首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang FP  Li Q  Zhou Y  Li MG  Xiao X 《Proteins》2003,53(4):908-916
The chitinase gene chi1 of Aeromonas caviae CB101 encodes an 865-amino-acid protein (with signal peptide) composed of four domains named from the N-terminal as an all-beta-sheet domain ChiN, a triosephosphate isomerase (TIM) catalytic domain, a function-unknown A region, and a putative chitin-binding domain (ChBD) composed of two repeated sequences. The N-terminal 563-amino-acid segment of Chi1 (Chi1DeltaADeltaChBD) shares 74% identity with ChiA of Serratia marcescens. By the homology modeling method, the three-dimensional (3D) structure of Chi1DeltaADeltaChBD was constructed. It fit the structure of ChiA very well. To understand fully the function of the C-terminal module of Chi1 (from 564 to 865 amino acids), two different C-terminal truncates, Chi1DeltaChBD and Chi1DeltaADeltaChBD, were constructed, based on polymerase chain reaction (PCR). Comparison studies of the substrate binding, hydrolysis capacity, and specificity among Chi1 and its two truncates showed that the C-terminal putative ChBD contributed to the insoluble substrate-protein binding and hydrolysis; the A region did not have any function in the insoluble substrate-protein binding, but it did have a role in the chitin hydrolysis: Deletion of the A region caused the enzyme to lose 30-40% of its activity toward amorphous colloidal chitin and soluble chitin, and around 50% toward p-nitrophenyl (pNP)-chitobiose pNP-chitotriose, and its activity toward low-molecular-weight chitooligomers (GlcNAc)3-6 also dropped, as shown by analysis of its digestion processes. This is the first clear demonstration that a domain or segment without a function in insoluble substrate-chitinase binding has a role in the digestion of a broad range of chitin substrates, including low-molecular-weight chitin oligomers. The reaction mode of Chi1 is also described and discussed.  相似文献   

2.
We have found that the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 produces an extracellular chitinase. The gene encoding the chitinase (chiA) was cloned and sequenced. The chiA gene was found to be composed of 3,645 nucleotides, encoding a protein (1,215 amino acids) with a molecular mass of 134,259 Da, which is the largest among known chitinases. Sequence analysis indicates that ChiA is divided into two distinct regions with respective active sites. The N-terminal and C-terminal regions show sequence similarity with chitinase A1 from Bacillus circulans WL-12 and chitinase from Streptomyces erythraeus (ATCC 11635), respectively. Furthermore, ChiA possesses unique chitin binding domains (CBDs) (CBD1, CBD2, and CBD3) which show sequence similarity with cellulose binding domains of various cellulases. CBD1 was classified into the group of family V type cellulose binding domains. In contrast, CBD2 and CBD3 were classified into that of the family II type. chiA was expressed in Escherichia coli cells, and the recombinant protein was purified to homogeneity. The optimal temperature and pH for chitinase activity were found to be 85 degrees C and 5.0, respectively. Results of thin-layer chromatography analysis and activity measurements with fluorescent substrates suggest that the enzyme is an endo-type enzyme which produces a chitobiose as a major end product. Various deletion mutants were constructed, and analyses of their enzyme characteristics revealed that both the N-terminal and C-terminal halves are independently functional as chitinases and that CBDs play an important role in insoluble chitin binding and hydrolysis. Deletion mutants which contain the C-terminal half showed higher thermostability than did N-terminal-half mutants and wild-type ChiA.  相似文献   

3.
Mammalian chitinase, a chitinolytic enzyme expressed by macrophages, has been detected in atherosclerotic plaques and is elevated in blood and tissues of guinea pigs infected with Aspergillus. Its normal physiological function is unknown. To understand how the enzyme interacts with its substrate, we have characterized the chitin-binding domain. The C-terminal 49 amino acids make up the minimal sequence required for chitin binding activity. The absence of this domain does not affect the ability of the enzyme to hydrolyze the soluble substrate, triacetylchitotriose, but abolishes hydrolysis of insoluble chitin. Within the minimal chitin-binding domain are six cysteines; mutation of any one of these to serine results in complete loss of chitin binding activity. Analysis of purified recombinant chitin-binding domain revealed the presence of three disulfide linkages. The recombinant domain binds specifically to chitin but does not bind chitosan, cellulose, xylan, beta-1, 3-glucan, beta-1,3-1,4-glucan, or mannan. Fluorescently tagged chitin-binding domain was used to demonstrate chitin-specific binding to Saccharomyces cerevisiae, Candida albicans, Mucor rouxii, and Neurospora crassa. These experiments define structural features of the minimal domain of human chitinase required for both specifically binding to and hydrolyzing insoluble chitin and demonstrate relevant binding within the context of the fungal cell wall.  相似文献   

4.
Chitinase A1 from Bacillus circulans WL-12 comprises an N-terminal catalytic domain, two fibronectin type III-like domains, and a C-terminal chitin-binding domain (ChBD). In order to study the biochemical properties and structure of the ChBD, ChBD(ChiA1) was produced in Escherichia coli using a pET expression system and purified by chitin affinity column chromatography. Purified ChBD(ChiA1) specifically bound to various forms of insoluble chitin but not to other polysaccharides, including chitosan, cellulose, and starch. Interaction of soluble chitinous substrates with ChBD(ChiA1) was not detected by means of nuclear magnetic resonance and isothermal titration calorimetry. In addition, the presence of soluble substrates did not interfere with the binding of ChBD(ChiA1) to regenerated chitin. These observations suggest that ChBD(ChiA1) recognizes a structure which is present in insoluble or crystalline chitin but not in chito-oligosaccharides or in soluble derivatives of chitin. ChBD(ChiA1) exhibited binding activity over a wide range of pHs, and the binding activity was enhanced at pHs near its pI and by the presence of NaCl, suggesting that the binding of ChBD(ChiA1) is mediated mainly by hydrophobic interactions. Hydrolysis of beta-chitin microcrystals by intact chitinase A1 and by a deletion derivative lacking the ChBD suggested that the ChBD is not absolutely required for hydrolysis of beta-chitin microcrystals but greatly enhances the efficiency of degradation.  相似文献   

5.
Chuang HH  Lin HY  Lin FP 《The FEBS journal》2008,275(9):2240-2254
The functional and structural significance of the C-terminal region of Bacillus licheniformis chitinase was explored using C-terminal truncation mutagenesis. Comparative studies between full-length and truncated mutant molecules included initial rate kinetics, fluorescence and CD spectrometric properties, substrate binding and hydrolysis abilities, thermostability, and thermodenaturation kinetics. Kinetic analyses revealed that the overall catalytic efficiency, k(cat)/K(m), was slightly increased for the truncated enzymes toward the soluble 4-methylumbelliferyl-N-N'-diacetyl chitobiose or 4-methylumbelliferyl-N-N'-N'-triacetyl chitotriose or insoluble alpha-chitin substrate. By contrast, changes to substrate affinity, K(m), and turnover rate, k(cat), varied considerably for both types of chitin substrates between the full-length and truncated enzymes. Both truncated enzymes exhibited significantly higher thermostabilities than the full-length enzyme. The truncated mutants retained similar substrate-binding specificities and abilities against the insoluble substrate but only had approximately 75% of the hydrolyzing efficiency of the full-length chitinase molecule. Fluorescence spectroscopy indicated that both C-terminal deletion mutants retained an active folding conformation similar to the full-length enzyme. However, a CD melting unfolding study was able to distinguish between the full-length and truncated mutant molecules by the two phases of apparent transition temperatures in the mutants. These results indicate that up to 145 amino acid residues, including the putative C-terminal chitin-binding region and the fibronectin (III) motif of B. licheniformis chitinase, could be removed without causing a seriously aberrant change in structure and a dramatic decrease in insoluble chitin hydrolysis. The results of the present study provide evidence demonstrating that the binding and hydrolyzing of insoluble chitin substrate for B. licheniformis chitinase was not dependent solely on the putative C-terminal chitin-binding region and the fibronectin (III) motif.  相似文献   

6.
C-Terminal truncation mutagenesis was used to explore the functional and structural significance of the C-terminal region of Aeromonas caviae D1 chitinase (AcD1ChiA). Comparative studies between the engineered full-length AcD1ChiA and the truncated mutant (AcD1ChiAK606) included initial rate kinetics, fluorescence and circular dichroism (CD) spectrometric properties, and substrate binding and hydrolysis abilities. The overall catalytic efficiency, k cat/K M, of AcD1ChiAK606 with the 4MU-(GlcNAc)2 and the 4MU-(GlcNAc)3 chitin substrates was 15–26% decreased. When compared with AcD1ChiA, the truncated mutant AcD1ChiAK606 maintained 80% relative substrate-binding ability and about 76% of the hydrolyzing efficiency against the insoluble α-chitin substrate. Both fluorescence and CD spectroscopy indicated that AcD1ChiAK606 retained the same conformation as AcD1ChiA. These results indicated that removal of the C-terminal 259 amino acid residues, including the putative chitin-binding motif and the A region (a motif of unknown function) of AcD1ChiA, did not seriously affect the enzyme structure integrity as well as activity. The present study provided evidences illustrating that the binding and hydrolyzing of insoluble chitin substrates by AcD1ChiA were not absolutely dependent on the putative C-terminal chitin-binding domain and the function-unknown A region.  相似文献   

7.
The chitinolytic bacterium Aeromonas hydrophila strain SUWA-9, which was isolated from freshwater in Lake Suwa (Nagano Prefecture, Japan), produced several kinds of chitin-degrading enzymes. A gene coding for an endo-type chitinase (chiA) was isolated from SUWA-9. The chiA ORF encodes a polypeptide of 865 amino acid residues with a molecular mass of 91.6 kDa. The deduced amino acid sequence showed high similarity to those of bacterial chitinases classified into family 18 of glycosyl hydrolases. chiA was expressed in Escherichia coli and the recombinant chitinase (ChiA) was purified and examined. The enzyme hydrolyzed N-acetylchitooligomers from trimer to pentamer and produced monomer and dimer as a final product. It also reacted toward colloidal chitin and chitosan with a low degree of deacetylation. When cells of SUWA-9 were grown in the presence of colloidal chitin, a 60 kDa-truncated form of ChiA that had lost the C-terminal chitin-binding domain was secreted.  相似文献   

8.
Four exposed aromatic residues, two in the N-terminal domain (Trp-69 and Trp-33) and two in the catalytic domain (Trp-245 and Phe-232) of Serratia marcescens chitinase A, are linearly aligned with the deep catalytic cleft. To investigate the importance of these residues in the binding activity and hydrolyzing activity against insoluble chitin, site-directed mutagenesis to alanine was carried out. The substitution of Trp-69, Trp-33, or Trp-245 significantly reduced the binding activity to both highly crystalline beta-chitin and colloidal chitin. The substitution of Phe-232, which is located closest to the catalytic cleft, did not affect the binding activity. On the other hand, the hydrolyzing activity against beta-chitin microfibrils was significantly reduced by the substitution of any one of the four aromatic residues including Phe-232. None of the mutations reduced the hydrolyzing activity against soluble substrates. These results clearly demonstrate that the four exposed aromatic residues are essential determinants for crystalline chitin hydrolysis. Three of them, two in the N-terminal domain and one in the catalytic domain, play vital roles in the chitin binding. Phe-232 appeared to be important for guiding the chitin chain into the catalytic cleft. Based on these observations, a model for processive hydrolysis of crystalline chitin by chitinase A is proposed.  相似文献   

9.
Manduca sexta (tobacco hornworm) chitinase is a glycoprotein that consists of an N-terminal catalytic domain, a Ser/Thr-rich linker region, and a C-terminal chitin-binding domain. To delineate the properties of these domains, we have generated truncated forms of chitinase, which were expressed in insect cells using baculovirus vectors. Three additional recombinant proteins composed of the catalytic domain fused with one or two insect or plant chitin-binding domains (CBDs) were also generated and characterized. The catalytic and chitin-binding activities are independent of each other because each activity is functional separately. When attached to the catalytic domain, the CBD enhanced activity toward the insoluble polymer but not the soluble chitin oligosaccharide primarily through an effect on the Km for the former substrate. The linker region, which connects the two domains, facilitates secretion from the cell and helps to stabilize the enzyme in the presence of gut proteolytic enzymes. The linker region is extensively modified by O-glycosylation and the catalytic domain is moderately N-glycosylated. Immunological studies indicated that the linker region, along with elements of the CBD, is a major immunogenic epitope. The results support the hypothesis that the domain structure of insect chitinase evolved for efficient degradation of the insoluble polysaccharide to soluble oligosaccharides during the molting process.  相似文献   

10.
Chitin is an abundant renewable polysaccharide, next only to cellulose. Chitinases are important for effective utilization of this biopolymer. Chitinase D from Serratia proteamaculans (SpChiD) is a single domain chitinase with both hydrolytic and transglycosylation (TG) activities. SpChiD had less of hydrolytic activity on insoluble polymeric chitin substrates due to the absence of auxiliary binding domains. We improved catalytic efficiency of SpChiD in degradation of insoluble chitin substrates by fusing with auxiliary domains like polycystic kidney disease (PKD) domain and chitin binding protein 21 (CBP21). Of the six different SpChiD fusion chimeras, two C-terminal fusions viz. ChiD+PKD and ChiD+CBP resulted in improved hydrolytic activity on α- and β-chitin, respectively. Time-course degradation of colloidal chitin also confirmed that these two C-terminal SpChiD fusion chimeras were more active than other chimeras. More TG products were produced for a longer duration by the fusion chimeras ChiD+PKD and PKD+ChiD+CBP.  相似文献   

11.
The chitinase gene (chiA71) from Bacillus thuringiensis subsp. pakistani consists of an open reading frame of 1,905 nucleotides encoding 635 amino acid residues with an estimated molecular mass of 71 kDa. Comparison of the deduced amino acid sequence of the mature enzyme to other microbial chitinases shows a putative catalytic domain and a region with conserved amino acids similar to that of the type III module of fibronectin and a chitin-binding domain. By activity detection of chitinase on SDS-PAGE after renaturation, the molecular mass of protein bands with chitinase activity were 66, 60, 47, and 32 kDa. The N-terminal amino acid sequence of each chitinase activity band was the same (Asp-Ser-Pro-Lys-Gln), suggesting that the 60-, 47-, and 32-kDa chitinases were derived from the 66-kDa chitinase by processing step(s) at the C-terminus. The enzyme was identified as an exochitinase, since it generated N-acetylglucosamine from early stage of colloidal chitin hydrolysis. The crude protein (2.3-18.4 mg/ml), containing chitinase at final activities of 8, 16, 32, and 64 mU/ml, was toxic to Aedes aegypti larvae and caused mortalities of 7.5, 15.0, 51.3, and 70.0% respectively, but the same amount of crude protein from a B. thuringiensis subsp. pakistani mutant lacking chitinase was not toxic.  相似文献   

12.
The pchA gene encoding chitinase A (PchA) from a Pythium porphyrae cell-wall-degrading marine bacterium, Pseudomonas sp. PE2, was cloned and characterized. The deduced PchA was a modular enzyme composed of an N-terminal signal peptide, a glycoside hydrolase family 18 catalytic domain that was responsible for the chitinase activity, the chitin-binding domains (ChBDs), and the carbohydrate-binding modules (CBM). The amino acid sequence of ChBD(PchA) was highly conserved in the CBM family 12 that also accommodates ChBDs without an AKWWTQG motif, a domain commonly found in bacterial chitinase and Streptomyces griseus protease C. Interestingly, CBM(PchA) showed significant sequence homology to the C-terminal region of endoglucanase B from Cellvibrio mixtus, which is a member of CBM family 6. This is the first report of a chitinase possessing a domain with high similarity to CBM family 6. Deletion analysis indicated clearly that ChBD(PchA) might play an important role in the binding of native chitin and chitosan, but not processed chitin. CBM(PchA) also appeared to play such a role in the binding of xylan and Avicel. These results suggest that the C-terminal region of PchA might be a key component in the binding of chitin in the cell walls of P. porphyrae or other structural components of marine organisms.  相似文献   

13.
Bacillus licheniformis SK-1 naturally produces chitinase 72 (CHI72) with two truncation derivatives at the C-terminus, one with deletion of the chitin binding domain (ChBD), and the other with deletions of both fibronectin type III domain (FnIIID) and ChBD. We constructed deletions mutants of CHI72 with deletion of ChBD (CHI72ΔChBD) and deletions of both FnIIID and ChBD (CHI72ΔFnIIIDΔChBD), and studied their activity on soluble, amorphous and crystalline substrates. Interestingly, when equivalent amount of specific activity of each enzyme on soluble substrate was used, the product yield from CHI72- ΔChBD and CHI72ΔFnIIIDΔChBD on colloidal chitin was 2.5 and 1.6 fold higher than CHI72, respectively. In contrast, the product yield from CHI72ΔChBD and CHI72ΔFnIIID- ΔChBD on Β-chitin reduced to 0.7 and 0.5 fold of CHI72, respectively. These results suggest that CHI72 can modulate its substrate specificities through truncations of the functional domains at the C-terminus, producing a mixture of enzymes with elevated efficiency of hydrolysis.  相似文献   

14.
The Clostridium paraputrificum chiB gene, encoding chitinase B (ChiB), consists of an open reading frame of 2,493 nucleotides and encodes 831 amino acids with a deduced molecular weight of 90,020. The deduced ChiB is a modular enzyme composed of a family 18 catalytic domain responsible for chitinase activity, two reiterated domains of unknown function, and a chitin-binding domain (CBD). The reiterated domains are similar to the repeating units of cadherin proteins but not to fibronectin type III domains, and therefore they are referred to as cadherin-like domains. ChiB was purified from the periplasm fraction of Escherichia coli harboring the chiB gene. The molecular weight of the purified ChiB (87,000) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, was in good agreement with the value (86,578) calculated from the deduced amino acid sequence excluding the signal peptide. ChiB was active toward chitin from crab shells, colloidal chitin, glycol chitin, and 4-methylumbelliferyl beta-D-N,N'-diacetylchitobioside [4-MU-(GlcNAc)2]. The pH and temperature optima of the enzyme were 6.0 and 45 degrees C, respectively. The Km and Vmax values for 4-MU-(GlcNAc)2 were estimated to be 6.3 microM and 46 micromol/min/mg, respectively. SDS-PAGE, zymogram, and Western blot analyses using antiserum raised against purified ChiB suggested that ChiB was one of the major chitinase species in the culture supernatant of C. paraputrificum. Deletion analysis showed clearly that the CBD of ChiB plays an important role in hydrolysis of native chitin but not processed chitin such as colloidal chitin.  相似文献   

15.
利用毕赤酵母表达系统表达芥菜几丁质酶基因BjCHI1及其两个衍生基因BjCHI2和BjCHI3,获得相应的蛋白质。经FPLC纯化后,测定了3种蛋白质的几丁质酶活性,发现它们均能降解CM-chitin-RBV和胶状几丁质。以CM-chitin-RBV为底物时的Km值分别为0.799mg/mL、0.544mg/mL和0.793mg/mL,差别甚微。而以胶状几丁质为底物时的Km值分别为0.281mg/mL、0.388mg/mL和1.643mg/mL,表现一定的差别,说明几丁质结合域影响了酶对不溶性底物的亲和力。3种蛋白中,只有BjCHI1在33μg/mL以上浓度具有凝集素活性,而BjCHI2和BjCHI3的浓度即使高达800μg/mL也无凝集素活性,表明2个几丁质结合域是BjCHI1具有凝集素活性的必需条件,这是植物中发现的第一个兼有几丁质酶和凝集素活性的蛋白质。   相似文献   

16.
A G561 mutant of the Aeromonas caviae chitinase ChiA was made by PCR site-directed deletion mutagenesis in order to study the role of the 304 C-terminal amino acid residues of ChiA in the enzymatic hydrolysis of chitin. The recombinant ChiAG561 encoded on a 1.6-kb DNA fragment of A. caviae chiA was expressed in a heterologous Escherichia coli host using the pET20b(+) expression system. The His-Tag-affinity-purified recombinant ChiAG561 had a calculated molecular mass of 63,595 Da, which was consistent with the 67,000 Da estimated by SDS-PAGE. The G561 deletion mutant enzyme had the same optimum pH (6.5) as the full-length ChiA and a lower optimum temperature (37 degrees C instead of 42.5 degrees C). Biochemical properties of the recombinant ChiAG561 suggested that deletion of the 304 C-terminal amino acid residues of ChiA did not significantly affect ChiA enzyme activity. However, compared to the full-length ChiA, the mutant chitinase had a ten-fold higher relative activity with 4-methylumbelliferyl-N-N'-N"-triacetylchitotriose [4-MU-(GlcNAc)3] as a substrate, and higher rates of hydrolysis with both chitin and colloidal chitin substrates. Results obtained from this study suggest that the active region of A. caviae ChiA is located in the region before G561 of the protein molecule.  相似文献   

17.
Salmonella contain genes annotated as chitinases; however, their chitinolytic activities have never been verified. We now demonstrate such an activity for a chitinase assigned to glycoside hydrolase family 18 encoded by the SL0018 (chiA) gene in Salmonella enterica Typhimurium SL1344. A C-terminal truncated form of chiA lacking a putative chitin-binding domain was amplified by PCR, cloned and expressed in Escherichia coli BL21 (DE3) with an N-terminal (His)(6) tag. The purified enzyme hydrolyzes 4-nitrophenyl N,N'-diacetyl-β-D-chitobioside, 4-nitrophenyl β-D-N,N',N″-triacetylchitotriose and carboxymethyl chitin Remazol Brilliant Violet but does not act on 4-nitrophenyl N-acetyl-β-D-glucosaminide, peptidoglycan or 4-nitrophenyl β-D-cellobioside. Enzyme activity was also characterized by directly monitoring product formation using (1)H-nuclear magnetic resonance which showed that chitin is a substrate with the release of N,N'-diacetylchitobiose. Hydrolysis occurs with the retention of configuration and the enzyme acts on only the β-anomers of chitooligosaccharide substrates. The enzyme also released N-acetyllactosamine disaccharide from Galβ1 → 4GlcNAcβ-O-(CH(2))(8)CONH(CH(2))(2)NHCO-tetramethylrhodamine, a model substrate for LacNAc terminating glycoproteins and glycolipids.  相似文献   

18.
19.
Chitinase Chit42 from Trichoderma harzianum CECT 2413 is considered to play an important role in the biocontrol activity of this fungus against plant pathogens. Chit42 lacks a chitin-binding domain (ChBD). We have produced hybrid chitinases with stronger chitin-binding capacity by fusing to Chit42 a ChBD from Nicotiana tabacum ChiA chitinase and the cellulose-binding domain from cellobiohydrolase II of Trichoderma reesei. The chimeric chitinases had similar activities towards soluble substrate but higher hydrolytic activity than the native chitinase on high molecular mass insoluble substrates such as ground chitin or chitin-rich fungal cell walls.  相似文献   

20.
Alteromonas sp. strain O-7 secretes chitinase A (ChiA), chitinase B (ChiB), and chitinase C (ChiC) in the presence of chitin. A gene cluster involved in the chitinolytic system of the strain was cloned and sequenced upstream of and including the chiA gene. The gene cluster consisted of three different open reading frames organized in the order chiD, cbp1, and chiA. The chiD, cbp1, and chiA genes were closely linked and transcribed in the same direction. Sequence analysis indicated that Cbp1 (475 amino acids) was a chitin-binding protein composed of two discrete functional regions. ChiD (1,037 amino acids) showed sequence similarity to bacterial chitinases classified into family 18 of glycosyl hydrolases. The cbp1 and chiD genes were expressed in Escherichia coli, and the recombinant proteins were purified to homogeneity. The highest binding activities of Cbp1 and ChiD were observed when alpha-chitin was used as a substrate. Cbp1 and ChiD possessed a chitin-binding domain (ChtBD) belonging to ChtBD type 3. ChiD rapidly hydrolyzed chitin oligosaccharides in sizes from trimers to hexamers, but not chitin. However, after prolonged incubation with large amounts of ChiD, the enzyme produced a small amount of (GlcNAc)(2) from chitin. The optimum temperature and pH of ChiD were 50 degrees C and 7.0, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号