首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Telleria CM  Stocco CO  Stati AO  Deis RP 《Steroids》1999,64(11):760-766
In this study, we investigated whether progesterone exerts a local action regulating the function of the corpus luteum of pregnancy in rats. The luteal activities of the enzymes 3beta-hydroxysteroid dehydrogenase (3beta-HSD), involved in progesterone biosynthesis, and 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD), that catabolizes progesterone and reduces progesterone secretion by the corpus luteum, were evaluated after intrabursal ovarian administration of progesterone in pregnant rats that had received a luteolytic dose of prostaglandin F2alpha (PGF2alpha). Luteal 3beta-HSD activity decreased and 20alpha-HSD activity increased after PGF2alpha treatment (100 microg x 2 intraperitoneally on Day 19 of pregnancy at 12:00 p.m. and 4:00 p.m.) when compared with controls sacrificed at 8:00 p.m. on Day 20 of pregnancy. This effect of PGF2alpha on the luteal 3beta-HSD and 20alpha-HSD activities was abolished in animals that also received an intraovarian dose of progesterone (3 microg/ovary on Day 19 of pregnancy at 8:00-9:00 a.m.). In a second functional study, luteal cells obtained from 19-day pregnant rats responded to the synthetic progestin promegestone (R5020) in a dose-dependent manner, with an increase in the progesterone output. In addition, the glucocorticoid agent hydrocortisone did not affect progesterone accumulation in the same luteal cell culture. We also examined by immunocytochemistry the expression of progesterone receptors (PR) in the corpora lutea during pregnancy and demonstrated the absence of PR in this endocrine gland in all the days of pregnancy studied. In the same pregnant rats, positive staining for PR was observed in cells within the uteroplacental unit, such as cells of the decidua basalis and trophoblast giant cells of the junctional zone. In addition, positive PR staining was observed in the ovarian granulosa and theca cells of growing follicles, but not in corpora lutea of ovaries obtained from cycling rats at proestrus. In summary, this report provides further evidence of a local action of progesterone regulating luteal function in the rat despite the absence of a classic PR.  相似文献   

2.
3.
4.
The prostaglandin (PG) F(2alpha) receptor (FPr) in the corpus luteum is essential for maintaining normal reproductive cyclicity in many species. Activation of this seven-transmembrane spanning receptor at the end of the cycle leads to a decrease in progesterone and the demise of the corpus luteum (luteolysis). Recently, the gene structure of the FPr in three mammalian species has been elucidated; however, promoter regulation of the gene is still poorly understood. The FPr mRNA is extremely low in steroidogenic follicular cells (theca or granulosa) but is expressed at high levels in the corpus luteum, particularly in the large luteal cells. Treatment with PGF(2alpha) decreased FPr mRNA expression in luteal cells in most species that have been studied. Key amino acids have been suggested to be critical for binding of FPr to PGF(2alpha) based on three-dimensional modeling and comparisons with other G-protein-coupled receptors. Moieties of the PGF(2alpha) molecule that are essential for binding or specificity of binding to the FPr have been identified by radioreceptor binding studies. In this article, recent information is reviewed on the structure of the FPr gene, regulation of luteal FPr mRNA, and receptor/ligand interaction requirements for the FPr protein.  相似文献   

5.
Prostaglandins, produced from membrane phospholipids by the action of phospholipase A2, cyclooxygenase, and specific prostaglandin synthases, are important regulators of ovulation, luteolysis, implantation, and parturition in reproductive tissues. Destruction of the corpus luteum at the end of the estrous cycle in nonpregnant animals is brought about by the pulsatile secretion of prostaglandin F(2alpha) (PGF(2alpha)) from the endometrium. It has been known for many years that progesterone, estradiol, and oxytocin are the hormones responsible for luteolysis. To achieve luteolysis, two independent processes have to be coordinated; the first is an increase in the prostaglandin synthetic capability of the endometrium and the second is an increase in oxytocin receptor number. Although progesterone and estradiol can modulate the expression of the enzymes involved in prostaglandin synthesis, the primary reason for the initiation of luteolysis is the increase in oxytocin receptor on the endometrial epithelial cells. Results of many in vivo studies have shown that progesterone and estradiol are required for luteolysis, but it is still not fully understood exactly how these steroid hormones act. The purpose of this article is to review the recent data related to how progesterone and estradiol could regulate (initiate and then turn off) the uterine pulsatile secretion of PGF(2alpha) observed at luteolysis.  相似文献   

6.
Luteal regression is a multistep, prolonged process, and long-term luteal cultures are required for studying it in vitro. Cell suspensions from ovaries of superovulated rats were enriched with steroidogenic cells, seeded on laminin or fibronectin, and maintained in defined medium for up to 10 days. Progesterone secretion was much lower than that of 20alpha-dihydroprogesterone, a product of 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD). Prolactin added throughout the incubation period gradually increased the percent progesterone out of total progestins to fourfold, while reducing 20alpha-HSD mRNA by 73%. Luteinizing hormone accelerated the establishment of higher percent progesterone by prolactin but by itself had no effect. Prolactin did not increase total progestin production or cytochrome P450 side-chain cleavage (P450(scc)) mRNA. Cell viability was unaffected by prolactin and/or LH. Prostaglandin F2alpha (PGF2alpha) was added 7-8 days after seeding. In prolactin-treated cells, PGF2alpha reduced steroidogenesis after 4-45 h, and at 45 h total progestins and P450(scc) mRNA were reduced by 45%. At 8-45 h PGF2alpha reduced the percent progesterone out of total progestins, and at 45 h 20alpha-HSD mRNA was doubled. In contrast, in prolactin-deprived cultures, PGF2alpha had little effect on total progestins or 20alpha-HSD mRNA but doubled P450(scc) mRNA. Phospholipase C activity was stimulated by PGF2alpha regardless of prolactin. Thus, when prolactin-treated, our cultures are a good model for mature corpora lutea challenged with PGF2alpha; the finding that without prolactin PGF2alpha has an alternative set of actions could help in identifying the signaling pathways of PGF2alpha responsible for its luteolytic effects.  相似文献   

7.
The effect of prostaglandin PGF2 alpha on the hCG stimulated and basal progesterone production by human corpora lutea was examined in vitro. hCG (40 i.u./ml) stimulated progesterone formation in corpora lutea of early (days 16-19 of a normal 28 day cycle), mid (days 20-22) and late (days 23-27) luteal phases. This stimulation was inhibited by PGF2 alpha (10 micrograms/ml) in corpora lutea of mid and late luteal phases. PGF2 alpha alone did not show a consistent effect on basal progesterone production. The inhibition of hCG stimulated progesterone production by PGF2 alpha at times corresponding to luteolysis indicates a role for that prostaglandin in the process of luteolysis in the human corpus luteum.  相似文献   

8.
J L Pate 《Prostaglandins》1988,36(3):303-315
The objective of the present study was to investigate the influence of progesterone on prostaglandin synthesis by the corpus luteum (CL). Corpora lutea were obtained from dairy cows on days 4, 6, 10, and 18 of the estrous cycle, dissociated, and placed in serum-free culture. The addition of luteinizing hormone (LH) resulted in a slight, but non-significant (p greater than 0.05), increase in levels of 6-keto-PGF1 alpha, and had no effect on PGF2 alpha. Progesterone treatment caused a significant, dose-dependent decrease in both PGF2 alpha and 6-keto-PGF1 alpha in 6-day and 10-day corpora lutea, but not in 4-day or 18-day corpora lutea. In the 6- and 10-day corpora lutea, progesterone treatment resulted in a greater inhibition of PGF2 alpha than 6-keto-PGF1 alpha production. Therefore, progesterone treatment brought about an increase in the 6-keto-PGF1 alpha to PGF2 alpha ratio in these cells (12.9 vs. 21.3). It is concluded from these studies that progesterone can modulate luteal prostacyclin and PGF2 alpha synthesis, suggesting an interaction of progesterone and prostaglandin production within the corpus luteum.  相似文献   

9.
10.
It has not been possible to demonstrate prostaglandin F2 alpha (PGF2 alpha) participation in primate luteolysis under conditions of systemic administration or of acute intraluteal injection. These study designs were hampered by the short biological half-life in the first instance and brevity of administration in the latter. In this study, luteolysis has resulted from chronic, intraluteal delivery of PGF2 alpha. Using the Alzet osmotic pump-cannula system, normally cycling rhesus monkeys were continuously infused, until menses occurred, with PGF2 alpha (10 ng/1/hr) directly into the corpus luteum (CL, n = 6), into the stroma of the ovary not bearing the corpus luteum (NCL, n = 3), or subcutaneously (SC, n = 5). An additional 5 monkeys received vehicle (V) into the corpus luteum. All experiments commenced 5-7 days after the preovulatory estradiol surge. Luteal function was assessed by the daily measurements of plasma progesterone, estradiol, and LH. Intraluteal PGF2 alpha caused premature functional luteolysis in all monkeys, as reflected by a highly significant decline in circulating progesterone and estradiol and the early onset of menstruation, when compared to the other groups. V, NCL, and SC infusions had no effect on either circulating steroid levels or luteal phase lengths. None of the experimental groups showed any change in plasma LH concentrations. These are the first data to indicate that PGF2 alpha can induce functional luteolysis in the primate, and the site of action appears to be the corpus luteum.  相似文献   

11.
Recent studies indicate that the corpus luteum (CL) may be a source of prostaglandin F2alpha (PGF2alpha) for regression. We investigated expression of mRNA and protein for prostaglandin G/H synthase (PGHS) in the CL of immature superovulated rats following administration of PGF2alpha. We observed an increase in mRNA for PGHS-2, the induced isoform, at 1 h and protein at 8 and 24 h after treatment. One hour after PGF2alpha, there was also a progressive decrease in plasma progesterone concentration. There were no changes, however, in expression of PGHS-1, the constitutive isoform, over the 24 h sampling period. These results indicate that PGHS-2 increases following PGF2alpha treatment and that expression of this enzyme in the rat CL may contribute to the luteolytic mechanism.  相似文献   

12.
13.
The corpus luteum (CL) of the sheep exhibits a differential sensitivity to PGF2 alpha in vivo in terms of an increase in oxytocin (OT) secretion and a decrease in progesterone secretion, pointing to the presence in vivo of both high and low affinity receptors for PGF2 alpha. The presence of the high affinity PGF2 alpha receptor was assessed by monitoring the secretion rate of OT from the ovine CL in response to subluteolytic infusions of PGF2 alpha. Rapid desensitization to PGF2 alpha occurred after only one hour of infusion, while a minimum rest period of six hours was required to restore sensitivity. The possibility that these findings could be explained by the depletion and resynthesis of OT was excluded by demonstrating an increase in OT secretion rate with supra-physiological levels of PGF2 alpha two hours after desensitization. Collectively, these results indicate the presence of a high affinity receptor for PGF2 alpha in the ovine CL which exhibits desensitization and recovery in vivo. The temporal nature of the desensitization and recovery of the high affinity PGF2 alpha receptor controlling luteal OT secretion may contribute to the pulsatile nature of PGF2 alpha release from the ovine uterus.  相似文献   

14.
C V Rao 《Steroids》1976,27(6):831-843
The specific binding of [3H] prostaglandin (PG) F2alpha to bovine corpus luteum cell membranes was inhibited by progesterone. Progesterone inhibition of binding was dependent on membrane protein and independent of [3H] PGF2alpha concentrations in the medium. The lower inhibition of binding at high protein concentrations can be overcome by increasing the amounts of progesterone added. Progesterone inhibition of binding appears to be due to a decrease in the receptor number rather than a decrease in the receptor affinities. The kinetic properties (association and dissociation rates) of the remaining receptors were unchanged. The inhibition of [3H] PGF2alpha binding was observed by preincubating the membranes with progesterone or by adding at the beginning but not during incubation. The concentrations of progesterone that inhibited binding by about 50% do occur in bovine corpora lutea of estrous cycle and pregnancy.  相似文献   

15.
16.
J W Wilks 《Prostaglandins》1977,13(1):161-170
The naturally-occurring metabolite of prostaglandin F2alpha, 15-keto prostaglandin F2alpha (15-keto PGF2alpha), elicited rapid and sustained declines in serum progesterone concentrations when administered to rhesus monkeys beginning on day 22 of normal menstrual cycles. Evidence for luteolysis of a more convincing nature was obtained in studies where a single dose of 15-keto PGF2alpha was given on day 20 of ovulatory menstrual cycles in which intramuscular injections of hCG were also given on days 18-20; serum progesterone concentrations fell precipitously in monkeys within 24 hours following intramuscular administration of 15-keto PGF2alpha. However, corpus luteum function was impaired in only 4 of 11 early pregnant monkeys when 15-keto PGF2alpha was administered on days 30 and 31 from the last menses, a time when the ovary is essential for the maintenance of pregnancy. Gestation failed in 2 additional monkeys 32 and 60 days after treatment with 15-keto PGF2alpha, but progressed in an apparently normal manner in the remaining 5 animals. Two pregnant monkeys treated with 15-keto PGF2alpha on day 42 from the last menstrual period, a time when the ovary is no longer required for gestation, continued their pregnancies uneventfully. Corpus luteum function was not impaired in 9 control monkeys which received injections of vehicle or hCG at appropriate times during the menstrual cycle or pregnancy.  相似文献   

17.
Responses of different doses of PGF(2) alpha (Lutalyse) on estrus induction, fertility, and progesterone levels were studied in buffaloes. Of the total 70 subestrous buffaloes, 71.0 percent (50) exhibited estrus and 44.0 percent (22) conceived to induced estrus with different doses of PGF(2) alpha. Serum progesterone levels were variable before treatment of PGF(2) alpha in subestrous buffaloes and ranged from 0.60 to 4.90 ng/ml. An abrupt decrease in progesterone levels was observed within 24 hours of treatment with 30 mg or 5.0 mg PGF(2) alpha given intramuscularly or by intrauterine fusion, respectively. Serum progesterone levels further decreased and were minimum or similar to those seen in spontaneous estrus (/ 0.5ng/ml) on day 2 to 5 or 6 after PGF(2) alpha treatment. Progesterone patterns further revealed that, in most of the buffaloes, corpora lutea were formed and were functional after the treatment. With 2.5 mg of PGF(2) alpha administered into the uterus, morphological regression of corpus luteum and progesterone were not adequate to induce estrus and ovulation.  相似文献   

18.
This is a brief report of preliminary findings from in vitro studies of the effect of PGs (prostaglandins) on progesterone formation in human corpora lutea and on the utilization of C21 steroids by the luteal and follicular compartments of the ovary. Ovaries were obtained from cyclic women undergoing ovariectomies for therapeutic purposes. The laboratory procedures employed in the study are explained. Results are tabulated. PGE2 stimulated progesterone biosynthesis in the corpus luteum as measured by tissue content and by de novo synthesis from acetate-1-14C. PGE2 also stimulated the biosynthesis of DPS (digitonin-precipitable sterols) from acetate. These results confirm findings of other researchers. In 1 of the experiments, PGF2alpha failed to demonstrate stimulation of progesterone biosynthesis in the human corpus luteum as measured by tissue progesterone content after incubation. Both PGF2alpha and PGE2 showed generally stimulatory effects on the utilization of exogenous labelled progesterone for the formation of androgens and estradiol by the human corpus luteum. In the follicular tissue, however, PGE2 showed an inhibitory effect on the formation of androgens and progesterone from exogenous labelled pregnenolone. No significant amounts of estrogens were biosynthesized in these experiments. These preliminary results must be confirmed by measurement of the endogenous steroidal concentrations in the tissues.  相似文献   

19.
D J Bolt 《Prostaglandins》1979,18(3):387-396
The ability of human chorionic gonadotropin (HCG) to reduce the luteolytic effect of prostaglandin (PGF2 alpha) was demonstrated in cycling ewes. As expected, treatment with 10 mg of PGF2 alpha alone on Day 10 of the estrous cycle exerted a potent negative effect on the function and structure of corpus luteum (CL) as indicated by reduced plasma progesterone, CL progesterone, and CL weight. However, the identical PGF2 alpha treatment failed to significantly reduce either luteal function or luteal weight when administered to ewes that were also treated with HCG on Days 9 and 10 of the estrous cycle. Treatment with HCG alone had a positive effect on CL as indicated by increased plasma progesterone, CL progesterone, and CL weight. Treatment with HCG did not render the CL totally insensitive to the negative effects of PGF2 alpha because plasma progesterone was reduced when the dose of PGF2 alpha was doubled. Whether CL regressed or continued to function after treatment with both HCG and PGF2 alpha appeared to depend upon a balance between the positive and negative effects of the two hormones.  相似文献   

20.
Expression of intercellular adhesion molecule-1 (ICAM-1) and the accumulation of monocytes/macrophages are inflammatory events that occur during PRL (PRL)-induced regression of the rat corpus luteum. Here we have compared the ability of prostaglandin F2alpha (PGF) and PRL to induce, in rat corpora lutea, inflammatory events thought to perpetuate luteal regression. Immature rats were ovulated with eCG-hCG and then hypophysectomized (Day 0), which resulted in a single cohort of persistent, functional corpora lutea. On Days 9-11, the rats received twice daily injections of saline, PGF (Lutalyse, 250 microg/injection), or PRL (312 microg/injection) to induce luteal regression. Surprisingly, luteal weight and plasma progestin concentrations (progesterone and 20alpha-dihydroprogesterone) did not differ between PGF-treated rats and controls; whereas both luteal weight and plasma progestins declined significantly in PRL-treated rats. Furthermore, corpora lutea of PGF-treated rats and controls contained relatively minimal ICAM-1 staining and few monocytes/macrophages. In contrast, but as expected, corpora lutea of PRL-treated rats stained intensely for ICAM-1 and contained numerous monocytes/macrophages. In an additional experiment, there was no indication that luteal prostaglandin F2alpha receptor mRNA diminished as a result of hypophysectomy. These findings suggest that prolactin, not PGF, induces the inflammatory events that accompany regression of the rat corpus luteum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号