首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Fertilizable mammalian oocytes are arrested at the second meiotic metaphase (mII) by the cyclinB-Cdc2 heterodimer, maturation promoting factor (MPF). MPF is stabilized via the activity of an unidentified cytostatic factor (CSF), thereby suspending meiotic progression until fertilization. We here present evidence that a conserved 71 kDa mammalian orthologue of Xenopus XErp1/Emi2, which we term endogenous meiotic inhibitor 2 (Emi2) is an essential CSF component. Depletion in situ of Emi2 by RNA interference elicited precocious meiotic exit in maturing mouse oocytes. Reduction of Emi2 released mature mII oocytes from cytostatic arrest, frequently inducing cytodegeneration. Mos levels autonomously declined to undetectable levels in mII oocytes. Recombinant Emi2 reduced the propensity of mII oocytes to exit meiosis in response to activating stimuli. Emi2 and Cdc20 proteins mutually interact and Cdc20 ablation negated the ability of Emi2 removal to induce metaphase release. Consistent with this, Cdc20 removal prevented parthenogenetic or sperm-induced meiotic exit. These studies show in intact oocytes that the interaction of Emi2 with Cdc20 links activating stimuli to meiotic resumption at fertilization and during parthenogenesis in mammals.  相似文献   

2.
Oocytes of LT/Sv mice have anomalous cytoplasmic and nuclear maturation. Here, we show that in contrast to the oocytes of wild-type mice, a significant fraction of LT/Sv oocytes remains arrested at the metaphase of the first meiotic division and is unable to undergo sperm-induced activation when fertilized 15 hours after the resumption of meiosis. We also show that LT/Sv oocytes experimentally induced to resume meiosis and to reach metaphase II are unable to undergo activation in response to sperm penetration. However, the ability for sperm-induced activation developed during prolonged in vitro culture. Both types of LT/Sv oocytes, i.e. metaphase I and those that were experimentally induced to reach metaphase II, underwent activation when they were fertilized 21 hours after germinal vesicle breakdown (GVBD). Thus, the ability of LT/Sv oocytes to become activated by sperm depends on cytoplasmic maturation rather than on nuclear maturation i.e. on the progression of meiotic division. We also show that sperm penetration induces fewer Ca(2+) transients in LT/Sv oocytes than in control wild-type oocytes. In addition, we found that the levels of mRNA encoding different isoforms of protein kinase C (alpha, delta and zeta), that are involved in meiotic maturation and signal transduction during fertilization, differed between metaphase I LT/Sv oocytes which cannot be activated by sperm, and those which are able to undergo activation after fertilization. However, no significant differences between these oocytes were found at the level of mRNA encoding IP(3) receptors which participate in calcium release during oocyte fertilization.  相似文献   

3.
Meiotic maturation progresses atypically in oocytes of strain LT/Sv and l/LnJ mice. LT/Sv occytes show a high frequency of metaphase l-arrest and parthenogenetic activation. l/LnJ oocytes display retarded kinetics of meiotic maturation and a high frequency of metaphase l-arrest. Some l/LnJ oocytes fail to resume meiosis. Changes in the configuration of chromatin, microtubules, and centrosomes are associated with specific stages of meiotic progression. In this study, the configuration of these subcellular components was examined in LT/Sv, l/LnJ, and C57BL/6J (control) oocytes either freshly isolated from large antral follicles or after culture for 15 hr to allow progression of spontaneous meiotic maturation. Differences were found in the organization of chromatin, microtubules, and centrosomes in LT/Sv and l/LnJ oocytes compared to control oocytes. For example, rather than exhibiting multiple cytoplasmic and nuclear centrosomes as in the normal germinal vesicle-stage oocytes, LT/Sv oocytes typically contain a single large centrosome. In contrast, l/LnJ oocytes displayed many small centrosomes. The microtubules of normal germinal vesicle-stage oocytes were organized as arrays or asters, but microtubules were shorter in LT/Sv oocytes and absent from l/LnJ oocytes. After a 15-hr culture, centrosomal material of normal metaphase II oocytes was organized at both spindle poles. In contrast, metaphase l-arrested LT/Sv oocytes exhibited an elongated spindle with centrosomal material appearing more organized at one pole of the spindle. Both control and LT/Sv oocytes displayed cytoplasmic centrosomes. Metaphase l-arrested l/LnJ oocytes rarely had cytoplasmic centrosomes but exhibited centrosomal foci at the spindle periphery. Thus, oocytes that are atypical in the progression of meiotic maturation displayed aberrant configurations of microtubules and centrosomes, which are thought to participate in the regulation of meiotic maturation.  相似文献   

4.
Oocytes of wild-type mice are ovulated as the secondary oocytes arrested at metaphase of the second meiotic division. Their fertilization or parthenogenetic activation triggers the completion of the second meiotic division followed by the first embryonic interphase. Oocytes of the LT/Sv strain of mice are ovulated either at the first meiotic metaphase (M I) as primary oocytes or in the second meiotic metaphase (M II) as secondary oocytes. We show here that duringin vitromaturation a high proportion of LT/Sv oocytes progresses normally only until metaphase I. In these oocytes MAP kinase activates shortly after histone H1 kinase (MPF) activation and germinal vesicle breakdown. However, MAP kinase activation is slightly earlier than in oocytes from wild-type F1 (CBA/H × C57Bl/10) mice. The first meiotic spindle of these oocytes forms similarly to wild-type oocytes. During aging, however, it increases in size and finally degenerates. In those oocytes which do not remain in metaphase I the extrusion of first polar bodies is highly delayed and starts about 15 h after germinal vesicle breakdown. Most of the oocytes enter interphase directly after first polar body extrusion. Fusion between metaphase I LT/Sv oocytes and wild-type mitotic one-cell embryos results in prolonged M-phase arrest of hybrids in a proportion similar to control LT/Sv oocytes and control hybrids made by fusion of two M I LT/Sv oocytes. This indicates that LT/Sv oocytes develop cytostatic factor during metaphase I. Eventually, anaphase occurs spontaneously and the hybrids extrude the polar body and form pronuclei in a proportion similar as in controls. In hybrids between LT/Sv metaphase I oocytes and wild-type metaphase II oocytes (which contain cytostatic factor) anaphase I proceeds at the time observed in control LT/Sv oocytes and hybrids between two M I LT/Sv oocytes, and is followed by the parthenogenetic activation and formation of interphase nuclei. Also the great majority of hybrids between M I and M II wild-type oocytes undergoes the anaphase but further arrests in a subsequent M-phase. These observations suggest that an internally triggered anaphase I occurs despite the presence of the cytostatic activity both in LT/Sv and wild-type M I oocytes. Anaphase I triggering mechanism must therefore either inactivate or override the CSF activity. The comparison between spontaneous and induced activation of metaphase I LT/Sv oocytes shows that mechanisms involved in anaphase I triggering are altered in these oocytes. Thus, the prolongation of metaphase I in LT/Sv oocytes seems to be determined by delayed anaphase I triggering and not provoked directly by the cytostatic activity.  相似文献   

5.
The diameters of oocytes in follicles having a single layer of granulosa cells were measured hi four week old mice of various strains. There is a unique population of these follicles hi strains LT/Sv and C58/J in which the oocytes are significantly larger than the oocytes in single granulosa cell layered follicles of other common strains (C57BL/6J, BALB/cJ, and DBA/2J). These unique follicles are referred to as granulosa cell deficient (GCD) follicles since oocytes of these sizes are usually found in follicles with more than a single layer of granulosa cells. The parthenogenetic embryos that give rise to ovarian teratomas in strain LT/Sv are usually found in GCD-follicles. Some of the ova of strains LT/Sv and LTXBP, but not the ova of the other strains, are capable of spontaneous parthenogenetic activation after meiotic maturation. Although the ovulated ova of strain LTXBP are capable of spontaneous parthenogenetic development, the frequency of GCD-follicles and teratocarcinogenesis is low. Therefore, the frequency of ovarian teratocarcinogenesis is correlated with the simultaneous occurrence of two atypical conditions: first, the capability of the matured ova to undergo spontaneous parthenogenetic activation and, second, the high frequency of GCD-follicles.
GCD-follicles containing oocytes with a diameter greater than 65 μm were studied by electron microscopy. The follicles are usually enclosed within a layer of flattened theca-like cells. A basal lamina separates these cells from a single layer of cuboidal granulosa cells. Granulosa cell processes traverse the zona pellucida to contact the oocyte which shows ultrastructural characteristics typical of oocytes in the final growth stages. It is proposed that the GCD-follicles are competent to participate in the normal functions of follicular cells relating to oocyte growth and meiotic maturation.  相似文献   

6.
Of eggs ovulated in LT/Sv mice, 10–20% undergo spontaneous parthenogenetic activation, and 40–50% of the parthenotes develop to blastocysts when cultured in simple defined medium from the one-cell stage. Similar percentages of oocytes isolated from Graafian follicles undergo parthenogenetic activation after spontaneous maturation in simple defined medium, but embryonic development proceeds no further than the two-cell stage. The simple defined medium that supported preimplantation development of ovulated eggs and spontaneous maturation of extrafollicular oocytes contained no serum, free amino acids, or vitamins. The present experiments were conducted to determine what conditions during spontaneous maturation of extrafollicular oocytes could promote the ability of oocytes to develop to blastocysts after parthenogenetic activation and mimic the environment of preovulatory follicles. Cumulus-enclosed oocytes that were matured in simple medium supplemented with fetal bovine serum (FBS) developed to blastocysts after spontaneous parthenogenetic activation. Furthermore, minimum essential medium (MEM), a complex medium containing free amino acids and vitamins, could substitute completely for FBS for maturing oocytes from (C57BL/6J × LT/Sv)F1 mice, and to a lesser extent for maturing LT/Sv oocytes. Therefore, even though germinal vesicle breakdown in mouse oocytes and preimplantation development of mouse eggs can occur in the absence of an exogenous supply of free amino acids and vitamins, a complete, or normal, mouse oocyte maturation cannot. These results also demonstrated that gonadotropins are not necessary during oocyte meiotic maturation for parthenogenetically activated eggs to develop through the preimplantation stages. Luteinizing hormone or 17β-estradiol in MEM during oocyte maturation had no effect on the subsequent development of parthenotes. In contrast, follicle stimulating hormone (FSH) and progesterone in the maturation medium decreased the number of ova that subsequently cleaved, and FSH decreased the number of cleaved eggs that developed to blastocysts.  相似文献   

7.
Intercellular coupling between cumulus cells and oocytes persists after oocyte meiotic maturation has been initiated. The experiments described here focus on the relationship between oocyte-cumulus cell intercellular coupling during maturation and the subsequent embryonic development of spontaneous mouse parthenotes. Several lines of evidence suggest that this coupling during oocyte maturation is required for the acquisition of the capacity for spontaneous mouse parthenotes to develop embryologically. First, the period of time that LT/Sv oocytes remained coupled to cumulus cells during oocyte maturation in vivo corresponded to that required for the acquisition of the capacity for parthenogenetic embryonic development. Second, the longer that cumulus cells were present during Fpontaneous oocyte maturation in vitro, the higher was the percentageofova undergoing subsequent parthenogenetic development. Third, cumulus cell-free oocytes cocultured with cumulus cell-enclosed oocytes during the maturation period in vitro did not develop embryologically. Fourth, intercellular coupling between cumulus cells and oocytes persisted throughout the oocyte maturation period in vitro. Fifth, incubation of oocyte-cumulus cell complexes in medium containing follicle-stimulating hormone (FSH) promoted uncoupling and decreased the percentage of ova undergoing parthenogenetic development. Thus, cell-to-cell communication, mediated via the intercellular coupling pathway between cumulus cells and oocytes, plays an important role during oocyte maturation and relates to subsequent preimplantation development.  相似文献   

8.
Although the in vitro fertilisation index is a parameter commonly employed to investigate sperm functional activity, little attention has been given to the occurrence of parthenogenesis. The purpose of this study was to study at 6 h or 22 h incubation: (a) the cleavage-related events that occur in in vitro incubated mouse oocytes, in the absence (parthenogenesis) or presence of homologous spermatozoa; (b) the effect of mineral oil, commonly used in in vitro fertilisation assays; (c) the effect of piroxicam, a prostaglandin synthesis inhibitor, on the parthenogenetic rate; and (d) the influence on parthenogenesis of spontaneous loss of the cumulus oophorus coat during incubation. Under the experimental conditions employed, there was parthenogenetic activation and activation due to fertilisation. Both increased in a time-dependent manner. The mineral oil enhanced the parthenogenetic rate at 22 h incubation. However, it did not have any effect when the oocytes were inseminated. Since we can not discriminate how much of this activation was due to fertilisation and how much to parthenogenesis we must be very careful with this comparison. Piroxicam 10(-8) M did not show any effect on the mouse oocyte parthenogenetic rate at neither 6 h or 22 h incubation. Our results suggest that oocyte susceptibility to spontaneous parthenogenetic activation may be modified by the presence of the cumulus and corona radiata cells. In conclusion, we consider that further rigorous studies on these influences are necessary in order to confer more reliability on the results.  相似文献   

9.
Oocyte activation at fertilization is brought about by the testis-specific phospholipase C zeta (PLCZ), owing to its ability to induce oscillations in intracellular Ca(2+) concentration ([Ca(2+)](i)). Whereas this is a highly conserved mechanism among mammals, important species-specific differences in PLCZ sequence, activity, and expression have been reported. Thus, the objectives of this research were to clone and characterize the intracellular Ca(2+)-releasing activity and expression of equine PLCZ in sperm and testis. Molecular cloning of equine PLCZ yielded a 1914-bp sequence that translated into a protein of the appropriate size (~73 kDa), as detected with an anti-PLCZ-specific antibody. Microinjection of 1 μg/μl of equine PLCZ cRNA supported [Ca(2+)](i) oscillations in murine oocytes that were of a higher relative frequency than those generated by an equivalent concentration of murine Plcz cRNA. Immunofluorescence revealed expression of PLCZ over the acrosome, equatorial segment, and head-midpiece junction; unexpectedly, PLCZ also localized to the principal piece of the flagellum in all epididymal, uncapacitated, and capacitated sperm. Immunostaining over the acrosome was abrogated after induction of acrosomal exocytosis. Moreover, injection of either sperm heads or tails into mouse oocytes showed that PLCZ in both fractions is catalytically active. Immunohistochemistry on equine testis revealed expression as early as the round spermatid stage, and injection of these cells supported [Ca(2+)](i) oscillations in oocytes. In summary, we report that equine PLCZ displays higher intrinsic intracellular Ca(2+)-releasing activity than murine PLCZ and that catalytically active protein is expressed in round spermatids as well as the sperm flagellum, emphasizing important species-specific differences. Moreover, some of these results may suggest potential novel roles for PLCZ in sperm physiology.  相似文献   

10.
Eggs were isolated from the oviducts or ovaries of LT/Sv strain mice in order to investigate the pathways taken by them following spontaneous or induced parthenogenetic activation. The chromosome preparations from the ovarian oocytes that matured in vitro to metaphase I were all morphologically normal. Of 42 recently ovulated eggs that failed to activate parthenogenetically in culture, 57% on nuclear densitometric analysis were found to have the normal 2C amount of DNA, and 1N (haploid) number of chromosomes present, and were arrested at metaphase II. Somewhat unexpectedly, 43% had a 4C amount of DNA, and 2N (diploid) number of chromosomes present, had been arrested at metaphase I, and were evidently ovulated as primary oocytes. Following parthenogenetic activation, the majority of oocytes extruded a polar body and developed a single pronucleus. The activated eggs could be divided into two sub-populations according to the diameter (and therefore volume) of the pronucleus—in one group this was about one-third greater than in the other. The chromosome constitution of the two groups was determined separately at the first cleavage mitosis. Those with a normal-sized pronucleus were invariably haploid, while those with an enlarged pronuclear volume were invariably found to be diploid. The chromosomes in the diploid spreads often appeared to be associated in homologous pairs. We conclude that almost uniquely in LT/Sv strain females eggs may be activated parthenogenetically at either stage of meiotic maturation giving rise to diploid or haploid embryos, respectively.  相似文献   

11.
We studied the capacity of mouse oocytes to complete meiotic maturation in vitro and form the female pronucleus upon parthenogenetic activation by cycloheximide, in response to a single injection into the mouse ovaries in situ of a purified fraction of 2.5 S NGF from mouse submaxillary glands and beta-NGF from bovine sperm. Injection of NGF from both sources at 10 ng/ml with subsequent incubation of the ovaries for 1 h increased the capacity of matured oocytes for parthenogenetic formation of the pronucleus. The frequency of pronucleus formation in both "naked oocyte" and oocytes surrounded by the cumulus cells was four times that in the control.  相似文献   

12.
Lipid content in mammalian oocytes or embryos differs among species, with bovine and porcine oocytes and embryos showing large cytoplasmic droplets. These droplets are considered to play important roles in energy metabolism during oocyte maturation, fertilisation and early embryonic development, and also in the freezing ability of oocytes or embryos; however, their detailed distribution or function is not well understood. In the present study, changes in the distribution and morphology of porcine lipid droplets during in vivo and in vitro fertilisation, in contrast to parthenogenetic oocyte activation, as well as during their development to blastocyst stage, were evaluated by transmission electron microscopy (TEM). The analysis of semi-thin and ultra-thin sections by TEM showed conspicuous, large, electron-dense lipid droplets, sometimes associated with mitochondrial aggregates in the oocytes, irrespective of whether the oocytes had been matured in vivo or in vitro. Immediately after sperm penetration, the electron density of the lipid droplets was lost in both the in vivo and in vitro oocytes, the reduction being most evident in the oocytes developed in vitro. Density was restored in the pronculear oocytes, fully in the in vivo specimens but only partially in the in vitro ones. The number and size of the droplets seemed, however, to have decreased. At 2- to 4-cell and blastocyst stages, the features of the lipid droplets were almost the same as those of pronuclear oocytes, showing a homogeneous or saturated density in the in vivo embryos but a marbled or partially saturated appearance in the in vitro embryos. In vitro matured oocytes undergoing parthenogenesis had lipid droplets that resembled those of fertilised oocytes until the pronuclear stage. Overall, results indicate variations in both the morphology and amount of cytoplasmic lipid droplets during porcine oocyte maturation, fertilisation and early embryo development as well as differences between in vivo and in vitro development, suggesting both different energy status during preimplantation development in pigs and substantial differences between in vitro and in vivo development.  相似文献   

13.
The effects of hormonal priming and inosine monophosphate (IMP) dehydrogenase inhibitors on the meiotic maturation and parthenogenetic activation of mouse oocytes were examined in this study. In the first series of experiments, unprimed mice or mice primed 24 h with equine chorionic gonadotropin (eCG) received injections of the IMP dehydrogenase inhibitors, bredinin (Br) or mycophenolic acid (MA), followed by histological examination at 24 h, 48 h, and 72 h after drug administration. In both treatment groups, oocytes from nonatretic antral follicles were stimulated to undergo germinal vesicle breakdown by 24 h and became parthenogenetically activated as manifested by pronuclear formation and early cleavage divisions. The parthenotes underwent degeneration by 72 h. In the second part of this study, the effects of priming and drug treatment on parthenogenetic activation and subsequent developmental potential in vitro were examined. Mice were primed with eCG, and 24 or 48 h later received injections of Br or MA. Cumulus cell-enclosed oocytes were isolated 21-22 h later and assessed for maturation; those having undergone germinal vesicle breakdown were cultured and subsequently examined for embryonic development. In mice primed for 24 h, but not 48 h, Br and MA stimulated a significant number of oocytes to resume maturation in vivo; these subsequently underwent activation and developed to blastocysts in vitro. In another series of experiments, germinal vesicle-stage oocytes were isolated from primed or unprimed mice and cultured in vitro to permit spontaneous meiotic maturation. Nine percent of mature ova from 24-h-primed mice developed to 2-cell parthenotes; activation in ova from unprimed and 48-h-primed mice was considerably lower. A time-course experiment demonstrated that the extent of parthenogenetic activation in vivo following Br treatment was related to the period of time between drug injection and isolation of ova, the optimal period being 12 h. Neither Br nor MA had a direct activating effect on the oocytes as evidenced by an inability to induce parthenogenesis in vitro. Simultaneous injection of hCG with either Br or MA stimulated ovulation and prevented the parthenogenetic response. These data are consistent with the idea that conditions within the follicle promote parthenogenetic activation when the oocyte matures in the absence of gonadotropin stimulation.  相似文献   

14.
In this study, the chromosome constitution of both unfertilized oocytes and fertilized eggs isolated from the oviducts of LT/Sv strain mice were analyzed. Air-dried chromosome preparations from unfertilized oocytes revealed that about one-third of those examined were ovulated as primary oocytes. These were arrested at metaphase of the first meiotic division and exhibited the characteristic “tetrad” chromosome configuration. The remaining two-thirds of the unfertilized oocytes were ovulated at metaphase of the second meiotic division. The fertilized eggs were isolated from the oviducts of LT/Sv females previously mated to (C57BL × CBA) F1 hybrid males. Analysis of the fertilized eggs at metaphase of their first cleavage mitosis revealed that about one-third of the eggs examined were digynic triploids, whereas the remaining two-thirds had the normal diploid chromsome constitution. In the triploids, the 40 female chromosomes present (mouse, n = 20) were derived from a single diploid pronucleus formed after the extrusion of a first polar body, and following the monospermic fertilization of primary oocytes. The female pronuclear-derived chromosomes invariably exhibited “homologous pairing,” and these were associated at their centromeres. The ovulation, penetration, and subsequent fertilization of primary oocytes is an extremely unusual phenomenon in mammals and only appears to occur on a regular basis in LT/Sv mice. The premature “cytoplasmic maturation” of these oocytes is of interest, as they clearly have the same developmental capacity as secondary oocytes. The significance of these observations in relation to folliculogenesis and litter size in LT/Sv mice is discussed.  相似文献   

15.
Mouse phospholipase C, zeta 1 (PLCZ1), a strong candidate of egg-activating sperm factor, induces Ca(2+) oscillations and accumulates into formed pronucleus (PN) when expressed by cRNA injection. These activities were compared among mouse and human PLCZ1, newly cloned rat Plcz1, and medaka fish plcz1. The PLCZ1 proteins of the four species have an approximately homologous sequence of nuclear localization signal. However, the nuclear translocation ability was defective in rat, human, and medaka PLCZ1 expressed in mouse eggs. Rat PLCZ1 could not enter rat PN, whereas mouse PLCZ1 could. Mouse and human PLCZ1 translocated into the nucleus of COS-7 cells transfected with cDNA. There was little medaka PLCZ1 accumulated in the nucleus, and rat PLCZ1 was never located in the nucleus. All PLCZ1 proteins including fish could induce Ca(2+) oscillations in mouse eggs, but the activity was variable in the order of human > mouse > medaka > rat, estimated from minimal RNA concentration to induce Ca(2+) spikes. Ca(2+) oscillations by human PLCZ1 continued far beyond the time of PN formation (T(PN)), whereas those by mouse PLCZ1 ceased slightly before T(PN). High-frequency Ca(2+) spikes by overexpressed rat PLCZ1 stopped far before T(PN), possibly by feedback inhibition. Ca(2+) oscillations by fertilization of rat eggs stopped at T(PN), despite defective nuclear translocation of rat PLCZ1. Thus, PLCZ1 sequestration into PN participates in termination of Ca(2+) oscillations at the interphase of mouse embryos but does not always operate in other mammals, notably in rat embryos.  相似文献   

16.
The oocytes of LT/Sv strain mice are unique in that a high proportion of them (∼40% in this study) are ovulated before reaching metaphase of the second meiotic division (metaphase II). The remaining oocytes of LT/Sv mice are ovulated at metaphase II, as in other strains of mice. When recently ovulated oocytes were cultured in vitro for 11–12 h, those ovulated at metaphase II remained at this stage, whereas those ovulated at metaphase of the first meiotic division (metaphase I) commonly resumed meiosis during in vitro aging. These oocytes extrude the polar body and form a diploid pronucleus. This oocyte activation is not coupled with cortical granule exocytosis. The oocytes ovulated at metaphase II are fully capable of normal fertilization, whereas those ovulated at metaphase I are not. Approximately 50% of metaphase I oocytes penetrated by spermatozoa remain at this stage, and sperm nuclei frequently undergo premature chromosome condensation. Only 13% of spermpenetrated metaphase I oocytes formed a diploid female pronucleus and a haploid male pronucleus by 4 h after insemination. These results demonstrate that the two types of ovulated LT/Sv oocytes have different potentials to undergo either spontaneous or sperm-induced activation.  相似文献   

17.
CDK1-cyclin B1 is a universal cell cycle kinase required for mitotic/meiotic cell cycle entry and its activity needs to decline for mitotic/meiotic exit. During their maturation, mouse oocytes proceed through meiosis I and arrest at second meiotic metaphase with high CDK1-cyclin B1 activity. Meiotic arrest is achieved by the action of a cytostatic factor (CSF), which reduces cyclin B1 degradation. Meiotic arrest is broken by a Ca2+ signal from the sperm that accelerates it. Here we visualised degradation of cyclin B1::GFP in oocytes and found that its degradation rate was the same for both meiotic divisions. Ca2+ was the necessary and sufficient trigger for cyclin B1 destruction during meiosis II; but it played no role during meiosis I and furthermore could not accelerate cyclin B1 destruction during this time. The ability of Ca2+ to trigger cyclin B1 destruction developed in oocytes following a restabilisation of cyclin B1 levels at about 12 h of culture. This was independent of actual first polar body extrusion. Thus, in metaphase I arrested oocytes, Ca2+ would induce cyclin B1 destruction and the first polar body would be extruded. In contrast to some reports in lower species, we found no evidence that oocyte activation was associated with an increase in 26S proteasome activity. We therefore conclude that Ca2+ mediates cyclin B1 degradation by increasing the activity of an E3 ubiquitin ligase. However, this stimulation occurs only in the presence of the ubiquitin ligase inhibitor CSF. We propose a model in which Ca2+ directly stimulates destruction of CSF during mammalian fertilisation.  相似文献   

18.
In medusae of the hydrozoan Cytaeis uchidae, oocyte meiotic maturation and spawning occur as a consequence of dark-light transition. In this study, we investigated the mechanism underlying the initiation of meiotic maturation using in vitro (isolated oocytes from ovaries) and in vivo (ovarian oocytes in medusae) systems. Injection of cAMP derivatives into isolated oocytes induced meiotic maturation in a dose-dependent manner. Meiotic maturation was also achieved in isolated oocytes preloaded with caged cAMP and exposed to UV irradiation. The caged cAMP/UV irradiation-induced meiotic maturation was completely inhibited by blockers of protein kinase A (PKA), H-89, KT5720, and Rp-cAMPS. The medusae from which most parts of the umbrella were removed (umbrella-free medusae) survived for at least 2 weeks, during which time oocyte meiotic maturation and spawning occurred. When H-89 and Rp-cAMPS were injected into ovarian oocytes of umbrella-free medusae within 3 min of dark-light stimulation, meiotic maturation was inhibited or delayed. An increase in intracellular cAMP was confirmed by FlCRhR, a fluorescent cAMP indicator, in ovarian oocytes exposed to dark-light transition as well as in isolated oocytes stimulated by caged cAMP/UV irradiation. These results indicate that the cAMP/PKA signaling pathway positively contributes to light-triggered physiological oocyte meiotic maturation in Cytaeis uchidae.  相似文献   

19.
20.
Efficient metaphase II transgenesis with different transgene archetypes.   总被引:5,自引:0,他引:5  
Mammalian genome characterization and biotechnology each require the mobilization of large DNA segments to produce transgenic animals. We recently showed that mouse metaphase II (mII) oocytes could efficiently promote transgenesis (mII transgenesis) when coinjected with sperm and small (<5 kilobases) ubiquitously expressed transgenes (tgs). We have extended this work and now report that mII transgenesis can readily be applied to a range of larger tgs (11.9-170 kilobases), including bacterial and mammalian artificial chromosome (BAC and MAC) constructs. The efficiency of large-construct mII transgenesis was at least as high as that with small constructs; 11-47% of offspring carried the large tgs. More than 95% of these transgenic founders transmitted the tg to offspring. These data demonstrate the ability of mII transgenesis to deliver large tgs efficiently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号