首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Taulanne Limestone Formation of the Castellane region (South Alpine Foreland Basin of France) represents an Oligocene lake depositional system developed above the marine Nummulitic succession. A sedimentological analysis of the Taulanne limestone allows the identification of nine marine, lacustrine, and palustrine facies. The spatial and temporal distribution of these facies records five depositional sequences that are correlated between the Sant Peire section (edge of the lake) and the Prés section (central lake). Water-level variations highlight the high-frequency balance between drying and wetting periods under fluctuating climatic conditions. Lacustrine facies developed during more humid periods while palustrine facies correspond to more arid conditions and longer lake shoreline exposure. At the basin scale, the lateral changes in accommodation space are attributed to differential subsidence between the Prés and the Sant Peire sections, which permitted the deposition of a thicker succession in the central part of the lake (Prés section). The Taulanne limestone records a marine to continental transition. The progressive filling of the basin is related to the regional tectonic activity, namely the emplacement of the Embrun-Ubaye nappes to the northeast of the study area at about 30–32 Ma. This final regressive trend represents the transition between the underfilled flysch stage (marine Nummulitic succession) of a foreland-basin cycle to the overfilled stage (alluvial Red Molasse deposits) during the primary exhumation of the Internal Alps.  相似文献   

2.
1. The flooding of a lake basin initiates a series of changes leading eventually to a more stable climax situation after some years. Sequential physical and chemical changes in the mud and water and related changes in the animal and plant populations of three types of tropical African lakes are considered. The giant man-made lakes, Kariba and Volta, both several thousand square kilometres in area, provide the bulk of the material for this review. Two other kinds of tropical lake, the annual storage-reservoirs like Jebel Aulia and Sennar in the Sudan, and natural lakes subject to periodic droughts, like Lake Chilwa in Central Africa, are also considered. Evidence is often patchy but suggests a number of generalizations regarding the course and causes of the developmental changes in these tropical ecosystems. 2. On the evidence available, the course of development appears to fall conveniently into two periods based on water level changes, the filling phase and the post-filling phase. The former is characterized by sudden appearances of organisms and explosive growths of animal and plant populations. This unstable behaviour, especially characteristic of tropical lakes, is associated with the destruction of old habitats and the creation of new ones, the increasing area and volume of the new lake environment and the introduction of materials to the system at the advancing shore-line. By the time that filling is complete, the situation has stabilized to a large extent and the ecosystem enters a new phase. 3. This post-filling phase is characterized by the development and exploitation of existing habitats. Examples considered here are: the development of the mud habitat under the influence of processes like sedimentation and beach formation; the development of submerged woodland as a habitat for bottom dwelling animals; the spread of rooted aquatic plants and their effect on the mud; and the role of fluctuation in water-level on the post-filling phase. All four phenomena result in a modification of the substrata originally flooded, in a way that directly effects the associated fauna and flora. Apart from influencing the first three processes, water-level fluctuations also result in an interaction between the aquatic and terrestrial ecosystems which brings about important changes in itself. 4. The relative importance of these two phases varies with the type of lake, filling-phase phenomena obviously dominating in the annual storage reservoirs while post-filling phase characteristics are fully expressed in the large lakes made by man. 5. In contrast to the development of temperate lake ecosystems, succession of species in these tropical examples is not so much interrupted by major annual temperature changes. In addition, both the course of succession and the climax communities achieved are different. This may be largely due to the more rapid decomposition of organic matter in the muds which has two main consequences. In the first place, extraneous organic material brought in to the system during flooding, is rapidly broken down. Early filling stages, therefore, are associated with anoxic conditions and development of conspicuous communities of algae and large aquatic plants. The result is an overlapping of what in temperate systems are two distinct episodes: the early extraneous and later self-contained systems. Secondly, the replacement of chironomids by an oligochaete climax in the mud as seen in temperate lakes does not normally occur, apparently because of the lack of accumulated organic material. The presence in Africa of the may-fly Povilla adusta, on the other hand, provides an extra stage in the colonization of submerged woodland, replacing the earlier chironomid communities.  相似文献   

3.
Results of a detailed bathymetric survey of Crater Lake conducted in 2000, combined with previous results of submersible and dredge sampling, form the basis for a geologic map of the lake floor and a model for the filling of Crater Lake with water. The most prominent landforms beneath the surface of Crater Lake are andesite volcanoes that were active as the lake was filling with water, following caldera collapse during the climactic eruption of Mount Mazama 7700 cal. yr B.P. The Wizard Island volcano is the largest and probably was active longest, ceasing eruptions when the lake was 80 m lower than present. East of Wizard Island is the central platform volcano and related lava flow fields on the caldera floor. Merriam Cone is a symmetrical andesitic volcano that apparently was constructed subaqueously during the same period as the Wizard Island and central platform volcanoes. The youngest postcaldera volcanic feature is a small rhyodacite dome on the east flank of the Wizard Island edifice that dates from 4800 cal. yr B.P. The bathymetry also yields information on bedrock outcrops and talus/debris slopes of the caldera walls. Gravity flows transport sediment from wall sources to the deep basins of the lake. Several debris-avalanche deposits, containing blocks up to 280 m long, are present on the caldera floor and occur below major embayments in the caldera walls. Geothermal phenomena on the lake floor are bacterial mats, pools of solute-rich warm water, and fossil subaqueous hot spring deposits. Lake level is maintained by a balance between precipitation and inflow versus evaporation and leakage. High-resolution bathymetry reveals a series of up to nine drowned beaches in the upper 30 m of the lake that we propose reflect stillstands subsequent to filling of Crater Lake. A prominent wave-cut platform between 4 m depth and present lake level that commonly is up to 40 m wide suggests that the surface of Crater Lake has been at this elevation for a very long time. Lake level apparently is limited by leakage through a permeable layer in the northeast caldera wall. The deepest drowned beach approximately corresponds to the base of the permeable layer. Among a group of lake filling models, our preferred one is constrained by the drowned beaches, the permeable layer in the caldera wall, and paleoclimatic data. We used a precipitation rate 70% of modern as a limiting case. Satisfactory models require leakage to be proportional to elevation and the best fit model has a linear combination of 45% leakage proportional to elevation and 55% of leakage proportional to elevation above the base of the permeable layer. At modern precipitation rates, the lake would have taken 420 yr to fill, or a maximum of 740 yr if precipitation was 70% of the modern value. The filling model provides a chronology for prehistoric passage zones on postcaldera volcanoes that ceased erupting before the lake was filled.  相似文献   

4.
Eichhornia crassipes and Salvinia molesta, both notorious weeds, are present in the catchment of Cabora Bassa, a new man-made lake on the Zambezi River, Moçambique. Weed dispersal, controlled by wind and current (and indirectly by rate of lake filling and lake morphology) culminated in the distribution of mats in the eastern and western extremities with very small cover in central lake areas. Eichhornia offset production was initially very rapid later diminishing markedly with many plants showing symptoms o: nutrient deficiency. Eichhornia completely dominated mat composition at the end of the year whilst Salvinia cover was negligible. Heavy drawdown in the middle of the year lead to destruction of nearly 50% of the weed mats. Whilst pre-drawdown levels were attained by the end of the year, there was no evidence for expected explosive population growth and extensive weed colonization in the filling phase.  相似文献   

5.
1. The zooplankton in Lake Kinneret (Israel) have undergone large fluctuations in recent decades, which have been linked to both biotic and abiotic processes. 2. By applying a data‐driven modelling approach to a long‐term database, and focusing on key abiotic (lake‐level change) and biotic (prey abundance) variables, we attempted to identify the possible factors impacting the lake’s zooplankton community. 3. We hypothesised that changes in the predatory zooplankton (adult cyclopoids) assemblage are driven by changes in lake level during years of large changes. We further postulated that lake‐level changes would have a similar impact on the herbivorous zooplankton (cladocerans and cyclopoid copepodites) but an opposite effect on the microzooplankton. In the years of moderate changes to lake level, however, the abundance of predatory zooplankton would determine the size of the herbivore and microzooplankton populations rather than their food sources, that is, top‐down control. 4. The resulting decision trees supported the hypotheses stressing the importance of the annual rate of lake‐level change in shaping the zooplankton community in the lake. In addition, and in contrast to expectations, bottom‐up processes seem to play a role in determining zooplankton abundance.  相似文献   

6.
The geomorphological analysis of the river Tocantins alluvial area was carried out by remote sensing techniques, jointly with studies of sedimentary facies, mineralogy and geochemistry, pollen and spores, C and N isotopes data and radiocarbon dating of a sediment core from a floodplain lake, near the river Tocantins in the southeastern Amazon region. The aim was to identify and discuss the relationship between the main geomorphological processes and climatic factors, as well as their influence on vegetation patterns. The data indicate three phases of sediment and organic matter accumulation associated with vegetation changes during the Holocene: in Phase 1 (>7760 ± 80 cal yrs b.p.), the channel was gradually being disconnected from its main course, accumulating organic matter from terrestrial woody plants; in Phase 2 (>7760 ± 80 to 5145 ± 175 cal yrs b.p.), the very low energy flows allowed the deposition of autochthonous organic mud from suspension. Herbaceous vegetation and a Mauritia palm-swamp dominated the study area, followed by an increase in the contribution of freshwater dissolved organic carbon (DOC) to the lake; Phase 3 (5145 ± 175 cal yrs b.p. until present) records the expansion of ferns and arboreal plants, and greater freshwater organic matter input into the lake with anoxic water conditions. The development of the studied lake occurred by geomorphological changes and the filling process of an abandoned channel according to hydrodynamics and vegetation changes which were probably influenced by climatic changes during the Holocene.  相似文献   

7.
Examination of the gut contents of mud-dwelling animals in three newly flooded lakes shows terrestrial organic matter to be a major component, particularly during filling of the lake basin. After filling is complete, a fall-off in total biomass of fauna is usually accompanied by significant reduction in the proportion of terrestrial detritus in favour of algal food. It is concluded that newly formed lakes pass through two phases. During flooding they are dependent on the terrestrial ecosystem. This is followed by a switch, immediately after filling, to more self-sustained autochthonous-based food chains.  相似文献   

8.
Aquatic and semiaquatic vegetation in Yaroslavl oblast has a long history of study and is described in detail for different types of waterbodies. The present summary report includes 65 formations. There are 36 formations in the hydrophilic vegetation of lakes, 39 in reservoirs, 39 in ponds, and 42 in rivers. More than half of the total list is made up of formations with the dominance of helophytes. Unique data have been obtained which make possible to trace changes in the structure of the lake vegetation in the course of natural succession and the formation of the reservoir vegetation since its filling as a result of long-term observations conducted by researchers in the waterbodies of the region. The penetration of alien species into the territory of the region can change the structure of hydrophilic vegetation.  相似文献   

9.
Some aspects of the paleoproductivity of meromictic Crawford Lake, near Toronto, are inferred from a study of its sedimentary pigments, and diatoms. Several stages of lake development are observed over the 35 cm-deep sediment core removed from the center of Crawford Lake. Evidence of changes in lake productivity during the last 300 years was reflected by significant stratigraphic sediment pigment changes which were associated with European settlement in the Crawford Lake watershed and recent alterations associated with the area's operation by the Conservation Authority (1969 — present). One of the most important factors correlated with paleoproductivity was land clearance (mainly logging of white oak and pine). Deforestation during the last century is correlated with an increase in the amount of algal pigments deposited in the lake's sediments during the 1800's. During the last 10 years a striking increase in the accumulation of chlorophyll derivatives was observed. This is correlated with a dramatic increase in the number of visitors to the lake.Stratigraphic changes in the ratio of cyanobacterial to phototrophic bacterial pigment accumulation are used to infer changes which occurred during the shift from mesotrophy to eutrophy in Crawford Lake.  相似文献   

10.
The aim of this research was to study the flood pulse influence and the anthropic impact caused by bauxite tailings on the chemical composition of O. glumaepatula in Batata lake (PA, Brazil). Sampling was carried out in stands of O. glumaepatula in the low-water, filling, high-water, and drawdown periods in impacted and natural areas of Batata lake. During the low-water and drawdown periods the stands of O. glumaepatula were exposed, and in the filling and high-water periods the water depth was respectively 1.4 and 3.8 m. The collected material was dried at 70 degrees C, ground, and concentrations of total phosphorus, total nitrogen, organic carbon, and energy content were determined. The results indicate that the biomass increase, caused by the rise in water level, has a dilution effect on nitrogen and phosphorus concentrations in O. glumaepatula. The energy contents did not present significant differences in any of the studied periods. The results suggest that from the low water to filling period, nitrogen becomes more limiting to O. glumaepatula in the impacted area, whereas phosphorus becomes more limiting in the natural area. The population of O. glumaepatula contributes to the recovery of the impacted area of Batata lake as the detritus from this species accumulates over the sediment. This accumulation impedes future re-suspension of the bauxite tailings and increases the organic matter and nutrient concentrations in the impacted sediment.  相似文献   

11.
Some effects of enclosure on the zooplankton in a small lake   总被引:5,自引:0,他引:5  
Observations on the effect of enclosure on zooplankton by introducing two experimental tubes, each holding some 18 000 m3 of water, into a small lake, showed that a limnetic community could be maintained within tubes of this capacity throughout a period of 22 months. Two species, the copepod Diaptomus gracilis and the cladoceran Daphnia hyalina were dominant both in the open lake and in each tube, but Diaptomus gracilis was relatively more abundant in the tubes than in the lake, whereas Daphnia hyalina, especially in spring and autumn, was more abundant in the lake than in the tubes. Several scarce species became relatively more abundant in the tubes than in the lake. These changes are more probably associated with reduced predation, especially by larvae of Chaoborus, than with artificially induced changes in the phytoplankton, changes only poorly correlated with changes in the zooplankton.  相似文献   

12.
Variation in water resources is a main factor influencing ecohydrological processes and sustainable development in arid regions. Lake level changes are a useful indicator of the variability in water resources. However, observational records of changes in lake levels are usually too short to give an understanding of the long-term variability. In the present study, we investigated the tree rings of shrubs growing on the lakeshore of Lake West-Juyan, the terminus of the Heihe River in western China, and found that Lake West-Juyan had undergone degradation three times over the past 200 years. The lake level decreased from 904.3 to 896.8 m above sea level (a.s.l.) during the period 1800-1900, to 892.0 m a.s.l. from around 1900 to the late 1950s, and the lake dried out in 1963. The trend for changes in lake levels, which was represented by the composite chronology of three beach bars, showed that the phases of increasing lake levels over the past 150 years were during the periods 1852-1871, 1932-1952, 1973-1982, and 1995-1999. Comparison with the history of regional economic development showed that human activity has played an important role in regulating the water resources of the lower reaches of the Heihe watershed over the past 200 years.  相似文献   

13.
The immediate impact of damming appears most notably at the first filling of water, when the dam blocks the river and a lake suddenly forms. In this review, the changes in meteorology, plant communities, birds and fishes surrounding initial impoundment of Miharu Dam, constructed in an Asian Monsoon region, are summarised based on previous papers and subsequent field research. Although wind and temperature changes were investigated, land and lake wind occur due to the different thermal properties between the land and lake, and this type of wind often occurs at large lakes such as Glen Canyon Dam Reservoir or Lake Biwa. The size of Miharu Dam Reservoir (ponding area 2.9 km2) was insufficient to cause land–lake air differentials. Therefore, wind direction and air temperature were unaffected. Mountain winds weakened at the lake centre and near the dam body. Changes in vegetation were especially diverse at the drawdown zone (the slopes above and below the normal water level). On slopes above this zone, trees died and species composition changed due to submergence. Within the drawdown zone, the pre-existing plant community disappeared, and flood-resistant plants such as Salix subfragilis increased. The natatorial bird population continued to grow for 4 years after dam reservoir emergence and stabilised thereafter. Every year, the majority of natatorial birds utilising the dam reservoir as a resting area were ducks, but populations of diving ducks fluctuated depending on water level and iced area. After impoundment, the fish populations increased. As in most dam reservoirs in Japan, populations of invasive fish species such as Micropterus salmoides and Lepomis macrochirus increased. However, spawning grounds dried up during low-water-level seasons, suggesting that regulating water levels may help reduce invasive species.  相似文献   

14.
The Mapire river mouth forms a complex floodplain system, where the river behaves as a river during the dry season, but changes to a transient lake which partially covers the inundation forest during the rainy season. Thus, we expected changes in water chemistry and a gradual increase of primary production during high waters. The system was sampled monthly for one year; two floodplain lakes were also studied for comparative purposes. Variations in the concentration of macro- and micronutrients occurred in a pulse-like manner and seemed to relate to mechanisms at work in the transient lake. Dissolved oxygen showed a stratification with low values at the bottom, but never reached anoxia. Net and gross primary production and respiration did not show any clear spatial pattern, reflecting a mosaic of different biochemical states within the transient lake. Heterotrophy tended to prevail in the transient lake, while autotrophy dominated floodplain lakes.  相似文献   

15.
Here, we present a gillnet survey of Lake Liambezi a 370 km2 shallow ephemeral floodplain lake situated in north-eastern Namibia, which is fed irregularly by the upper Zambezi and Kwando Rivers during years of high flooding. The lake dried up in 1985 and, with the exception of sporadic minor annual inundation events, remained dry until 2007. We describe the temporal succession of fish species over an 8 year period from initial inundation 2007 to maturation in 2014. The succession of the fish community did not follow the typical pattern of opportunistic strategists during colonisation, to periodic strategists that are eventually succeeded by equilibrium strategists. Instead, the evolution of the fish community was characterised by three distinct phases. The first phase involved the inundation and colonisation of the lake in 2007, followed by its decline until the floods that filled the lake in 2009. During this phase the lake was colonised by fishes from the adjacent upper Zambezi and Chobe River floodplains. Fish communities predominantly comprised floodplain specialists including the barbs Enteromius paludinosus and Enteromius poechii, the mormyrid Marcusenius altisambesi and catfishes Schilbe intermedius and Clarias gariepinus. The filling of the lake in the March 2009 floods marked the beginning of the second, successional phase. The barbs declined in abundance and the alestid Rhabdalestes maunensis underwent explosive population growth between 2009 and 2010, but populations crashed equally rapidly and were replaced by Brycinus lateralis which, together with S. intermedius went on to dominate the fish community 2011–2014. Larger, slower growing tilapiine cichlids increased steadily in abundance and became the dominant components in a 2700 t y–1 artisanal fishery that developed on the lake. The fish community in the ephemeral Lake Liambezi is clearly influenced by numerous factors including connectivity, lake level fluctuations, competition and the effects of fishing, which may disrupt typical succession processes in floodplain ecosystems.  相似文献   

16.
While lakes occupy less than 2% of the total surface of the Earth, they play a substantial role in global biogeochemical cycles. For instance, shallow lakes are important sites of carbon metabolism. Aerobic respiration is one of the important drivers of the carbon metabolism in lakes. In this context, bioturbation impacts of benthic animals (biological reworking of sediment matrix and ventilation of the sediment) on sediment aerobic respiration have previously been underestimated. Biological activity is likely to change over the course of a year due to seasonal changes of water temperatures. This study uses microcosm experiments to investigate how the impact of bioturbation (by Diptera, Chironomidae larvae) on lake sediment respiration changes when temperatures increase. While at 5°C, respiration in sediments with and without chironomids did not differ, at 30°C sediment respiration in microcosms with 2000 chironomids per m2 was 4.9 times higher than in uninhabited sediments. Our results indicate that lake water temperature increases could significantly enhance lake sediment respiration, which allows us to better understand seasonal changes in lake respiration and carbon metabolism as well as the potential impacts of global warming.  相似文献   

17.
Prior studies on Lake Naivasha relevant to understanding sediment dynamics include a bathymetric map, a paleolimnological study of fossil invertebrate assemblages in lake sediment, an overview of lake level fluctuations throughout the 20th century, and identification of a dynamic assemblage of macrophyte zones that has responded both to these changes in lake level and to more recent, alien species. Sediment samples collected from the rivers systems and the lake were examined physically and chemically. River sediment characteristics reflect geology and geomorphological processes in the catchment, whereas lake sediment stratigraphy has responded to past lake level changes. Such changes have caused significant changes in aquatic vegetation assemblages. Present day sediment dynamics in the lake are governed by the presence of river point sources in the north and wave-induced re-suspension, such that sediments introduced by rivers are transported in easterly and southerly directions, and are eventually deposited in the eastern, central and southern parts of the lake. Sedimentary deposition is also occurring in northern areas that once were protected by papyrus swamp vegetation but now only have a narrow fringe, highlighting the important role of swamp vegetation in filtering out suspended particulates and thereby controlling water quality in the lake. Geochemical analyses of river and lake sediments indicate that they represent fairly undisturbed background conditions. Higher-than-expected concentrations of cadmium, iron, nickel and zinc found in both river and lake sediment are likely to derive from volcanic rocks and/or lateritic soils found in the lake catchment.  相似文献   

18.
Variation in water resources is a main factor influencing ecohydrological processes and sustainable development in arid regions. Lake level changes are a useful indicator of the variability in water resources. However, observational records of changes in lake levels are usually too short to give an understanding of the long-term variability. In the present study, we investigated the tree rings of shrubs growing on the lakeshore of Lake West-Juyan, the terminus of the Heihe River in western China, and found that Lake West-Juyan had undergone degradation three times over the past 200 years. The lake level decreased from 904.3 to 896.8 m above sea level (a.s.1.) during the period 1800-1900, to 892.0 m a.s.1, from around 1900 to the late 1950s, and the lake dried out in 1963. The trend for changes in lake levels, which was represented by the composite chronology of three beach bars, showed that the phases of increasing lake levels over the past 150 years were during the periods 1852-1871, 1932-1952, 1973-1982, and 1995-1999. Comparison with the history of regional economic development showed that human activity has played an important role in regulating the water resources of the lower reaches of the Heihe watershed over the past 200 years.  相似文献   

19.
Variations in the attenuation of photosynthetically available radiation were analysed using extensive spatial sampling in two seasons in a subtropical wetland lake. Simultaneously with the attenuation measurements, the principal absorption and scattering components of the water column were also measured. The elevated spatial resolution used in the study allowed the determination of spatially distinct optical water classes within the lake. Changes in dissolved organic matter, phytoplankton and tripton concentrations led to a wide variation in the vertical attenuation coefficients. These changes depended on local characteristics of the ecosystem and time of year. The spatial distribution of the attenuation coefficients was examined in relation to the hydrological and geomorphological characteristics of the littoral area of the lake. The impacts of two small rivers on the light environment and attenuation components are shown. Finally, the resulting model was used to examine the possible impacts of changes in light availability at the lake bottom in relation to recent changes in lake water level.  相似文献   

20.
The role of compensatory mechanisms in the population dynamics of lake trout in the Michigan waters of Lake Superior was explored during three time periods: the pre-sea lamprey period, prior to 1950 when lake trout were at a relatively high abundance and the fishery was the primary source of lake trout mortality; the sea lamprey dominant period, from 1951 to 1961 when lake trout were at a very low abundance due to sea lamprey predation and overexploitation; and currently, from 1985 to 1993 when wild lake trout abundance was at a moderate level. The role of compensatory changes in growth and fecundity rates of lake trout in the Michigan waters of Lake Superior was evaluated using a life table approach. Individual growth and fecundity rates were calculated and compared between time periods. These rates were used to determine age-specific fecundity which, along with age-specific survival, were incorporated into a Leslie projection matrix to calculate the finite rate of population increase (λ). Individual growth rates and age-specific fecundity rates changed in response to the different levels of lake trout abundance during each of the study periods. Lake trout during the sea lamprey dominant period, which experienced the lowest abundance and highest mortality levels, exhibited the fastest individual growth rates and the highest age-specific fecundity. These high rates contributed to the relatively large compensatory scope exhibited by lake trout during the sea lamprey dominant period as compared to lake trout during the pre-sea lamprey or the current periods which are associated with higher levels of abundance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号