首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By using the antigenic structure of lysozyme determined in this laboratory and the X-ray co-ordinates we have calculated the closest-atom distances between each of the residues in the three antigenic sites and all the other amino acids of the lysozyme molecule. These calculations enabled us to identify the nearest neighbours to each of the site residues. Thus the immediate environment of each site residue is described. For the three antigenic sites there is a total of 71 neighbouring residues. The effects of evolutionary amino acid substitutions in site-neighbouring residues on the binding capacity of protein binding sites in general and on protein antigenic sites in particular are discussed. These, together with the direct replacements in site residues, will acount for the major effects. However, the limitations of this treatment are stressed. The smaller effects on antigenic sites of replacements at once-removed and even at more distant locations, which, when they become cumulative, could be considerable, are brought to attention, together with any influences of conformational readjustments that can take place as a result of evolutionary amino acid replacements.  相似文献   

2.
Previously it had been shown that native lysozyme has three discontinuous antigenic sites (comprising spatially adjacent residues that may be distant in sequence) that were mimicked by surface-simulation synthetic peptides that had the capacity to bind the bulk (97-99%) of the antibody response against native lysozyme. In the present work these three surface-simulation synthetic peptides were coupled to succinoylated bovine serum albumin, and the conjugates were injected into rabbits. Antibodies against each peptide reacted, as expected, only with that peptide, but it was also found that the antibodies could bind with lysozyme, and the complete specificity of this binding was rigorously established. The advantages of these findings in conformational and immunological investigations are outlined.  相似文献   

3.
Recently, we reported the synthesis and immunochemistry of two peptides designed, by complementarity and surface-simulation synthesis, to mimic antibody-combining sites against two antigenic sites of lysozyme. In the present work antibodies were raised against one of these peptides, which is complementary to antigenic site 3 of lysozyme, to determine whether these antibodies will react with anti-lysozyme antibodies. Radioiodinated antipeptide antibodies were bound by immunoadsorbents of the immune IgG from two goats anti-lysozyme antisera but not by adsorbents of myoglobin, non-immune goat IgG or immune IgG of antisera against cytochrome c. The binding of anti-peptide antibodies to adsorbents of anti-lysozyme antibodies was fully inhibited by free lysozyme but not by bovine serum albumin, human hemoglobin A, horse cytochrome c or bovine ribonuclease A. Thus, antisera against an antibody-combining site can be raised by immunizing with a peptide which probably does not exist in the antibody but is designed by surface-simulation synthesis to mimic an antibody-combining site.  相似文献   

4.
Previous studies from this laboratory on the immunochemistry of specific chemical derivatives of native lysozyme and of the two disulfide peptide 62-68 (Cys 64-Cys 80) 74-97 (Cys 76-Cys 94) (i.e. (SS)2-peptide), have established an antigenic reactive site to comprise the spatially contiguous surface residues: Trp 72, Lys 97, Lys 96, Asn 93, Thr 89 and Asp 87. In the present work, the identity of the site was verified by an entirely different and novel approach. The aforementioned amino acids were linked directly into a single linear peptide with an intervening spacer where appropriate and substituting phenylalanine for tryptophan (i.e. Phe-Gly-Lys-Asn-Thr-Asp). This peptide (which does not exist in native lysozyme but simulates a surface region of the protein) possessed a remarkable inhibitory activity towards the reaction of lysozyme with its antisera. The immunochemical reactivity of the peptide was equal to the maximum expected reactivity of the site (i.e. a third of the total antigenic reactivity of lysozyme). These findings define quite conclusively and accurately the reactive site which is clearly composed of spatially adjacent residues that are distant in sequence reacting as if in direct linear linkage. The unequivocal establishment of this concept indicates that antigenic sites need not always be composed of residues in direct peptide linkage in the sequence. The nature of the site may depend on the protein. This unorthodox attack at the problem provides a novel and powerful approach for final delineation of the antigenic reactive sites (and perhaps other types of binding sites) in native proteins, following the completion of accurate narrowing down by chemical methods.  相似文献   

5.
Presentation of a protein antigen to T cells is believed to follow its intracellular breakdown by the antigen-presenting cell, with the fragments constituting the trigger of immune recognition. It should then be expected that T-cell recognition of protein antigens in vitro will be independent of protein conformation. Three T-cell lines were made by passage in vitro with native lysozyme of T cells from two mouse strains (B10.BR and DBA/1) that had been primed with the same protein. These cell lines responded well to native lysozyme and very poorly to unfolded (S-sulphopropyl) lysozyme. The response of the T-cell lines to the antigen was major histocompatibility complex (MHC)-restricted. A line from B10.BR was selected for further studies. This line responded to the three surface-simulation synthetic sites of lysozyme (representing the discontinuous antigenic, i.e. antibody binding, sites) and analogues that were extended to a uniform size by a nonsense sequence. T-cell clones prepared from this line were specific to native lysozyme and did not respond to the unfolded derivative. Furthermore, several of these clones showed specificity to a given surface-simulation synthetic site. The exquisite dependency of the recognition by the clones on the conformation of the protein antigen and their ability to recognize the surface-simulation synthetic sites indicate that the native (unprocessed) protein was the trigger of MHC-restricted T-cell recognition.  相似文献   

6.
A method, molecular cartography, is introduced as a way to quantitate the topographic structure of a protein surface. The method is applied to the problem of antigenic determinants, and it is used to examine local and global topography of reported antigenic regions on the surface of myoglobin and lysozyme. In nine antigenic sites taken from the literature and studied in detail, no local property was found in sites that was not also found in remaining regions of the surface. However, a strong correlation was found between antigenic sites and regions of the surface that are globally exposed. This finding suggests that global exposure of the protein surface may play a primary role in determining the antigenic structure of the protein. Molecular cartography may be useful in other instances of protein–protein interactions such as those between proteolytic enzymes and their substrates.  相似文献   

7.
Five monoclonal antibodies specific for the loop region of hen egg lysozyme were prepared by immunisation with a synthetic conjugate of a proteolytic fragment of lysozyme coupled to bovine serum albumin. Their fine specificities were investigated using a panel of variant lysozymes and peptide fragments of lysozyme in a quantitative radio-immunoassay procedure. Knowledge of the structure of hen lysozyme to high resolution and the use of computer graphics enables the localisation of the epitopes recognised by the antibodies with some precision. The antibodies were shown to define three distinct, overlapping epitopes within what was previously considered to be a single antigenic site. These results are discussed in relation to current ideas of the antigenic nature of proteins and other recent studies in which anti-protein antibodies have been elicited by immunisation with small peptides.  相似文献   

8.
We have previously shown that an antigenic site in native lysozyme resides around the disulphide bridge 30-115 and incorporates Lys-33 and Lys-116 and one or both of Tyr-20 and Tyr-23. These residues fall in an imaginary line circumscribing part of the surface of the molecule and passing through the spatially adjacent residues Tyr-20, Arg-21, Tyr-23, Lys-116, Asn-113, Arg-114, Phe-34 and Lys-33. The identity of the site was confirmed by demonstrating that the synthetic peptide Tyr-Arg-Tyr-Gly-Lys-Asn-Arg-Gly-Phe-Lys (which does not exist in lysozyme but simulates a surface region of it), and an analogue in which glycine replaced Tyr-23, possessed remarkable immuno-chemical reactivity that accounted entirely for the expected reactivity of the site in native lysozyme. Tyr-23 is not part of the site, and its contribution was satisfied by a glycine spacer. The novel approach presents a powerful technique for the delineation of antigenic (and other binding) sites in native proteins and confirms that these need not always comprise residues in direct peptide linkage.  相似文献   

9.
Summary Intensive research in the author's laboratory had culminated in the determination and synthesis of all the antigenic sites of myoglobin in 1975 and of lysozyme in 1978. Very recently most of the antigenic sites of serum albumin were also localized and synthesized. These investigations provided the first unique insight into the molecular features responsible for the immune recognition of protein antigens and of the factors which determine and regulate the antigenicity of the sites. But moreover, these studies have charted a multi-approach chemical strategy for investigation and synthetic duplication of protein binding sites. Furthermore, the concept of surface-simulation synthesis, which we introduced and developed during our determination of the antigenic structure of lysozyme, has provided a remarkable dimension of unlimited versatility for the synthetic mimicking of any type of protein binding sites. In this concept, the spatially adjacent residues of a protein binding site are linked directly via peptide bonds with appropriate spacers into a single peptide which does not exist in the protein but mimicks a surface region of it. This has proved to be a powerful concept in protein molecular recognition and has opened up many untapped avenues in investigation, duplication and perhaps manipulation of a variety of protein activities. In fact, binding sites representing other protein activities (including antibody combining sites) have or are now being mimicked synthetically in our laboratory by the concept of surface-simulation synthesis.  相似文献   

10.
Five kinds of fragments of hen egg-white lysozyme (HL) were tested by macrophage migration inhibition (MMI) assay using peritoneal exudate cells (PEC) of guinea pigs immunized with HL in complete Freund's adjuvant. (See article). These four kinds of HL fragments were also shown to be composed of the immunodominant groups of the HL molecule for circulating antibody against HL in guinea pigs. The relationships between the antigenic sites related to circulating antibody and the cellular recognition sites are discussed.  相似文献   

11.
Seven neutralizing murine monoclonal antibodies specific for the glycoprotein H of human cytomegalovirus were produced and used to construct a topological map of two nonoverlapping antigenic sites that are bridged by a third antigenic site. Neutralization assays with 15 laboratory or clinical human cytomegalovirus strains indicated that the monoclonal antibodies recognize three antigenically variable and three conserved epitopes within the three antigenic sites. The variable-domain genes encoding monoclonal antibodies representing each of the three antigenic sites were cloned and sequenced, and molecular models of their binding sites were generated. Conformational differences in the antibody-binding sites suggested a structural basis for experimentally observed differences in gH epitope recognition.  相似文献   

12.
Pigs immunized with lysozyme responded by producing only nonprecipitating antibody throughout the immunization period. Fig antilysozyme antibodies were found to be resistant to papain fragmentation, only 33% of the antibodies were fragmented with papain. From the binding of fluorescein labeled or 14C-labeled lysozyme to antilysozyme antibodies it was concluded that the antibodies elicited in pigs recognized only two antigenic determinants of lysozyme. These results were confirmed from the binding of Fab fragments to 14C-lysozyme. Fab fragments prepared from precipitating rabbit antilysozyme antibody bound 14C-lysozyme at a molar ratio of Fab/lysozyme = 3. Therefore nonprecipitating antibodies are the outcome of recognition of only two antigenic determinants on lysozyme and inability to form a lattice structure when antibody and antigen interact. This work emphasizes the limitations of using antibodies as a biological reagent for delineating the antigenic determinants on proteins.  相似文献   

13.
Reaction of hen egg-white lysozyme with 2,3-dioxo-5-indolinesulfonic acid (DISA) yielded a homogeneous derivative which was modified at a single tryptophan residue. The modification was located at Trp-123. The absorption spectrum of the derivative showed a new peak in the visible range with lambdamax at 365 nm. In addition, the absorption maximum in the ultraviolet which appears in lysozyme at 280 nm was shifted to 270 nm in the derivative and appreciably enhanced. In ORD measurements, the rotatory behaviors of lysozyme and its derivative were identical at the 233 nm negative minimum and the 199 nm positive extremum. CD measurements gave equal [theta] values for lysozyme and derivative at the two negative ellipticity bands at 208 and 220 nm. Although no conformational differences between lysozyme and derivative were observed by ORD and CD measurements, some changes were detectable by chemical methods. Accessibility to tryptic hydrolysis and susceptibility of the disulfide bonds to reduction were increased in the derivative relative to lysozyme. The lytic activity of the derivative, which retained the same pH optimum as native lysozyme, was greatly (50%) decreased, probably as a result of the slight conformational change. With several antisera to lysozyme, the native protein and its derivative had equal antigenic reactivities. The findings were instrumental in further delineation of an antigenic reactive site in lysozyme.  相似文献   

14.
The three-dimensional structure of the single-chain Fv fragment 1F9 in complex with turkey egg-white lysozyme (TEL) has been determined to a nominal resolution of 2.0 A by X-ray diffraction. The scFv fragment 1F9 was derived from phage-display libraries in two steps and binds both hen and turkey egg-white lysozyme, although the level of binding affinity is two orders of magnitude greater for the turkey lysozyme. The comparison of the crystal structure with a model of the single-chain Fv fragment 1F9 in complex with hen egg-white lysozyme (HEL) reveals that in the latter a clash between Asp101 in lysozyme and Trp98 of the complementarity determining region H3 of the heavy chain variable domain occurs. This is the only explanation apparent from the crystal structure for the better binding of TEL compared to HEL.The binding site topology on the paratope is not simply a planar surface as is usually found in antibody-protein interfaces, but includes a cleft between the light chain variable domain and heavy chain variable domain large enough to accommodate a loop from the lysozyme. The scFv fragment 1F9 recognizes an epitope on TEL that differs from the three antigenic determinants recognized in other known crystal structures of monoclonal antibodies in complex with lysozyme.  相似文献   

15.
The precise location of the antigenic determinants in a continuous antigenic region at residues 38–54 of hen egg white lysozyme (lysozyme) was investigated using the inhibition test of binding of Nα-[14C]acetyl fragment 38–54 with goat (three individuals) and sheep (four individuals) anti-lysozyme antisera by various synthetic and proteolytic fragments of lysozyme. From these inhibition studies, we found that in this region there were three independent antigenic determinants, consisting of residues 38–45, 40–48, and 44–54, respectively. The existence and the specificity of the antibodies directed to these determinants were further examined with isolating the specific antibodies by affinity chromatography on columns to which the fragment 38–45, 44–48, and 46–54 were bound. The results indicated that these determinants partially overlapped one another in amino acid sequence, but the antibodies directed to them could recognize only each corresponding determinant. These antibodies were also shown to be reactive with native lysozyme as well as a reduced and S-carboxymethylated derivative of lysozyme, and to be found in goat and sheep anti-lysozyme antibodies. The amounts of these antibodies calculated from the binding capacities were in the range from 0 to 48 μg/ml of antisera. These values corresponded to a small fraction of the total precipitable anti-lysozyme antibodies and were as high as 0.8% of the total. The ratios of the amounts of these antibodies differ in individuals or in different species of animals. The binding affinities of Nα-[14C]acetyl fragment 38–54 with these antibodies were in the range from 1.3 × 107 to 2.6 × 108m?1. The double-reciprocal plots of the antigen binding with these antibodies drew almost a straight line compared with those of a mixture of several antibody populations, that is, whole antisera.  相似文献   

16.
To examine the effect of amino acid substitutions in lysozyme on the binding of antibodies to lysozyme, we purified lysozyme from the egg whites of California quail and Gambel quail. Tryptic peptides were isolated from digests of the reduced and carboxymethylated lysozymes and subjected to quantitative analysis of their amino acid compositions. The two proteins were identical by this criterion. Each peptide from the California quail lysozyme was then sequenced by quantitative Edman degradation, and the peptides were ordered by homology with other bird lysozymes. California quail lysozyme is most similar in amino acid sequence to bobwhite quail lysozyme, from which it differs by two substitutions: arginine for lysine at position 68 and histidine for glutamine at position 121. California and bobwhite quail lysozymes were antigenically distinct from each other in quantitative microcomplement fixation tests, indicating that substitutions at one or both of these positions can alter the antigenic structure of lysozyme. Yet neither of these positions is among those claimed to account for the precise and entire antigenic structure of lysozyme [Atassi, M. Z., & Lee, C.-L. (1978) Biochem. J. 171, 429--434]. Two possible explanations for this discrepancy are discussed.  相似文献   

17.
Mapping the antigenic epitope for a monoclonal antibody against lysozyme   总被引:20,自引:0,他引:20  
A monoclonal antibody (HyHEL-5), prepared to chicken lysozyme c by the method of K?hler and Milstein, identified an antigenic site (epitope) that was shared by the lysozymes of seven different species of galliform birds. The lysozymes of two galliform species, bobwhite quail and chachalaca, shared only partial antigenic identity with the epitope defined by this antibody. Duck lysozyme did not react with the antibody at all. Amino acids that determined the epitope structure were tentatively identified by comparing the amino acid sequences of these lysozymes and assuming the antigenic changes produced by evolutionary substitutions are not due to long-range conformational changes. Arg 68 was identified as a determining amino acid. Arg 68 is hydrogen-bonded to Arg 45, and together these two amino acids form a basic cluster that may be a subsite of the epitope. The antibody inhibited lysis of Micrococcus lysodeikticus by chicken lysozyme. Additionally, Biebrich Scarlet, a dye that binds to the catalytic site, inhibited antibody binding to this lysozyme, which indicates that the epitope extends into the cleft region between Arg 45 and Arg 114. The epitope was hypothesized to involve a region measuring at least 13 x 6 x 15 A including the Arg 68-Arg 45 complex that borders the enzymatic catalytic site. Four other monoclonal antibodies to lysozyme have been partially characterized; each had a distinct pattern of binding specificity for various species of bird lysozymes.  相似文献   

18.
A new form of avian lysozyme, bare-faced curassow lysozyme (BCL), was purified and chemically sequenced. Of the 26 substitutions relative to chicken lysozyme, three, F34Y, T47S, and R114H, are of substrate-interacting residues in the E and F subsites, which would contribute to the acceptor binding for transglycosylation. T47S is a novel substitution in this lysozyme class. While other lysozymes also have substitutions at positions 114 and 34, they also contain numerous others, including ones in the other substrate binding sites, A-D. Furthermore, T47S lies on the left side, while F34Y and R114H are located on the right side of the E-F subsites. BCL therefore should allow comparison of the independent contributions of these sites to substrate binding and transglycosylation. The activity toward the N-acetylglucosamine pentamer revealed that the substitutions at the E-F sites reduced the binding free energies at the E-F sites and the rate constant for transglycosylation without the conformation change of other substrate binding sites on the protein. MD simulation analysis of BCL suggested that the substituted amino acids changed the local conformation of this lysozyme at the E-F sites.  相似文献   

19.
Ten synthetic homologs of the loop region of lysozyme (residues 64 to 82), in which one or two ammo acid residues were replaced by alanine, have been prepared, and their antigenic reactivity was assessed by their capacity to bind to anti-loop antibodies. The results of these binding activities were compared with the computed changes in probability of β-bend occurrence, based on statistical analysis relating the conformation to amino acid sequence. For most of the peptides tested the antigenic activity correlated well with the relative probability of β-bend formation. The activities were lower than the predicted values when the substitution with alanine caused also a disruption of a hydrogen bond.It thus appears that both the β-bend structural feature and hydrogen bonding are involved in the antigenic activity of the conformation-dependent lysozyme loop.  相似文献   

20.
 Lysozyme (muramidase) is capable of direct bacteriolytic action by hydrolyzing glycosidic bonds in bacterial cell walls. Although it is broadly distributed in vertebrate tissues and secretions, the cellular and subcellular localizations of the enzyme are still not well known. The present study examines the distribution of lysozyme expression in the various cell types of LR gold-embedded rat parotid gland, applying a postembedding immunogold-silver staining technique for light microscopy. Simultaneously, a postembedding immunogold method for electron microscopy was used to determine the cellular compartments engaged in the biosynthesis and exocytosis of lysozyme. Silver-amplified immunogold staining for lysozyme demonstrated identical localization in both paraffin and semithin LR-gold sections: in the supranuclear parts of acinar and intercalated duct cells. Staining intensity varied even between adjacent cells. In the electron microscope, immunogold labeling was detected over the cell compartments associated with protein synthesis and exocytosis in acinar and intercalated duct cells. Lysozyme antigenic sites were visible over endoplasmic reticulum and throughout the Golgi apparatus, being intense over the trans-Golgi network, but even stronger in the condensing vacuoles and most prominent over secretory granules in both cell types. The findings provide the first immunocytochemical evidence of the synthesis and secretion of lysozyme in parotid acinar and intercalated duct cells. Accepted: 3 December 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号