首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mass production of sporangiospores (spores) of Rhizopus oryzae NBRC 5384 (identical to NRRL 395 and ATCC 9363) on potato‐dextrose‐agar medium was studied aiming at starting its L (+)‐lactic acid fermentation directly from spore inoculation. Various parameters including harvest time, sowed spore density, size of agar plate, height of air space, and incubation mode of plate (agar‐on‐bottom or agar‐on‐top) were studied. Ordinarily used shallow Petri dishes were found out to be unsuitable for the full growth of R. oryzae sporangiophores. In a very wide range of the sowed spore density, the smaller it was, the greater the number of the harvested spores was. It was also interesting to find out that R. oryzae grown downward vertically with a deep air space in an agar‐on‐top mode gave larger amount of spores than in an agar‐on‐bottom mode at 30°C for 7‐day cultivation. Scale‐up of the agar plate culture from 26.4 to 292 cm2 was studied, resulting in the proportional relationship between the number of the harvested spores/plate and the plate area in the deep Petri dishes. The number of plates of 50 cm in diameter needed for 100 m3 industrial submerged fermentation started directly from 2 × 105 spores/mL inoculum size was estimated as about 6, from which it was inferred that such a fermentation would be feasible. Designing a 50 cm plate and a method of spreading and collecting the spores were suggested. Bioprocess technological significance of the “full‐scale industrial submerged fermentation started directly from spore inoculation omitting pre‐culture” has been discussed. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:876–881, 2013  相似文献   

2.
 Exposure of spores of Glomus clarum NT4 to solutions of chloramine-T (2.5–10% w/v) for 10–120 min failed to fully decontaminate all spores. Scanning electron microscopy did not show the presence of contaminants on treated spores, but transmission electron microscopy revealed bacterial cells embedded within the outer spore wall layer. Bacteria that remained protected within the spore walls were detected only when the spores were placed on appropriate media. Nutrient agar and tryptic soy agar supported relatively high levels of contaminant growth and were regarded as good media for assessing contamination, whereas the detection of contaminant growth on water agar required prolonged incubation. Contamination and germination of G. clarum NT4 spores following decontamination treatments were dependent on spore age. Generally, lower concentrations of chloramine-T and shorter incubation periods were required to reduce contamination of freshly harvested spores than of mature spores. Exposure to 10% chloramine-T for 120 min was required to reduce the levels of contamination of mature spores to ≤10%. Unfortunately, spore germination was compromised by rigorous decontamination treatments, thus the success of any decontamination procedure should be evaluated prior to its routine use. Moreover, if the interpretation of experimental results rests on the assumption of true surface sterility of VAMF spores, we suggest that the axenic condition of spores be confirmed prior to experimentation on a medium that encourages contaminant growth. Accepted: 12 July 1995  相似文献   

3.
AIMS: The effect of spore density on the germination (time-to-germination, percent germination) of Bacillus megaterium spores on tryptic soy agar was determined using direct microscopic observation. METHODS AND RESULTS: Inoculum size varied from approximately 10(3) to 10(8) cfu ml(-1) in a medium where pH=7 and the sodium chloride concentration was 0.5% w/v. Inoculum size was measured by global inoculum size (the concentration of spores on a microscope slide) and local inoculum size (the number of spores observed in a given microscope field of observation). Both global and local inoculum sizes had a significant effect on time-to-germination (TTG), but only the global inoculum size influenced the percentage germination of the observed spores. CONCLUSIONS: These results show that higher concentrations of Bacillus megaterium spores encourage more rapid germination and more spores to germinate, indicating that low spore populations do not behave similarly to high spore populations. SIGNIFICANCE AND IMPACT OF THE STUDY: A likely explanation for the inoculum size-dependency of germination would be chemical signalling or quorum sensing between Bacillus spores.  相似文献   

4.
ABSTRACT

In this study, we optimised the conditions for the production of micropropagules of Trichoderma harzianum EGE-K38 in static liquid culture in Modified Czapec Medium (MCM) containing 8?g/L glucose in an integrated tray bioreactor system designed by our research group. Incubation temperature, air flow rate, inoculum spore concentration, inoculation size, medium volume and the use of spores or agar plugs containing mycelia as inoculum were individually studied as one factor at a time. The maximum micropropagule count was 5.2?±?0.2?×?109?cfu/mL and dry cell weight was 17?±?2?g/L. For the subsequent drying processes, the maximum drying yield percentage ((viable micropropagule counts after drying/viable cells before drying)*100) after drying of micropropagules was 23.30% (cfu/cfu). Results obtained from our integrated tray bioreactor system showed that static liquid culture fermentation offers potential for industrial scale fungal BCAs production.  相似文献   

5.
Bean anthracnose caused by Colletotrichum lindemuthianum is a serious seed borne disease. For devising an effective management strategy, the efficacy of different bioagents, viz. Trichoderma viride, Trichoderma harzianum, Trichoderma hamatum and Gliocladium virens conducted under in vitro and in vivo conditions revealed maximum inhibition of mycelial growth in dual culture (59.48%) and inverted plate (55.98%) with T. viride. All the bioagents overgrew the pathogen and the principal mechanism of mycoparisitism observed was coiling, brusting and disintegration of pathogen hyphae. Culture filtrate from T. viride was found best as it completely inhibited radial growth at 25 and 50% concentration and reduced the spore germination of test fungus significantly. However, lower concentrations of culture filtrate from all bioagents showed little effect on spore germination. Seed application of bioagents was found better as compared to soil application. A maximum increase in seed germination and inhibition of seed borne infection was observed with T. viride followed by T. harzianum under pot culture conditions. T. viride has the maximum potentiality to suppress the spore germination, mycelial growth, seed borne infection of C. lindemuthianum and increased seed germination when compared with the other biocontrol agents.  相似文献   

6.
Spores from four Frankia strains were isolated and purified to homogeneity. The purified spores were biochemically and physiologically characterized and compared to vegetative cells. Frankia spores exhibited low levels of endogenous respiration that were at least ten-fold lower than the endogenous respiration rate of vegetative cells. The macromolecular content of purified spores and vegetative cells differed. One striking difference among the Frankia spores was their total DNA content. From DAPI staining experiments, only 9% of strain ACN1AG spore population contained DNA. With strains DC12 and EuI1c, 92% and 67% of their spore population contained DNA. The efficiency of spore germination was correlated to the percentage of the spore population containing DNA. These results suggest that the majority of strain ACN1AG spores were immature or nonviable. The presence of a solidifying agent inhibited the initial stages of spore germination, but had no effect once the process had been initiated. The optimal incubation temperature for spore germination was 25°C and 30°C for strains DC12 and EuI1c, respectively. A mild heat shock increased the efficiency of spore germination, while root extracts also stimulated spore germination. These results suggest that strains DC12 and EuI1c may be suitable strains for further germination and genetic studies.  相似文献   

7.
Bip T containing about 109 spores of Trichoderma viride, applied to peat 10 days before inoculation of substrate with Phytophthora cryptogea, effectively controlled Phytophthora foot rot of gerbera. The biocide in dosage of 300 and 600 g/m3 inhibited the development of the pathogen in substrate. The other potential antagonists T. hamatum and T. viride applied into peat at a dosage of 600 g/m3, decreased Phytophthora foot rot development.  相似文献   

8.
In shake flask and fermentor studies, various media components and culture inocula were tested to improve P. fumosoroseus spore production rates, yield and stability. To evaluate inoculum potential and inoculum scale-up for fermentor studies, conidia and liquid culture-produced spores of various strains of P. fumosoroseus were compared as inoculum. Inoculation of liquid cultures with blastospores at concentrations of at least 1×106 spores mL-1 resulted in the rapid production of high concentrations of blastospores (∼1×109 spores mL-1, 48 h fermentation time) for all strains tested. The rapid germination rate of blastospores (90% after 6 h incubation) compared to conidia (>90% after 16 h incubation) and the use of higher inoculum rates reduced the fermentation time from 96 to 48 h for maximal spore yields. A comparison of various complex nitrogen sources showed that liquid media supplemented with acid hydrolyzed casein or yeast extract supported the production of high concentrations of blastospores that were significantly more desiccation-tolerant (79-82% survival after drying) when compared to blastospores produced in media supplemented with other nitrogen sources (12-50% survival after drying). For rapid spore production, requirements for trace metals and vitamin supplementation were dependent on the type of hydrolyzed casein used in the medium. Fermentor studies with two strains of P. fumosoroseus showed that high concentrations (1.3-1.8×109 spores mL-1) of desiccation-tolerant blastospores could be produced in 48-h fermentations. These studies have demonstrated that the infective spores of various strains of the fungal bioinsecticide Paecilomyces fumosoroseus can be rapidly produced using deep-tank, liquid culture fermentation techniques.  相似文献   

9.
A simple and novel procedure for the acceleration of fungal spore production was developed. A net of hydrophobic polymer such as polypropylene (PP) and polytetrafluoroethylene (PTFE) was embedded in a nutrient agar plate, and effect of the polymer net on spore production by 6 fungal strains, such as Aspergillus terreus, Penicillium multicolor, and Trichoderma virens were estimated. The effect of hydrophobic polymer net was insufficient in a liquid-surface immobilization (LSI) system with fungal cells immobilized on a ballooned microsphere layer formed on a liquid medium surface. On the other hand, the embedding of a PTFE net in an agar plate remarkably enhanced the spore production in all 6 strains tested to produce 2.0–8.5 × 107 spores/cm2-agar plate surface. Especially, the spore production by A. terreus ATCC 20542 in the presence of a PTFE net was 7.7 times as much than that in no net. Positive correlations between the hydrophobicity of net and the spore production were observed in all 6 strains (R2, 0.653–0.999).  相似文献   

10.
Rice bran was superior to other proteinaceous substrates for protease production by Rhizopus oligosporus ACM 145F in solid-state fermentation. Maximum protease yield was after 72 h. The optimal initial moisture content was 47% (a w=0.97). Dried, ground and resuspended fermented rice was the most pratical and effective inoculum preparation, although, in the laboratory, spore suspensions prepared directly from agar slants were more convenient. Inoculum density (from 102 to 107 spores/g substrate) and age (3, 5, 7 and 9 days) had little effect on protease yield.The authors are with the Department of Chemical Engineering, The University of Queensland, Brisbane, Queensland, 4072, Australia  相似文献   

11.
Equivalent numbers of spores were produced when the microsporidan Nosema necatrix was propagated in either Trichoplusia ni or Heliothis zea. Maximum spore production was obtained at an inoculum level of 1 × 105 spores/ml. Larvae inoculated 5 days post-hatching contained 1.6 × 109 spores/gram larva after an incubation period of 21 days. Temperature optima for the parasite are 21–26°C in both hosts.  相似文献   

12.
Under solid-state and liquid-state cultivations, the entomopathogenic fungus Verticillium lecanii F091 produced different types of spores. The aerial spores (AS) on cooked rice formed clusters on the tips of conidiophores, while the submerged spores (SS) were dispersed in the medium. The aerial spore appeared relatively uniform in size, which was 6.1 ± 0.9 m long, and 2.2 ± 0.3 m wide. The submerged spore varied in shape and size, with a mean length of 5.0 ± 1.0 m and width of 1.9 ± 0.5 m. Under scanning electron microscopy, the AS had a tendency to have rough, brittle surface characteristics; however, the SS appeared smooth on the surface. These spores were compared in two different germination media. On SMAY (Sabouraud maltose, agar, yeast extract, and neopeptone) coated coverslips, the AS did not show germ tubes until 8 h of incubation; while the SS showed many germ tubes. However, over 90% spore germination ratio was reached for both types of spores at 18-h of incubation. In the liquid medium, the SS germinated rapidly and many spores even produced spores on the spores; while the AS germinated, grew, and branched in the submerged culture gradually, and some sporulated on the tips of the short branches, or on the mycelia until 18 h of incubation. Evidently, the germination, growth patterns of aerial or submerged spores differed greatly under the different culture conditions. The virulence of the pathogen in relation to the type of spore of V. lecanii is discussed.  相似文献   

13.
The influence of inoculum size on aflatoxin B1 (AFB1), zearalenone (ZEN) and deoxynivalenol (DON) production was examined on irradiated corn kernels. Spore concentrations were determined in serial dilutions and adjusted to 10,102,103,105 and 106 spores/ml. Aflatoxin B1 production was dependent on the inoculum size. The high levels of aflatoxin B1 produced byA. parasiticus (21 and 30 mg/kg) were obtained with 102 and 103 spores/ml after 35 and 20 days incubation. There was no spore concentration influence on zearalenone and deoxynivalenol production after 10, 20 and 35 days incubation. At 28°C and 0.97 water activity (aw), the mean levels of zearalenone production were 382, 267 and 520 μg/kg and the mean levels on deoxynivalenol production were 697,465 and 782 μg/kg.  相似文献   

14.
Sporulation in Bacillus megaterium var phosphaticum (PB — 1) was induced using modified nutrient media. This modified medium induced sporulation within 36 h. After spore induction the spores were kept under refrigerated (5°C) and room temperature (32°C) for five months and survival of spores was studied at 15 days intervals by plating them in nutrient agar medium. It was observed that there was not much variation in the storage temperature (5°C & 32°C). The spore cells of Bacillus megaterium var phosphaticum (PB — 1) were observed up to five months of storage under refrigerated (5°C) and room temperature (32°C). Regeneration of spore cells into vegetative cells was studied in tap water, rice gruel, nutrient broth, sterile lignite and sterile water at different concentrations of spore inoculum. The multiplication of sporulated Bacillus megaterium var phosphaticum culture was fast and reached its maximum (29.5 × 108 cfu ml−1) in nutrient broth containing 5 per cent inoculum level.  相似文献   

15.
The influence of basic physiological factors on the quality of inocula and L(+)-lactic acid production by Rhizopus arrhizus CCM 81 09 were studied. The most effective preparation of the spores (5 × 107 spores/ml) and subsequent good lactate production was achieved on the agar medium with soil extract and malt agar. The optimum initial amount of active spores for inoculation was 103–104 spores/ml. The preparation of inoculum required intensive stirring with lower aeration and pH maintained in the range from 4.8 to 6.0 by the addition of CaCO3. The maximum yield of lactic acid production was achieved by using 5% (v/v) of 24-h-old inoculum. The intensity of lactic acid production in the inoculum was proportional to its production in the subsequent steps of fermentation and can be used as a fast control of the physiological state of the producers.  相似文献   

16.
A new medium, designated HV agar, containing soil humic acid as the sole source of carbon and nitrogen was developed.The HV agar was superior to other currently used media, including colloidal chitin agar, glycerol-arginine agar and starch-casein-nitrate agar, for the isolation and enumeration of soil actinomycetes: It allowed the growth of the largest numbers of actinomycete colonies belonging to each genus of Streptomyces, Micromonospora, Microbispora, Streptosporangium, Nocardia, Dactylosporangium, Microtetraspora and Thermomonospora on the plate, while restricting the development of true bacteria. The HV agar supported adequate growth and good sporulation for these actinomycetes.Even when spore suspensions were used as the inoculum, the HV agar produced remarkably larger numbers of actinomycetes, especially strains of the genera Micromonospora, Microbispora, Streptosporangium, Dactylosporangium and Saccharomonospora, than did glycerol-arginine agar. It was found that the spores of these actinomycetes were activated upon germination by treatment at 20°C for 30 min with a O.2% solution of humic acid prior to incubation.  相似文献   

17.
The effects of temperature (4–20°C), relative humidity (RH, 0–100%), pH (3–7), availability of nutrients (0–5 g/l sucrose) and artificial light (0–494 μmol/m2/s) on macroconidial germination of Fusarium graminearum were studied. Germ tubes emerged between 2 and 6 h after inoculation at 100% RH and 20°C. Incubation in light (205 ± 14 μmol/m/s) retarded the germination for approximately 0.5 h in comparison with incubation in darkness. The times required for 50% of the macroconidia to germinate were 3.5 h at 20°C, 5.4 h at 14°C and 26.3 h at 4°C. No germination was observed after an incubation period of 18 h at 20°C in darkness at RH less than 80%. At RH greater than 80%, germination increased with humidity. Germination was observed when macroconidia were incubated in glucose (5 g/l) or sucrose (concentration range from 2.5 × 10?4 to 5 g/l) whereas no germination was observed when macroconidia were incubated in sterile deionized water up to 22 h. Macroconidia germinated quantitatively within 18 h at pH 3–7. Repeated freezing (?15°C) and thawing (20°C) water agar plates with either germinated or non‐germinated macroconidia for up to five times did not prevent fungal growth after thawing. However, the fungal growth rate of mycelium was negatively related to the number of freezing events the non‐germinated macroconidia experienced. The fungal growth rate of mycelium was not significantly affected by the number of freezing events the germinated spores experienced. Incubation of macroconidia at low humidity (0–53% RH) suppressed germination and decreased the viability of the spores.  相似文献   

18.
The optimum temperature for growth and sporulation of Colletotrichum gloeosporioides from Hevea brasiliensis was between 26 and 32 oC, whereas spore germination exceeded 90% between 21.5 and 30.5 oC. Germination decreased in culture after 3 days, and on exposure of spores to sunlight or oven heat (46 oC) for 10 min. Spore viability and germination were sensitive to atmospheric humidity; at 99% r.h. germination was half that at 100% r.h. and was negligible below 97% r.h. Germination decreased by up to 30% after 3 h storage at 80% r.h. Continuous light favoured spore production in vitro, but spores produced in the dark had a higher percentage germination. No differences were detected between the numbers of spores germinating on leaves of different ages, although there were slightly more on susceptible cultivars and in the presence of extracts of uninfected susceptible leaves. Extracts from, infected leaves depressed spore germination, as did concentrations above 5 times 105 spores/ml. The highest % germination was observed when naturally infected leaves were dry-stored for up to 20 days and then incubated for 2 days in a moist chamber.  相似文献   

19.
Inoculating whole carrot roots at 4°C with mycelial/agar discs of the grey mould fungus Botrytis cinerea gives a measure of their resistance and hence storage potential to this pathogen, but results are not obtained for at least 33 days. In the present investigation a more rapid method was used which involved inoculating root slices with spore suspensions containing 5 × 103–5 × 106 spores/cm3 at 24°C. Resistance was assessed visually and by a chitin estimation 48 h after inoculation. Both methods were used to measure the resistance of cold stored carrot roots during two storage seasons, 1976/77 and 1977/78. In each season there was a particular inoculum level which most clearly recorded the increasing susceptibility of roots with time in store. In 1976/77 this was 1 × 105 spores/cm3 whereas in 1977/78 it was the lower inoculum concentration of 5 × 104 spores/cm3, suggesting the roots were generally more susceptible in 1977/78 than the previous season. This was in accord with the results from the whole root method of assessment. A chitin estimation proved to be the more sensitive method of assessment for inoculum potential experiments.  相似文献   

20.
Stemphylium botryosum f. lactucae, incitant of a leaf-spot disease of stored lettuce, was found to be relatively restricted in its host range. Cross-inoculations with spore suspension of this fungus failed to induce symptoms in any of the host plants tested, except carrot. Among isolates of S. botryosum from various hosts, only the isolate from carrot induced slight symptoms on lettuce. While mycelial growth of the lettuce isolate was confined to the range 13–37 oC spores germinated at more extreme temperatures. The optimum temperature for germination and for radial growth on PDA was found to be between 25 and 30 oC. Wet spores were quickly inactivated at 50 oC, whereas more than 40 % of dry spores withstood a 24 h exposure to that temperature. Only the outer leaves of lettuce responded readily to inoculation with a spore suspension, the required incubation period being 3 days at 25 oC. Symptoms developed less readily on bruised leaves. Relative humidity approaching saturation was necessary for prompt and typical infection, notably during the 24 h following inoculation. Short dry periods (60 % r.h.) interposed at a later stage, while somewhat inhibitory, did not prevent infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号