupler-sensitive energized state, probably a transmembrane potential or proton gradient, for bringing medium Pi to the reactive state. The covalent bond forming and breaking step at the catalytic site (ADP + Pi in equilibrium ATP + HOH) appears relatively insensitive to uncouplers. Thus to the extent that uncouplers dissipate transmembrane proton-motive force, it is unlikely that such a force is used to drive ATP formation by direct protonations of Pi oxygens. When only Pi and ADP are added and formation of ATP from added ADP by adenylate kinase and subsequent ATP hydrolysis are adequately blocked, no Pi in equilibrium HOH exchange can be observed, demonstrating a requirement of energization by ATP binding and cleavage for such an exchange. This uncoupler-insensitive energization is suggested to represent a conformationally energized state that can be used reversibly to develop a transmembrane protonmotive force accompanying ADP and Pi release. Rates of various exchanges as estimated by improved procedures are compatible with all oxygen exchanges occurring by dynamic reversal of ATP hydrolysis at the catalytic site.  相似文献   

15.
Gorrell A  Ferry JG 《Biochemistry》2007,46(49):14170-14176
Acetate kinase, a member of the acetate and sugar kinase/Hsc 70/actin (ASKHA) structural superfamily, catalyzes the reversible transfer of the gamma-phosphoryl group from ATP to acetate, yielding ADP and acetyl phosphate. A catalytic mechanism for the enzyme from Methanosarcina thermophila has been proposed on the basis of the crystal structure and kinetic analyses of amino acid replacement variants. The Gln43Trp variant was generated to further investigate the catalytic mechanism via changes in fluorescence. The dissociation constants for ADP.Mg2+ and ATP.Mg2+ ligands were determined for the Gln43Trp variant and double variants generated by replacing Arg241 and Arg91 with Ala and Lys. The dissociation constants and kinetic analyses indicated roles for the arginines in transition state stabilization for catalysis but not in nucleotide binding. The results also provide the first experimental evidence for domain motion and evidence that catalysis does not occur as two independent active sites of the homodimer but the active site activities are coordinated in a half-the-sites manner.  相似文献   

16.
After isolation and purification, the H+-ATPase from chloroplasts, CF0F1, contains one endogenous ADP at a catalytic site, and two endogenous ATP at non-catalytic sites. Incubation with 2-azido-[alpha-32P]ADP leads to tight binding of azidonucleotides. Free nucleotides were removed by three consecutive passages through centrifugation columns, and upon UV-irradiation most of the label was covalently bound. The labelled enzyme was digested by trypsin, the peptides were separated by ion exchange chromatography into nitreno-AMP, nitreno-ADP and nitreno-ATP labelled peptides, and these were then separated by reversed phase chromatography. Amino acid sequence analysis was used to identify the type of the nucleotide binding site. After incubation with 2-azido-[alpha-32P]ADP, the covalently bound label was found exclusively at beta-Tyr-362. Incubation conditions with 2-azido-[alpha-32P]ADP were varied, and conditions were found which allow selective binding of the label to different catalytic sites, designated as 1, 2 and 3 in order of decreasing affinity for ADP, and either catalytic site 1 or catalytic sites 1 and 2 together were labelled. For measurements of the degree of inhibition by covalent modification, CF0F1 was reconstituted into phosphatidylcholine liposomes, and the membranes were energised by an acid-base transition in the presence of a K+/valinomycin diffusion potential. The rate of ATP synthesis was 50-80 s(-1), and the rate of ATP hydrolysis was 15 s(-1) measured under multi-site conditions. Covalent modification of either catalytic site 1 or catalytic sites 1 and 2 together inhibited ATP synthesis and ATP hydrolysis equally, the degree of inhibition being proportional to the degree of modification. Extrapolation to complete inhibition indicates that derivatisation of catalytic site 1 leads to complete inhibition when 1 mol 2-nitreno-ADP is bound per mol CF0F1. Derivatisation of catalytic sites 1 and 2 together extrapolates to complete inhibition when 2 mol 2-nitreno-ADP are bound per CF0F1. The rate of ATP synthesis and the rate of ATP hydrolysis were measured as a function of the substrate concentration from multi-site to uni-site conditions with derivatised CF0F1 and with non-derivatised CF0F1. ATP synthesis and ATP hydrolysis under uni-site and under multi-site condition were inhibited by covalent modification of either catalytic site 1 or catalytic sites 1 and 2 together. The results indicate that derivatisation of site 1 inhibits activation of the enzyme and that cooperative interactions occur at least between the catalytic sites 2 and 3.  相似文献   

17.
The roles of ADP2- and Mg2+ in control steps of phosphoglycerate kinase   总被引:1,自引:0,他引:1  
1H-NMR measurements were made of solutions of yeast phosphoglycerate kinase containing the nucleotide, ADP, and Mg2+ in varying concentrations in order to investigate the affect that the metal ion has on the mode of ADP binding to the enzyme. A preliminary study of adenosine binding to phosphoglycerate kinase was made in order to be sure of the nature of the adenine site. From the change in chemical shifts of the 'basic patch' histidine resonances (His62, 167 and 170), the nucleotide C8-H, C2-H and C1'-H resonances and resonances 40 and 41 (assigned to Thr373 and Thr375 in the hydrophobic, i.e. catalytic, site), it is apparent that there are at least two ADP binding sites on the enzyme: one at the hydrophobic (catalytic) site and one at the electrostatic site. A comparison of the results for ADP and ATP reveals differences due to the differential binding of the phosphate groups. The presence of Mg2+ results in further differences being observed. The data suggest that the primary binding site of ADP, in the absence of Mg2+, involves electrostatic interactions between the diphosphate chain of the substrate and the 'basic patch' region of the N-terminal domain. In the presence of greater than or equal to 1:1 ratio of Mg2+/ADP, however, the primary binding site involves predominantly hydrophobic interactions between the adenosine moiety and the catalytic site, with secondary binding occurring at the electrostatic site. Addition of Mg2+, therefore, tends to reduce the affinity of the electrostatic site (presumably by competing for ADP). It is suggested that alpha-helix XII, including residues 372, 373 and 375, moves differentially on binding ADP, Mg ADP, ATP or Mg . ATP, consistent with Mg2+ assisting the transfer of the gamma-phosphate of ATP to 3-phosphoglycerate during catalysis.  相似文献   

18.
ATP hydrolysis by F1-ATPase is strongly inhibited by cationic rhodamines; neutral rhodamines are very poor inhibitors. Rhodamine 6G is a noncompetitive inhibitor of purified F0F1-ATPase and submitochondrial particles, however, an uncompetitive inhibitor of F1-ATPase (KI approximately equal to 2.4 microM for all three enzyme forms). Ethidium bromide is a noncompetitive inhibitor of F0F1-ATPase, submitochondrial particles and also F1-ATPase (KI approximately equal to 270 microM). Neither of the inhibitors affects the negative cooperativity (nH approximately equal to 0.7). The non-identical binding sites for rhodamine 6G and ethidium bromide are located on the F1-moiety and are topologically distinct from the catalytic site. Binding of the inhibitors prevents the conformational changes essential for energy transduction. It is concluded that the inhibitor binding sites are involved in proton translocation. In F1-ATPase, binding of MgATP at a catalytic site causes conformational changes, which allosterically induce the correct structure of the rhodamine 6G binding site. In F0F1-ATPase, this conformation of the F1-moiety exists a priori, due to allosteric interactions with F0-subunits. The binding site for ethidium bromide on F1-ATPase does not require substrate binding at the catalytic site and is not affected by F0F1-subunit interactions.  相似文献   

19.
The mechanism of action of F(1)F(0)-ATP synthase is controversial. Some favor a tri-site mechanism, where substrate must fill all three catalytic sites for activity, others a bi-site mechanism, where one of the three sites is always unoccupied. New approaches were applied to examine this question. First, ITP was used as hydrolysis substrate; lower binding affinities of ITP versus ATP enable more accurate assessment of sites occupancy. Second, distributions of all eight possible enzyme species (with zero, one, two or three sites filled) as fraction of total enzyme population at each ITP concentration were calculated, and compared with measured ITPase activity. Confirming data were obtained with ATP as substrate. Third, we performed a theoretical analysis of possible bi-site mechanisms. The results argue convincingly that bi-site hydrolysis activity is negligible, and may not even exist. Effectively, tri-site hydrolysis is the only mechanism. We argue that only tri-site hydrolysis drives subunit rotation. Theoretical analyses of possible bi-site mechanisms reveal serious flaws, not previously recognized. One is that, in bi-site catalysis, the predicted direction of subunit rotation is the same for both ATP synthesis and hydrolysis; a second is that infrequently occurring enzyme species are required.  相似文献   

20.
The forward and reverse rates of the overall reaction catalyzed by the ATP synthase in intact rat heart mitochondria, as measured with 32P, were compared with the rates of two partial steps, as measured with 18O. Such rates have been measured previously, but their relationship to one another has not been determined, nor have the partial reactions been measured in intact mitochondria. The partial steps measured were the rate of medium Pi formation from bound ATP (in state 4 this also equals the rate of medium Pi into bound ATP) and the rate of formation of bound ATP from bound Pi within the catalytic site. The rates of both partial reactions can be measured by 31P NMR analysis of the 18O distribution in Pi and ATP released from the enzyme during incubation of intact mitochondria with highly labeled [18O]Pi. Data were obtained in state 3 and 4 conditions with variation in substrate concentrations, temperature, and mitochondrial membrane electrical potential gradient (delta psi m). Although neither binding nor release of ATP is necessary for phosphate/H2O exchange, in state 4 the rate of incorporation of at least one water oxygen atom into phosphate is approximately twice the rate of the overall reaction rate under a variety of conditions. This can be explained if the release of Pi or ATP at one catalytic site does not occur, unless ATP or Pi is bound at another catalytic site. Such coupling provides strong support for the previously proposed alternating site mechanism. In state 3 slow reversal of ATP synthesis occurs within the mitochondrial matrix and can be detected as incorporation of water oxygen atoms into medium Pi even though medium [32P]ATP does not give rise to 32Pi in state 3. These data can be explained by lack of translocation of ATP from the medium to the mitochondrial matrix. The rate of bound ATP formation from bound Pi at catalytic sites was over twice the rate of the overall reaction in both states 4 and 3. The rate of reaction at the catalytic site is considerably less sensitive to the decrease in membrane potential and the concentration of medium ADP than is the rate of medium ATP formation. This supports the view that the active catalytic site is occluded and proceeds at a rapid rate which is relatively independent of delta psi m and of media substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号